JPS6010682A - Forming method for thin film - Google Patents

Forming method for thin film

Info

Publication number
JPS6010682A
JPS6010682A JP58119660A JP11966083A JPS6010682A JP S6010682 A JPS6010682 A JP S6010682A JP 58119660 A JP58119660 A JP 58119660A JP 11966083 A JP11966083 A JP 11966083A JP S6010682 A JPS6010682 A JP S6010682A
Authority
JP
Japan
Prior art keywords
hydrogen
film
silicon
thin film
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58119660A
Other languages
Japanese (ja)
Inventor
Katsuji Iguchi
勝次 井口
Atsushi Kudo
淳 工藤
Tadayuki Morishita
森下 賢幸
Teruyoshi Hara
照佳 原
Akio Kawamura
川村 昭男
Masayoshi Koba
木場 正義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP58119660A priority Critical patent/JPS6010682A/en
Publication of JPS6010682A publication Critical patent/JPS6010682A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/20Resistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To form a high resistance hydrogen amorphous silicon film having excellent heat resistance at a low substrate temperature by utilizing chemical activity and accelerating energy of ions, controlling atmospheric gas pressure, and adding impurity. CONSTITUTION:A forming method for a thin film heats an evaporation source silicon, ionizes, accelerates silicon vapor and hydrogen when evaporating the silicon in an atmosphere containing hydrogen as main ingredient, implants them to a substrate, and controls a film structure. The hydrogen gas pressure of the atmosphere affects the hydrogen and hydrogen ion amount incident to the film forming surface, and specifies the number of collisions of silicon atoms or cluster and hydrogen in vapor phase. Accordingly, they are important parameters in controlling the quality of the film, and 2X10<-3>-2X10<-2> Pa is particularly suitable.

Description

【発明の詳細な説明】 く技術分野〉 本発明はアモIL−ファスシリコン薄膜の形成方法に関
し、特にイメージセンサ等の光導電膜として利用可能力
高抵抗、高光導電水素化アモルファスシリコン薄膜を主
としてクラスタイオンビーム法で形成するものである。
Detailed Description of the Invention [Technical Field] The present invention relates to a method for forming an amorphous silicon thin film, particularly a hydrogenated amorphous silicon thin film that can be used as a photoconductive film for image sensors, etc. It is formed using an ion beam method.

〈従来技術〉 衆知のように水素アモルファスシリコン膜はバンドギャ
ップ内の局在準位密度が少なく、ボロン。
<Prior art> As is well known, a hydrogen amorphous silicon film has a low density of localized levels within the bandgap.

リン等の不純物を添加することで価電子制御が可能であ
る。これは膜形成時にシリコン−水素の結合が形成され
るだめ、非水素化アモルファスシリコン膜では膜内に多
量に存在していたシリコン原子の未結合手が大幅に減少
するためである。このため薄膜機能材料としての応用が
注目されており、薄膜太陽電池、イメージセンサ光導電
膜9液晶表示素子用7iv膜トランジスタ等への応用研
究が活発に 2行なわれている。
Valence electrons can be controlled by adding impurities such as phosphorus. This is because silicon-hydrogen bonds are formed during film formation, and dangling bonds of silicon atoms, which were present in large quantities in the non-hydrogenated amorphous silicon film, are significantly reduced. For this reason, its application as a thin film functional material is attracting attention, and research on its application to thin film solar cells, image sensor photoconductive films, 7IV film transistors for liquid crystal display elements, etc. is being actively conducted.

処で水素化アモルファスシリコン膜では、シリコン−水
素結合が存在するため結晶シリコンに比べてバンドギャ
ップが16〜1.8eVと大きく、その結果高抵抗で、
光に対する分光感度が人間の目に近いという基本的特長
を得ることができる。寸だ、局在準位密度が少々いだめ
に光導電率が太きいという特長も併せもつことができる
。これらの特長を生かして、−次元イメージセンサ、撮
像素子等の光導電膜への応用が、り了りチイブスパッタ
法、グロー放電法による水素化アモルファスシリコンを
用いて検討されて来た。
However, in hydrogenated amorphous silicon films, due to the presence of silicon-hydrogen bonds, the band gap is 16 to 1.8 eV, which is larger than that of crystalline silicon, resulting in high resistance.
The basic feature is that the spectral sensitivity to light is close to that of the human eye. In fact, it also has the advantage of having a slightly higher localized level density and higher photoconductivity. Taking advantage of these features, applications to photoconductive films for -dimensional image sensors, imaging devices, etc. have been investigated using hydrogenated amorphous silicon produced by the chive sputtering method and the glow discharge method.

り了クチイブスパッタ法では、たとえば水素とアルゴン
の混合ガス雰囲気下でシリコンをスパッタするものであ
り、膜中に数にのアルゴンが含まれることは避けられな
い。寸だ膜中の水素量を多くするととて高抵抗の膜を形
成することができるが、同時に5i(−I2結合の増加
のために十分高い光導電膜が得られないという欠点があ
る。グロー放電法はたとえばモノシラン、あるいはそれ
と水素や希ガス(He、Ar笠)の混合ガスによるグロ
ー放電を利用して成膜を行うものであり、ボロンのドー
ピング、窒素や酸素の添加等を援用するととて高抵抗、
高光導電膜を得ることが可能である。
In the cutting sputtering method, for example, silicon is sputtered in a mixed gas atmosphere of hydrogen and argon, and it is inevitable that a certain amount of argon will be included in the film. By increasing the amount of hydrogen in the film, it is possible to form a film with very high resistance, but at the same time there is a drawback that a sufficiently high photoconductive film cannot be obtained due to the increase in 5i (-I2 bonds). The discharge method uses glow discharge using, for example, monosilane or a mixture of monosilane and hydrogen or rare gases (He, Ar gas) to form a film. high resistance,
It is possible to obtain a highly photoconductive film.

しかし、これらの方法による水素化アモルファスシリコ
ン膜は200℃程度の加熱によって膜中の水素が放出さ
れ、膜特性が劣化するという熱的不安定性を持ち、実用
化の障害となっている。まだ、比較的高品質な膜を得る
だめには基板温度として250℃から300℃といった
比較的高温に保持して成膜工程を実施しなげれば々らな
いという問題がある。
However, hydrogenated amorphous silicon films produced by these methods have thermal instability in that hydrogen in the film is released by heating to about 200° C., resulting in deterioration of film properties, which is an obstacle to practical use. Still, there is a problem in that in order to obtain a film of relatively high quality, the film forming process must be carried out while maintaining the substrate temperature at a relatively high temperature of 250° C. to 300° C.

〈発明の目的〉 本発明は以上のような従来の成膜方法に鑑み、イオンを
利用した薄膜形成法によって比較的低基板温度で高耐熱
性を有する高抵抗、高光導電性を 1もつ水素化アモル
ファスシリコン膜を得ようとするものである。
<Object of the Invention> In view of the conventional film forming methods as described above, the present invention provides a hydrogenated film that has high heat resistance, high resistance, and high photoconductivity at a relatively low substrate temperature by a thin film forming method using ions. The purpose is to obtain an amorphous silicon film.

〈実施例〉 ここで言うイオンを利用した薄膜形成法とは、蒸発源シ
リコンを加熱し、これを水素を主成分とする雰囲気中へ
蒸発させて水素化アモルファスシリコンを形成するニオ
?において、シリコン蒸気及び水素をイオン化、加速し
て基板に射突させ、膜構造を制御する方法であり、イオ
ンブレーティング法、イオンビーム蒸着法、クラスタイ
オンビーム法等を含む。以下では緻密かつ高純度で高い
耐熱性を実現できるクラスタイオンビーム法に限って説
明する。
<Example> The thin film formation method using ions referred to here is a method of forming hydrogenated amorphous silicon by heating silicon as an evaporation source and evaporating it into an atmosphere containing hydrogen as the main component. In this method, silicon vapor and hydrogen are ionized, accelerated, and bombarded onto a substrate to control the film structure, and includes an ion blating method, an ion beam evaporation method, a cluster ion beam method, and the like. In the following, only the cluster ion beam method that can realize denseness, high purity, and high heat resistance will be explained.

クラスタイオンビーム法を用いてアモルファスシリコン
膜を得る技術は特公昭57−54.930号公報により
既に公知である。この種の方法は、第1図に示す如く、
真空ポンプ1によって高真空に保たれた真空チェンバ2
内において、ノズル8を有する密閉形るつぼ9内にシリ
コン10を充填し、フィラメント11より電子線を照射
することによりシリコンを加熱溶融することによってシ
リコン蒸気をノズルより噴射し、シリコン蒸気流12を
発生させる。このときシリコン蒸気は断熱膨張によって
過冷却状態となり、500から2000個のシリコン原
子がゆるく結合したクラスタを形成すると言われている
。さらに真空装置内に配管13によって導入された水素
を主成分とするガスとともにシリコン蒸気流の一部を、
フィラメント6から電極7を通じて引き出された電子線
を照射するととによってイオン化し、電極6とるつぼ9
の間に電圧を加えることによって加速し、基板4へ射突
させる。イオンの得た運動エネルギーとクラスタの崩壊
によって基板表面でのシリコン原子のマイグレーション
が活発に生じ、低基板温度でもシリコン同志の結合形成
が促進される。丑だ生成した膜表面に生じたシリコン原
子の未結合手は、気相から入射する水素との相互作用に
よって、水素との結合を形成する。上記のよう々クラス
タイオンビーム法では、クラスタの形成、イオンの介在
によって比較的低基板温度で高品質の水素化アモルファ
スシリコン膜を形成することができる。
A technique for obtaining an amorphous silicon film using the cluster ion beam method is already known from Japanese Patent Publication No. 57-54.930. This type of method, as shown in Figure 1,
Vacuum chamber 2 maintained at high vacuum by vacuum pump 1
Inside, a closed crucible 9 having a nozzle 8 is filled with silicon 10, and the silicon is heated and melted by irradiating an electron beam from a filament 11, and silicon vapor is injected from the nozzle to generate a silicon vapor flow 12. let At this time, the silicon vapor becomes supercooled due to adiabatic expansion, and is said to form a cluster of 500 to 2,000 silicon atoms loosely bonded together. Furthermore, a part of the silicon vapor flow along with the gas mainly composed of hydrogen introduced into the vacuum apparatus through the pipe 13,
When the electron beam drawn from the filament 6 is irradiated through the electrode 7, it is ionized and the electrode 6 and crucible 9 are ionized.
By applying a voltage between them, it is accelerated and made to collide with the substrate 4. The kinetic energy obtained by the ions and the collapse of the cluster actively migrate silicon atoms on the substrate surface, promoting the formation of bonds between silicon atoms even at low substrate temperatures. The dangling bonds of silicon atoms generated on the surface of the film form bonds with hydrogen through interaction with hydrogen incident from the gas phase. As described above, in the cluster ion beam method, a high quality hydrogenated amorphous silicon film can be formed at a relatively low substrate temperature due to the formation of clusters and the presence of ions.

処でクラスタイオンビーム法においては、雰囲気の水素
ガス圧力は、成膜表面に入射する水素及び水素イオンの
量に影響し、才だシリコン原子あるいはクラスタと水素
との気相での衝突数を規定することから、膜質を制御す
る−1−できわめて重要外パラメータであることが今回
判明した。
However, in the cluster ion beam method, the hydrogen gas pressure in the atmosphere affects the amount of hydrogen and hydrogen ions that enter the film-forming surface, and determines the number of collisions between silicon atoms or clusters and hydrogen in the gas phase. Therefore, it has now been found that -1- is an extremely unimportant parameter that controls film quality.

即ち第1図の装置において、真空チェンノク−2をI 
X 10−’Pa以下に排気した後高純度水素ガス14
を所定の圧力P、i24で導入し、るつぼを2000℃
程度に加熱し100 Xim速さで成膜を行なった。基
板4としては硫酸ボイルの後希弗酸洗浄した溶簡石英を
用い、赤外ランプ3によって加熱し、基板温度を200
℃に保った。イオン化においてはフィラメント6と電極
7に300vの電圧を印加しくイオン化電圧)、その間
に100mAの電流(イオン化電流)を流しだ。るつぼ
9と電極5の間に印加する加速電圧は3KVとした。形
成された水素化アモルファスシリコン膜の膜厚は01μ
mから111mであり、これに0.471m前後の膜厚
のアルミニュウムを蒸着して櫛形電極を形成し、暗導電
率tld、光導電率Δ6 p hを測定しだ。光導電率
は照射強度100mW/caのアルゴンレーザを用いた
That is, in the apparatus shown in FIG.
High purity hydrogen gas 14 after exhausting to below X 10-'Pa
is introduced at a predetermined pressure P, i24, and the crucible is heated to 2000°C.
The film was formed at a speed of 100 Xim. The substrate 4 is made of molten quartz that has been boiled in sulfuric acid and then washed with dilute hydrofluoric acid. It is heated with an infrared lamp 3 to bring the substrate temperature to 200℃.
It was kept at ℃. During ionization, a voltage of 300 V was applied to the filament 6 and the electrode 7 (ionization voltage), and a current of 100 mA (ionization current) was passed between them. The accelerating voltage applied between the crucible 9 and the electrode 5 was 3 KV. The thickness of the formed hydrogenated amorphous silicon film is 0.1 μm.
A comb-shaped electrode was formed by vapor-depositing aluminum to a thickness of about 0.471 m, and the dark conductivity tld and photoconductivity Δ6 p h were measured. For photoconductivity, an argon laser with an irradiation intensity of 100 mW/ca was used.

第2図は′d(実線)及びΔ6 p h(破線)とPH
2の関係を示し、水素ガス圧が6.5 X 1O−3P
a付近でもつとも高抵抗の水素化アモルファスシリコン
膜を得ることかできる。上記水素圧力で成膜された、水
素化アモルファスシリコン膜は、室温付近においても伝
導帯への活性化型伝導を示し、バンドギャップ内の局所
準位密度が小さいことを示している。
Figure 2 shows 'd (solid line) and Δ6 p h (dashed line) and PH
2, hydrogen gas pressure is 6.5 x 1O-3P
It is possible to obtain a hydrogenated amorphous silicon film having a high resistance even in the vicinity of a. The hydrogenated amorphous silicon film formed under the above hydrogen pressure exhibits activated conduction to the conduction band even near room temperature, indicating that the local level density within the band gap is small.

尚上記条件より低い水素圧力での生成膜は、室温ではホ
ッピング伝導を示し、膜の水素化が十分行なわれておら
ず局在準位密度が太きいと考えられる。またより高水素
圧でも、やはり室温ではホッピング伝導を示す。とれは
膜中の水素が増大する一方で、同時にシリコンシバイド
ライド(Si=H2)が増加し、これが局在準位を増大
させていると考えられる。より高基板温度においても同
様のゆ、ヵ1゜6カ8、ヶ□へ。よライいヮヶイゆオ 
汽す水素圧力範囲が若干拡大する。
A film produced under a hydrogen pressure lower than the above conditions exhibits hopping conduction at room temperature, and it is considered that hydrogenation of the film has not been sufficiently performed and the local level density is large. Furthermore, even at higher hydrogen pressures, hopping conduction still occurs at room temperature. It is thought that while hydrogen in the film increases, silicon cybide (Si=H2) increases at the same time, and this increases the localized level. Even at higher board temperatures, the same effect can be achieved. Good luck Yuo
The steaming hydrogen pressure range is slightly expanded.

光導重度は暗導電度はど顕著な水素圧力依存性を示さず
、クラスタイオンビーム法において高抵抗、高光導電膜
を作製するためには、6.5X10 Pa付近の水素圧
力がもっとも有効であることが明らかとなった。
The degree of photoconductivity does not show a remarkable dependence on hydrogen pressure as does the dark conductivity, and a hydrogen pressure around 6.5×10 Pa is most effective for producing a high-resistance, high-photoconductivity film using the cluster ion beam method. became clear.

前述の水素圧力6,5X1.OPaの試料において、そ
の光学的バンドギャップはl、67eVであるのに対し
て、暗導電率の活性化エネルギーは0.66eVであっ
た。これはフェルミレベルがバンドギャップ中央より伝
導帯側に(1,1,8eV程度寄っていることを示唆し
ている。従って水素ガス中に微量のシボロンガスを混入
し、水素化アモルファスシリコン膜中にボロンをドーピ
ングすることで、より高抵抗膜を得ることができる。
The aforementioned hydrogen pressure 6.5X1. In the OPa sample, its optical bandgap was l, 67 eV, while the activation energy of dark conductivity was 0.66 eV. This suggests that the Fermi level is closer to the conduction band side (approximately 1, 1, 8 eV) than the center of the band gap. Therefore, by mixing a small amount of ciboron gas into the hydrogen gas, boron is added to the hydrogenated amorphous silicon film. By doping with , a higher resistance film can be obtained.

さらに高抵抗水素化アモルファスシリコンを得ようどす
る場合、バンドギャップを大きくしキャリア数を減少さ
せるのが有効である。その一方法として膜中の水素量を
増やすことが考えられるが、これは同時に膜中のシリコ
ンシバイドライド(Si−■(2)を増加させ、キャリ
ア輸送特性を劣化させ光導電率を減少させる恐れがある
。そこで水素以外に窒素酸素等を膜中に導入しシリコン
との結合を形成することによってバンドギャップを太き
くし高抵抗化を図る。これらの原子は配位数が少ないだ
め、膜中に入ても未結合手を生じる恐れは少なく、キャ
リア輸送特性を悪化するとと々く高抵抗化できる。
Furthermore, in order to obtain hydrogenated amorphous silicon with high resistance, it is effective to increase the band gap and decrease the number of carriers. One way to do this is to increase the amount of hydrogen in the film, but this will also increase the amount of silicon sibide (Si-■(2)) in the film, which may deteriorate the carrier transport properties and reduce the photoconductivity. Therefore, in addition to hydrogen, nitrogen, oxygen, etc. are introduced into the film to form bonds with silicon, thereby widening the band gap and increasing the resistance. Even if it enters, there is little risk of creating dangling bonds, and if the carrier transport characteristics are deteriorated, the resistance can be significantly increased.

以下に具体的々成膜工程を説明する。The film forming process will be specifically explained below.

実施例1:第1図クラスタイオンビーム装置において、
前述した方法によって水素化アモルファスシリコン膜を
作製した。水素圧力は6.5 X 1O−8Pa、基板
温度は200℃、イオン化電圧は300■にそれぞれ保
ち、イオン化電流100mAから300mA。
Example 1: Fig. 1 In a cluster ion beam device,
A hydrogenated amorphous silicon film was produced by the method described above. The hydrogen pressure was maintained at 6.5 x 10-8 Pa, the substrate temperature was maintained at 200°C, the ionization voltage was maintained at 300μ, and the ionization current was varied from 100mA to 300mA.

加速電圧Oから3KVにおいて暗導電率I X 10 
1Ac?nから1×101/r)tmの高抵抗膜を得た
。光導電率−γ は1×101/胎から1×10Vr′L鑞の範囲にあり
、暗導電率に比べ4ケタ以上の高い値を得た。
Dark conductivity I x 10 at accelerating voltage O to 3KV
1 Ac? A high resistance film of 1×101/r)tm was obtained from n. The photoconductivity -.gamma. was in the range of 1.times.10@1 to 1.times.10 Vr'L, and a value more than 4 orders of magnitude higher than the dark conductivity was obtained.

実施例2:第1図のクラスタイオンビーム装置において
、水素に微量のジボランCB 2 ’H’6 )を加え
ポロンドープ水素化アモルファスシリコン膜を形成した
。水素圧力等成膜条件は実施例1と同一である。ジボラ
ンは水素に対して500 ppm)7111えた。
Example 2: In the cluster ion beam apparatus shown in FIG. 1, a trace amount of diborane (CB2'H'6) was added to hydrogen to form a poron-doped hydrogenated amorphous silicon film. The film forming conditions such as hydrogen pressure are the same as in Example 1. Diborane was 7111 (500 ppm relative to hydrogen).

その結果暗導電率はジボランを添加しなかった場合に比
べ約1ケタ減少し、最少のもので9 X 10””14
工/Ωσの高抵抗膜が得られた。光導電率はほぼ半減し
たが、暗導電率に対する比では改善された。
As a result, the dark conductivity decreased by about one order of magnitude compared to the case without diborane added, and the minimum value was 9 x 10""14
A high-resistance film of Ω/Ωσ was obtained. Although the photoconductivity was almost halved, the ratio to dark conductivity was improved.

実施例3:第1図のクラスタイオンビーム装置において
、水素に微量のジボランとアンモニア(NH3)を加え
ボロンドープ水素化アモルファスシリコン窒素膜を形成
した。水素圧力等成膜条件は実施例と同一である。実施
例2と同じくジボランは水素に対して500 ppm加
え、アンモニアは・lX10PaからlX10Pa導入
することで、暗導電率がlXl0I/ΩmからlXl0
 1/Ωmの高抵抗膜を得た。光導電率は実施例2と大
差なくI X 10 x/nan前後であった。
Example 3: In the cluster ion beam apparatus shown in FIG. 1, trace amounts of diborane and ammonia (NH3) were added to hydrogen to form a boron-doped hydrogenated amorphous silicon nitrogen film. The film forming conditions such as hydrogen pressure were the same as in the example. As in Example 2, diborane was added at 500 ppm relative to hydrogen, and ammonia was introduced from lX10Pa to lX10Pa, thereby increasing the dark conductivity from lXl0I/Ωm to lXl0
A high resistance film of 1/Ωm was obtained. The photoconductivity was about I x 10 x/nan, which was not much different from Example 2.

以上の実施例に示した各薄膜の特性を第3図に示す。縦
軸は暗導電率であり、横軸のS。r S + + S 
2+S3・は瑣れぞれ水素ガス圧力を最適化しなかった
場合・So、水素ガス圧力を最適化した実施例1による
場合Sl+ジボランを500 ppm添加した実施例2
による場合S2+及びlX10Paから1X10Paの
アンモニアを加えた実施例3の場合83に対応する。同
図より明らかなように、雰囲気水素圧力の最適化、適量
のジボラン、アンモニア等の添加によって暗導電率10
 から101/Ω口の高抵抗膜を得ることができる。
The characteristics of each thin film shown in the above examples are shown in FIG. The vertical axis is dark conductivity, and the horizontal axis is S. r S + + S
2+S3 is the case where the hydrogen gas pressure was not optimized, So, and Example 1 where the hydrogen gas pressure was optimized. Example 2 where 500 ppm of Sl+diborane was added.
The case corresponds to case 83 in Example 3 in which S2+ and ammonia of 1×10 Pa to 1×10 Pa were added. As is clear from the figure, by optimizing the atmospheric hydrogen pressure and adding appropriate amounts of diborane, ammonia, etc., the dark conductivity was increased to 10.
A high resistance film of 101/Ω can be obtained from the above.

〈効果〉 以上のようにイオンの化学的活性と加速エネルギーを有
効に利用し、寸だ雰囲気ガス圧力を制御し適当な不純物
を添加することによって、比較的低基板温度で耐熱性の
優れた高抵抗水素化アモルファスシリコン膜を形成する
ことができる。特にクラスタイオンビーム法は優れた制
御性により構造安定かつ特性の優れた薄膜を得るととが
でき、信頼性の高い高抵抗、高光導電水素化アモルファ
スシリコン膜を提供する技術として波及効果が犬きい。
<Effect> As described above, by effectively utilizing the chemical activity and acceleration energy of ions, precisely controlling the atmospheric gas pressure, and adding appropriate impurities, we can create high-temperature high-temperature high-temperature products with excellent heat resistance at relatively low substrate temperatures. A resistive hydrogenated amorphous silicon film can be formed. In particular, the cluster ion beam method allows for the production of thin films with structural stability and excellent properties due to its excellent controllability, and the ripple effect is significant as a technology for providing highly reliable, high-resistance, and high-photoconductivity hydrogenated amorphous silicon films. .

4、。Wi。ヨエヶ、ワ、 1 第1図はクラスタイオンビーム装置の概要を示す図、第
2図は本発明による一実施例の水素化アモルファスシリ
コン膜の暗導電率及び光導電率と雰囲気水素ガス圧との
関係を示す図、第3図は本発明による各実施例の水素化
アモルファスシリコン膜における暗導電率の関係を示す
図である。
4. Wi. 1. Figure 1 shows the outline of a cluster ion beam device, and Figure 2 shows the relationship between the dark conductivity and photoconductivity of a hydrogenated amorphous silicon film and atmospheric hydrogen gas pressure in one embodiment of the present invention. FIG. 3 is a diagram showing the relationship between the dark conductivity of the hydrogenated amorphous silicon film of each example according to the present invention.

2:真空チェンバ、4:基板、5°イオン加速用電極、
6:イオン化用フィラメント、7:イオン化用電子線引
き出し電極、8:ノズル、9:るつぼ、10:シリコン
、11:るつぼ加熱用フィラメント、12:シリコン蒸
気流、13:雰囲気ガス導入管 代理人 弁理士 福 士 愛 彦(他2名)ム 15 
/b /7 1θ j”7−X、 −’″ ゲ 。〜\−−m− と 第3図 &爪り゛スIL矛 (Pa) 第2図 395−
2: Vacuum chamber, 4: Substrate, 5° ion acceleration electrode,
6: Filament for ionization, 7: Electron beam extraction electrode for ionization, 8: Nozzle, 9: Crucible, 10: Silicon, 11: Filament for heating the crucible, 12: Silicon vapor flow, 13: Atmospheric gas introduction management agent, patent attorney Yoshihiko Fukushi (and 2 others) 15
/b /7 1θ j"7-X, -'"ge. ~\--m- and Fig. 3 & Claws IL spear (Pa) Fig. 2 395-

Claims (1)

【特許請求の範囲】 (1)蒸発源シリコンを加熱して水素雰囲気中に蒸発さ
せ、水素化アモルファスシリコン薄膜を得る工程におい
て、主として水素からなる雰囲気を2X10Paから2
X10Paに保持し、該雰囲気中に蒸発させてシリコン
蒸気及び水素をイオン化加速し、基板表面に衝突させて
薄膜を成長させることにより高抵抗、高光導電薄膜を得
ることを特徴とする薄膜形成法。 (刀 前記蒸発源シリコンは、ノズルを有する密閉型る
つぼ内に充填され、該るつぼを加熱して蒸気化し、上記
ノズルから噴射して薄膜形成を行うことを特徴とする特
許請求範囲第1項記載の薄膜形成方法。 (3)前記水素雰囲気は0から2000 pprnのジ
ボラン(B2H6)が添加されてなることを特徴とする
特許請求範囲第1項記載の薄膜形成方法。 ←)前記雰囲気は水素に加えて、1×10 Paからl
X10Paのアンモニア、窒素、酸素、亜酸化窒素等の
酸素又は窒素の化合物よりAるガスが導入されてなるこ
とを特徴とする特許請求範囲第1項記載の薄膜形成方法
[Claims] (1) In the step of heating the evaporation source silicon to evaporate it in a hydrogen atmosphere to obtain a hydrogenated amorphous silicon thin film, the atmosphere mainly consisting of hydrogen is changed from 2×10 Pa to 2
A thin film forming method characterized by obtaining a high resistance and high photoconductivity thin film by maintaining the pressure at X10Pa and accelerating ionization of silicon vapor and hydrogen by evaporating in the atmosphere and colliding with the substrate surface to grow a thin film. (Katana) The evaporation source silicon is filled in a closed crucible having a nozzle, the crucible is heated to vaporize, and the silicon is injected from the nozzle to form a thin film. (3) The thin film forming method according to claim 1, characterized in that the hydrogen atmosphere contains 0 to 2000 pprn of diborane (B2H6). ←) The hydrogen atmosphere contains hydrogen. In addition, from 1 × 10 Pa to l
2. The method for forming a thin film according to claim 1, wherein the gas A is introduced from a compound of oxygen or nitrogen such as ammonia, nitrogen, oxygen, or nitrous oxide at a pressure of 10 Pa.
JP58119660A 1983-06-29 1983-06-29 Forming method for thin film Pending JPS6010682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58119660A JPS6010682A (en) 1983-06-29 1983-06-29 Forming method for thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58119660A JPS6010682A (en) 1983-06-29 1983-06-29 Forming method for thin film

Publications (1)

Publication Number Publication Date
JPS6010682A true JPS6010682A (en) 1985-01-19

Family

ID=14766914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58119660A Pending JPS6010682A (en) 1983-06-29 1983-06-29 Forming method for thin film

Country Status (1)

Country Link
JP (1) JPS6010682A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348451U (en) * 1989-05-24 1991-05-09

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348451U (en) * 1989-05-24 1991-05-09
JPH0518934Y2 (en) * 1989-05-24 1993-05-19

Similar Documents

Publication Publication Date Title
US4237150A (en) Method of producing hydrogenated amorphous silicon film
JPS61274314A (en) Boosting of evaporation from laser heating target
JPH04174517A (en) Manufacture of diamond semiconductor
US5952061A (en) Fabrication and method of producing silicon films
US4698235A (en) Siting a film onto a substrate including electron-beam evaporation
JPH0131453B2 (en)
JPS6010682A (en) Forming method for thin film
EP0029747A1 (en) An apparatus for vacuum deposition and a method for forming a thin film by the use thereof
JPH0648715A (en) Production of semiconductor diamond
JPH05275331A (en) Manufacture of chalocopyrite thin film and solar cell
JP2945968B2 (en) Method for forming transparent conductive thin film
Ebihara et al. Influence of ambient gas on diamond-like carbon films prepared by KrF pulsed laser deposition
JPH06321690A (en) Forming method and treating method of semiconductor diamond film
Ishida et al. Growth temperature window and self-limiting process in sub-atomic-layer epitaxy
JP3102540B2 (en) Method for forming low hydrogen content amorphous silicon semiconductor thin film
JP2896247B2 (en) Photoelectric conversion element
JP2669207B2 (en) Method for n-type impurity doping in group IV semiconductor molecular beam epitaxial growth
JPS60239013A (en) Production equipment for semiconductor
Harada et al. Formation of β-FeSi2 thin films by partially ionized vapor deposition
JPS6226568B2 (en)
JPS604210A (en) Formation of thin film
JPS62223094A (en) Method for epitaxial growth and device therefor
JPH104220A (en) Manufacture of thermoelectric material
Yokota et al. Epitaxial growth of GaAs films on Cr-doped GaAs substrates by ionized Ga and As beam deposition
JPH1046326A (en) Method for forming thin film of calcopyrite type compound