JPS5922765B2 - Manufacturing method for low-oxygen, low-sulfur steel that controls sulfide formation - Google Patents

Manufacturing method for low-oxygen, low-sulfur steel that controls sulfide formation

Info

Publication number
JPS5922765B2
JPS5922765B2 JP8393079A JP8393079A JPS5922765B2 JP S5922765 B2 JPS5922765 B2 JP S5922765B2 JP 8393079 A JP8393079 A JP 8393079A JP 8393079 A JP8393079 A JP 8393079A JP S5922765 B2 JPS5922765 B2 JP S5922765B2
Authority
JP
Japan
Prior art keywords
low
cao
alloy
molten steel
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8393079A
Other languages
Japanese (ja)
Other versions
JPS569317A (en
Inventor
要 和田
成章 萩林
良二 辻野
重男 鶴岡
健介 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8393079A priority Critical patent/JPS5922765B2/en
Publication of JPS569317A publication Critical patent/JPS569317A/en
Publication of JPS5922765B2 publication Critical patent/JPS5922765B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】 本発明は溶鋼中の硫化物の形態を制御して靭性の確保、
水素誘起割れ防止等、鋼の品質向上を目的とした脱酸脱
硫法の改良に関するものである。
[Detailed description of the invention] The present invention controls the form of sulfides in molten steel to ensure toughness,
This paper relates to improvements in deoxidizing and desulfurizing methods aimed at improving the quality of steel, such as preventing hydrogen-induced cracking.

従来からCaは酸素、硫黄との親和力が大iく溶鋼中の
全酸素、全硫黄の低減に有効であり、かつ鋼材の靭性向
上管に重要な効果を有する事は知られている。
It has been known that Ca has a high affinity for oxygen and sulfur, is effective in reducing total oxygen and total sulfur in molten steel, and has an important effect on improving the toughness of steel pipes.

そして工業的にはCa添加剤として 1 鉄に固溶する元素と合金化したCa合金。And industrially, it is used as a Ca additive. 1 Ca alloy alloyed with elements that dissolve in iron.

例えばCaSi、CaA1、Ca5iBa、CaSiM
nAl etc 2 CaO含有フラックス。
For example, CaSi, CaA1, Ca5iBa, CaSiM
nAl etc 2 CaO-containing flux.

例えばCab、CaO+CaF2に大別できる。For example, it can be broadly classified into Cab and CaO+CaF2.

しかしこれらの溶鋼添加剤における、夫々の脱酸、脱硫
、あるいは硫化物形態の制御効果についての系統的、理
論的検討が未だ行われた例はない。
However, no systematic or theoretical study has yet been conducted on the deoxidation, desulfurization, or sulfide morphology control effects of these molten steel additives.

従来はCa又はCa化合物の効果を包括的に見なしてお
り添加剤(例えばCaSi又はCa0)溶鋼に添加しさ
えすれば脱酸、脱硫、硫化物形態制御が全て一律に行い
得ると考えられていた。
Previously, the effects of Ca or Ca compounds were viewed comprehensively, and it was thought that deoxidation, desulfurization, and sulfide morphology control could all be performed uniformly by adding additives (e.g., CaSi or Ca0) to molten steel. .

しかしながら実際には、このような単純な操作では上述
の全ての目的が一律に満足されるものではなく硫化物形
態制御を主目的とし、かつ脱酸、脱硫を同時に期待して
Ca添加処理しても、必ずしも脱酸が十分でなく溶鋼の
清浄度が良くはならないという結果となっていた。
However, in reality, such a simple operation does not uniformly satisfy all of the above objectives, and the main objective is to control the sulfide morphology, and the Ca addition treatment is performed with the expectation of deoxidation and desulfurization at the same time. However, the deoxidation was not always sufficient and the cleanliness of the molten steel was not improved.

例えば工業的に最も良く用いられるCaSiを硫化物形
態制御、及び脱硫を主目的としかつ脱酸を期待して溶鋼
に添加した場合後述の如く、CaO含有フラックスに比
較し、脱酸速度が小さく最高到達全酸素レベルはせいぜ
い40ppm前後にしか到らない。
For example, when CaSi, which is most commonly used industrially, is added to molten steel with the main purpose of controlling sulfide morphology and desulfurization and expecting deoxidation, the deoxidation rate is lower than that of CaO-containing flux, which is the highest. The total oxygen level reached is at most around 40 ppm.

従って例えば極寒冷地向ラインパイプの靭性確保、又は
、サワーガス含有天然ガス輸送用ラインパイプの耐水素
誘起割れ防止等近年厳しく要求される鋼材品質に対して
は、不充分であるのが現状である。
Therefore, the current situation is that it is insufficient to meet the strict requirements of steel quality in recent years, such as ensuring the toughness of line pipes for extremely cold regions or preventing hydrogen-induced cracking of line pipes for transporting natural gas containing sour gas. .

従来から酸化物介在物レベルが20〜30ppmの優れ
た清浄度と共に硫化物形態制御が共に満足する鋼の製造
法が久しく望まれてきた。
There has long been a desire for a method of manufacturing steel that satisfies both excellent cleanliness with an oxide inclusion level of 20 to 30 ppm and control of sulfide morphology.

本発明は、以上のような事情にかんがみその要求を満た
すべ〈従来のCa添加について鋭意検討し、その解決に
到ったものである。
In view of the above-mentioned circumstances, the present invention has been made to meet these demands.The present invention has been made by intensively studying the conventional Ca addition method and reaching a solution to the problem.

すなわち、Ca合金及びCaO含有フラックスについて
、脱酸、脱硫及び硫化物形態制御の効果に関し試験検討
した。
That is, the effects of deoxidation, desulfurization, and sulfide form control were tested and studied for Ca alloys and CaO-containing fluxes.

その結果、前記全ての目的を満足させるためには 1 出鋼時における予備脱酸処理工程 2 取鍋溶鋼内への粉体吹込による脱酸、脱硫工程 3 取鍋溶鋼内への粉体吹込による硫化物形態制御工程 の各工程を夫々分離する事が必要であり、そして出鋼時
の溶鋼を取鍋内で予備脱酸処理した後、CaO含有フラ
ックス及びCa合金の溶鋼への吹込操作を行なうについ
て、その時期と添加剤の選択と順序に重要な意味のある
事を知見した。
As a result, in order to satisfy all of the above objectives, 1. Preliminary deoxidation treatment step during tapping 2. Deoxidation and desulfurization step by injecting powder into the ladle molten steel 3. By injecting powder into the ladle molten steel It is necessary to separate each step of the sulfide morphology control process, and after preliminary deoxidation treatment of molten steel in a ladle during tapping, CaO-containing flux and Ca alloy are injected into the molten steel. We found that the timing and selection and order of additives have important implications.

即ち本発明は、取鍋内の予め脱酸処理した溶鋼にCaO
含有フラックスをキャリヤーガスにより吹込み、脱酸、
脱硫した後引きつづいて該溶鋼にCa合金を吹込み、溶
鋼中の硫化物形態を制御する事を特徴とする硫化物の形
態を制御した低酸素、低硫黄銅の製造法に関するもので
ある。
That is, in the present invention, CaO is added to molten steel that has been deoxidized in advance in a ladle.
Blow the contained flux with carrier gas, deoxidize,
This invention relates to a method for producing low-oxygen, low-sulfur copper with controlled sulfide morphology, which is characterized by injecting Ca alloy into the molten steel after desulfurization to control the sulfide morphology in the molten steel.

以下本発明について詳しく説明する ■ 脱酸について Ca合金とCaO含有フラックスの間には明らかに差異
がある。
The present invention will be explained in detail below. (1) Regarding deoxidation, there is clearly a difference between Ca alloy and CaO-containing flux.

(第1回)両者側れも脱酸速度式は次式のように表わす
事ができる 0f10i =η+(1−η)exp(−kt )Of
、Ol ;処理前後の全酸素 η= Q oo /Q 1 Qoo ;到達限界全酸素(第2図) K;速度定数 t:処理時間 実験結果からCa合金ではに=0.20 CaO含有フラツクスはに=0.35 となり定量的に脱酸速度差を導く事が出来た。
(Part 1) The deoxidation rate equation for both sides can be expressed as follows: 0f10i = η + (1-η) exp (-kt ) Of
, Ol ; Total oxygen before and after treatment η = Q oo /Q 1 Qoo ; Achievement limit total oxygen (Figure 2) K; Rate constant t: Treatment time From the experimental results, for Ca alloy = 0.20 For CaO-containing flux: = 0.35, and it was possible to quantitatively derive the difference in deoxidation rate.

すなわち脱酸が目的の場合、Ca合金よりCaO含有フ
ラックスの方が効果的である。
That is, when the purpose is deoxidation, a CaO-containing flux is more effective than a Ca alloy.

又Ca合金とCaO含有フラックスの混合物の場合Ca
合金による脱酸が反応を律速しCa合金単味と脱酸速度
定数は同じであるという結果が得られた。
In addition, in the case of a mixture of Ca alloy and CaO-containing flux, Ca
The results showed that deoxidation by the alloy determined the reaction rate, and the deoxidation rate constant was the same as that of the Ca alloy alone.

これはCa合金の方がCaO含有フラックスに比べ酸素
との親和力が強いが、生成した酸化物の浮上性の点では
、Ca合金による酸化物の方が悪いからであると思われ
る。
This is thought to be because, although Ca alloy has a stronger affinity for oxygen than CaO-containing flux, the oxide formed by Ca alloy is worse in terms of the buoyancy of the generated oxide.

また限界到達全酸素値が存在しスラグの組成に依存する
事が明らかである。
It is also clear that there is a limit total oxygen value and that it depends on the composition of the slag.

(第2図)2 脱硫について 粉体添加剤吹込における脱硫精錬のメカニズムとしては
(イ)添加剤粒子が鋼浴中を上昇する間における反応(
transitory reaction )(ロ)鋼
浴上のスラグによる反応(permanent rea
ction)の2つが考えられる。
(Fig. 2) 2 Regarding desulfurization The mechanism of desulfurization refining when powder additives are injected is (a) reaction while additive particles rise in the steel bath (
(transitory reaction) (b) Reaction by slag on a steel bath (permanent rea
There are two possible options.

−Ca合金、CaO含有フラックス共
(ロ)の反応の寄与が非常に大きい。
-Ca alloy and CaO-containing flux The contribution of reaction (b) is very large.

即ちその理由として脱硫率と吹込材原単位との間には明
確な相関がないこと、脱硫挙動は、スラグ組成滓化状況
に大きく影響される事(第3図、第4図)又第3図より
スラグ組成の指標としてm annes m anSl
ag Index (Cao / Sio2 : A1
203 )に脱硫率が依存している事が判った。
That is, the reason for this is that there is no clear correlation between the desulfurization rate and the blowing material consumption rate, and that the desulfurization behavior is greatly influenced by the slag composition and slag formation (Figures 3 and 4). From the figure, m annes m anSl is used as an index of slag composition.
ag Index (Cao/Sio2: A1
It was found that the desulfurization rate was dependent on 203).

Ca合金とCaO含有フラックスを比較するとCaO含
有フラックスの方がCa合金より滓化が良好で脱硫率が
良い場合が多いが基本的な差はない。
When comparing Ca alloys and CaO-containing fluxes, CaO-containing fluxes tend to have better slag formation and better desulfurization efficiency than Ca alloys, but there is no fundamental difference.

3 硫化物形態制御について ここで言う硫化物とはMnS の事であって、一般にC
aはMnS の生成を抑えカルシウム・アルミネート
・サルファイドの球状介在物を生成する事はよく知られ
ており、この球状介在物は圧延鋼材中で変形しない性質
をもっている。
3 Regarding sulfide morphology control The sulfide mentioned here refers to MnS, and is generally C
It is well known that a suppresses the formation of MnS and produces spherical inclusions of calcium, aluminate, and sulfide, and these spherical inclusions have the property of not deforming in rolled steel materials.

しかし本発明らの実験によれば、Ca合金は硫化物の形
態の制御機能を有しているが、CaO含有フラックスは
斯る機能をもっていない事である。
However, according to experiments conducted by the present inventors, Ca alloy has a function of controlling the morphology of sulfides, whereas CaO-containing flux does not have such a function.

以上1.2.3は本発明者らの数多くの実験結果から始
めて明らかになった事実である。
The above 1.2.3 is a fact that became clear from the results of numerous experiments conducted by the present inventors.

従って硫化物の形態を制御した低酸素、低硫黄銅を製造
する場合においては、前記知見に基づいて、次の一連の
工程を順次組合せて行うことが必要条件となるのである
Therefore, when producing low-oxygen, low-sulfur copper with controlled sulfide morphology, it is necessary to perform the following series of steps in sequential combination based on the above knowledge.

即ち、先づ最初出鋼時において予め溶鋼を、例えばAI
、Al−8i、AI −8i−Mn等の脱酸剤によって
予め脱酸しておく事、次いでこの溶鋼にCaO含有フラ
ックスを吹込む事、なおフラックス吹込後、引続いてキ
ャリアーガスを吹込み浴の攪拌を行なうことは好ましい
That is, when first tapping the molten steel, for example, AI
, Al-8i, AI-8i-Mn, etc. are deoxidized in advance, and then a CaO-containing flux is blown into the molten steel. After the flux is blown, a carrier gas is successively blown into the bath. It is preferable to perform stirring.

しかして最後にCa合金を鋼浴中に吹込み添加して硫化
物の形態を匍劇するという一連の工程を順次行なう事で
ある。
Finally, a series of steps are carried out in sequence, including adding Ca alloy by blowing it into the steel bath to destroy the form of the sulfide.

しかるにCaO含有フラックスとCa合金を同時添加し
た場合、硫化物形態制御、及び脱硫に関しては、順々添
加した場合とほぼ同じ結果が得られるが、清浄度の点で
非常に劣った鋼となる。
However, when a CaO-containing flux and a Ca alloy are added at the same time, almost the same results are obtained in terms of sulfide morphology control and desulfurization as when they are added sequentially, but the resulting steel is very poor in cleanliness.

なおCa合金添加後不活性ガスによる後吹きを行ない鋼
中のCa含有量を所望の値にする事ができる、またスラ
グの組成は脱酸、脱硫に対して極めて重要でありFed
、Mn01がスラグ中に多く含有すると脱酸、脱硫効果
は共に悪くなるので、出鋼時スラグの流出防止等によっ
てこの調整も考える必要がある。
After addition of Ca alloy, the Ca content in the steel can be adjusted to the desired value by blowing with inert gas. Also, the composition of the slag is extremely important for deoxidation and desulfurization.
If a large amount of , Mn01 is contained in the slag, the deoxidizing and desulfurizing effects will both deteriorate, so it is necessary to consider this adjustment by preventing the slag from flowing out during tapping.

本発明において使用するCaO含有フラックスCa合金
は共に粉粒状にしたものを用いキャリアガス(不活性ガ
ス)によって鋼浴中に吹込ランスから投入される。
The CaO-containing flux Ca alloy used in the present invention is both pulverized and introduced into a steel bath from a blowing lance with a carrier gas (inert gas).

以下実施例を述べる。Examples will be described below.

出鋼時AI 、Fe−8i、Fe−Mn合金で脱酸処理
した厚板50にキルド鋼を対象鋼種として本発明方法を
実施した。
The method of the present invention was applied to a thick plate 50 that had been deoxidized with AI, Fe-8i, and Fe-Mn alloys at the time of tapping, using killed steel as the target steel type.

比較のため併せて従来法も実施した。For comparison, a conventional method was also conducted.

これを別表に示す吹込みは耐火材料で被覆したランスを
溶鋼中2.50mに浸漬しキャリアーガスとしてArガ
スを用いた。
In the blowing shown in the attached table, a lance coated with a refractory material was immersed in 2.50 m of molten steel, and Ar gas was used as a carrier gas.

Ca合金を吹込んだ例(比較例2.3.4、本発明)で
は、すべて像化物形態コントロール効果がある事を示し
ておりCaO・Al2O3・S の球状の複合介在物と
なっている。
In the examples in which Ca alloy was injected (Comparative Example 2.3.4, the present invention), it was shown that there was an effect of controlling the form of the imaged object, and the result was spherical composite inclusions of CaO.Al2O3.S.

全酸素レベルでみるとCaO含有フラックス吹込例(比
較例1、本発明)で低くなっているが比較例4ではCa
合金吹込例と同様に46ppm台と高<CaO含有フラ
ックス及びCa合金の同時吹込は全酸素低減の効果がな
い事を示している。
Looking at the total oxygen level, it is lower in the CaO-containing flux injection example (Comparative Example 1, the present invention), but in Comparative Example 4, Ca
Similar to the alloy injection example, simultaneous injection of CaO-containing flux and Ca alloy with a high concentration of around 46 ppm shows that there is no effect of reducing total oxygen.

又カルシウムの含有量が後吹きの影響を受ける事が比較
例2.3.4、本発明かられかる。
Furthermore, it can be seen from Comparative Examples 2.3.4 and the present invention that the calcium content is affected by after-blowing.

以上の如く、本発明の方法により硫化物の形態を制御し
た低酸素(22ppm)、低硫黄(6ppm)の鋼を製
造する事ができた。
As described above, by the method of the present invention, it was possible to produce low oxygen (22 ppm) and low sulfur (6 ppm) steel with controlled sulfide morphology.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、処理前後の全酸素の変化を処理時間でみたも
のでありCa合金(又はCa合金+フラックス同時吹込
)の方がCaO含有フラックスより脱酸は小さい事を示
している図、第2図は到達限界酸素が処理後スラグの(
Fed)%、(MnO)%の成分の相に依存している事
を示す図、第3図は脱硫率とスラグのCab/5in2
;A1203(mannesman Slag Ind
ex )に依存することを示す図、第4図は処理後のS
分配比(S)f/(S、Ifと処理後スラグ中の(Fe
O)%と(MnO)%の和との相関を示している図、第
5図はキャリアーガスのみによる後吹きがCa歩留に与
える影響を示している図。
Figure 1 shows the change in total oxygen before and after treatment with respect to treatment time, and shows that deoxidation is smaller with Ca alloy (or simultaneous injection of Ca alloy + flux) than with CaO-containing flux. Figure 2 shows the reaching limit oxygen of the slag after treatment (
Figure 3 shows the relationship between desulfurization rate and slag Cab/5in2.
;A1203(mannesman Slag Ind.
Figure 4 shows the dependence on S after processing.
Distribution ratio (S) f/(S, If and (Fe in the slag after treatment)
FIG. 5 is a diagram showing the correlation between the sum of O)% and (MnO)%, and FIG. 5 is a diagram showing the influence of afterblowing using only a carrier gas on the Ca yield.

Claims (1)

【特許請求の範囲】[Claims] 1 取鍋内の予め脱酸処理した溶鋼にCaO含有フラッ
クスをキャリアーガスにより吹込み脱酸脱硫した後、引
きつづいて該溶鋼にCa合金を吹き込み、溶鋼中の硫化
物形態を制御する事を特徴とする硫化物の形態を制御し
た低酸素、低価黄銅の製造法。
1. After deoxidizing and desulfurizing the molten steel that has been previously deoxidized in the ladle by blowing a CaO-containing flux into the molten steel using a carrier gas, a Ca alloy is subsequently blown into the molten steel to control the sulfide form in the molten steel. A method for producing low-oxygen, low-value brass that controls the form of sulfides.
JP8393079A 1979-07-04 1979-07-04 Manufacturing method for low-oxygen, low-sulfur steel that controls sulfide formation Expired JPS5922765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8393079A JPS5922765B2 (en) 1979-07-04 1979-07-04 Manufacturing method for low-oxygen, low-sulfur steel that controls sulfide formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8393079A JPS5922765B2 (en) 1979-07-04 1979-07-04 Manufacturing method for low-oxygen, low-sulfur steel that controls sulfide formation

Publications (2)

Publication Number Publication Date
JPS569317A JPS569317A (en) 1981-01-30
JPS5922765B2 true JPS5922765B2 (en) 1984-05-29

Family

ID=13816305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8393079A Expired JPS5922765B2 (en) 1979-07-04 1979-07-04 Manufacturing method for low-oxygen, low-sulfur steel that controls sulfide formation

Country Status (1)

Country Link
JP (1) JPS5922765B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07505598A (en) * 1992-04-17 1995-06-22 インペリアル・パッケージング・インコーポレイテッド Carrier for multiple containers and device for applying carrier to containers

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583913A (en) * 1981-07-01 1983-01-10 Nippon Steel Corp Production of low hydrogen steel by which form of sulfide is controlled
JPS6184315A (en) * 1984-09-28 1986-04-28 Nippon Kokan Kk <Nkk> Method for refining molten steel in ladle
JPS6233741A (en) * 1985-08-05 1987-02-13 Kobe Steel Ltd Manufacture of ca-treated steel
KR101121105B1 (en) 2004-12-29 2012-03-19 주식회사 포스코 Refining method for preventing corner crack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07505598A (en) * 1992-04-17 1995-06-22 インペリアル・パッケージング・インコーポレイテッド Carrier for multiple containers and device for applying carrier to containers

Also Published As

Publication number Publication date
JPS569317A (en) 1981-01-30

Similar Documents

Publication Publication Date Title
US8262767B2 (en) Method of producing steel for steel pipe excellent in sour-resistance performance
CN106086593A (en) Molten steel smelting process for preventing nozzle nodulation in pouring process of sulfur-containing and aluminum-containing steel
CN110643779A (en) Ultra-low carbon steel top slag control production method
JPS5922765B2 (en) Manufacturing method for low-oxygen, low-sulfur steel that controls sulfide formation
US9023126B2 (en) Additive for treating resulphurized steel
JP2004169147A (en) Refining process for clean steel containing extremely low amount of non-metallic inclusion
JPH10212514A (en) Production of high clean extra-low sulfur steel excellent in hydrogen induced cracking resistance
JP4648820B2 (en) Method for producing extremely low sulfur chromium-containing molten steel
JPS6164811A (en) Desulfurizing method of molten steel
JPH08333619A (en) Production of steel excellent in hydrogen induced cracking resistance
JPS63262412A (en) Method for cleaning molten steel
JP5509913B2 (en) Method of melting high Si steel with low S and Ti content
JPS6157372B2 (en)
KR20030089955A (en) The method of decreasing nitrogen in deoxidized molten steel
JPH0873923A (en) Production of clean steel having excellent hydrogen induced crack resistance
KR100267273B1 (en) The making method of high purity al-si complex deoxidizing steel
JPS607001B2 (en) Manufacturing method for high-silicon spring steel with excellent fatigue resistance
JPH08225824A (en) Desulfurization of molten steel
JP2976849B2 (en) Method for producing HIC-resistant steel
JPH03291323A (en) Production of clean steel excellent in hydrogen induced cracking resistance
JP3577989B2 (en) High-speed desulfurization of molten steel
JPH08134528A (en) Production of extra low carbon steel
JPH06128620A (en) Method for adding ca
JPS609564B2 (en) Inclusion refinement method for high silicon spring steel
SU1500682A1 (en) Method of meltitng and off-furnace treating of bearing steel