JPS604210A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPS604210A
JPS604210A JP58113184A JP11318483A JPS604210A JP S604210 A JPS604210 A JP S604210A JP 58113184 A JP58113184 A JP 58113184A JP 11318483 A JP11318483 A JP 11318483A JP S604210 A JPS604210 A JP S604210A
Authority
JP
Japan
Prior art keywords
thin film
film
vapor
hydrogen
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58113184A
Other languages
Japanese (ja)
Inventor
Atsushi Kudo
淳 工藤
Katsuji Iguchi
勝次 井口
Tadayuki Morishita
森下 賢幸
Teruyoshi Hara
照佳 原
Akio Kawamura
川村 昭男
Masayoshi Koba
木場 正義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP58113184A priority Critical patent/JPS604210A/en
Publication of JPS604210A publication Critical patent/JPS604210A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Abstract

PURPOSE:To obtain a thin film with a high stability against light radiation by a method wherein silicon vapor and hydrogen are ionized and accelerated to collide against a substrate surface and a composition of the film is controlled. CONSTITUTION:Silicon 10 is put into an enclosed type crucible 11 to which a nozzle 12 is provided and heated and vaporized. The vapor is spouted out into the atmosphere whose pressure is 10<-2> or less and whose main component is hydrogen and a part of the vapor is ionized by passing through a part of ionizing filaments 14 and accelerated by accelerating electrodes 15 and made corride against a substrate surface 16 with neutral particles and deposited on it to form an amorphous silicon thin film. Because chemical activity and acceleration energy of the ions are effectively utilized, a fine and stable structure can be realized and an amorphous silicon hydrite with little light radiation deterioration can be formed.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、アモルファスシリコン薄膜の形成方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for forming an amorphous silicon thin film.

〈従来技術〉 薄膜機能利刺は、基板としてガラスやステンレスなど安
価な材1が利用できるのに加えで、大面積電子デバイス
の実現を可能にするなと多くの可能性を有している。特
にアモルファス薄膜は4り一件の高い大面積素子を開発
していく上からもその果す役割は大きい。
<Prior Art> In addition to being able to use inexpensive materials such as glass and stainless steel as substrates, thin film functional chips have many possibilities for realizing large-area electronic devices. In particular, amorphous thin films play a major role in the development of highly expensive, large-area devices.

アモルファスシリコン薄膜は、このような観点からも早
くから試作されてきたが、蒸着法、CVI)法等で形成
されたものは膜中に多数のダングリングボンドを含んで
おり、ギヤツブ内準位密度が高いために、薄膜電子デバ
イスとしての応用[i(える材料を得るに至らなかった
。しかし、近年プラズマを利用したグロー放電法、スパ
ッタ法なとの研究を通じて、これらのダングリングボン
ドを水素等により不活性化することにより、ギヤツブ内
準位密度の少ない優れた機能薄膜か得られるようになっ
た。このようにして得られたアモルファスシリコン薄膜
は大面積素子形成に適していることがら太陽電池、薄膜
トランジスタ、イメージセンザ等への応用研究が進めら
れ、例えば太陽電池においては、従来の単結晶ノリコン
製に迫る変換効率が得られるようになっている。
Amorphous silicon thin films have been prototyped for a long time from this perspective, but those formed by vapor deposition, CVI), etc. contain many dangling bonds in the film, and the level density within the gear is low. Due to the high cost, it has not been possible to obtain a material that can be applied as a thin film electronic device. However, in recent years, through research on glow discharge methods and sputtering methods using plasma, it has been possible to By inactivating it, it became possible to obtain an excellent functional thin film with low level density in the gear.The amorphous silicon thin film obtained in this way is suitable for forming large-area devices, so it can be used for solar cells, Research is underway to apply it to thin film transistors, image sensors, etc., and, for example, in solar cells, conversion efficiency approaching that of conventional single-crystal Noricon is now being achieved.

このような状況においで、最近では実用化の観点から、
光、熱その他の環境下でのアモルファスノリコン薄膜の
信頼性の確立が重ヅな技術課題として見直さi′1.つ
つある。
Under these circumstances, from the perspective of practical application,
Establishing the reliability of amorphous Noricon thin films under light, heat, and other environments has been reviewed as a serious technical issue i'1. It's coming.

現在、水素化アモルファスシリコン薄膜は、主にグロー
放電法によって形成される。グロー放電法は、Slの水
素化物、例えはモノシランを高周波(数耐〜数λuiz
)電界中で分解させて基板−4二にアモルファスシリコ
ンを堆積させる方法で、堆積種に51−n分子が見られ
ることからも明らかなように、膜中に水素が取り込rす
れ、ダングリングボンドが不活性化される結果、優れた
特性、特に光電特性をもつ薄膜を得ることができる。し
かしながらグロー放電法による水素化アモルファスシリ
コンには、光照射によって膜の電気特性が変化すめとす
る各種の応用上の障害となっている。
Currently, hydrogenated amorphous silicon thin films are mainly formed by glow discharge methods. In the glow discharge method, a hydride of Sl, for example monosilane, is exposed to high frequency (several to several λuiz
) A method in which amorphous silicon is deposited on a substrate by decomposing it in an electric field, and as is clear from the fact that 51-n molecules are seen in the deposited species, hydrogen is taken into the film and dangling occurs. As a result of the bond passivation, thin films with excellent properties, especially optoelectronic properties, can be obtained. However, hydrogenated amorphous silicon produced by the glow discharge method poses an obstacle in various applications where the electrical properties of the film are changed by light irradiation.

第1図に、グロー放電法で形成した水素化アモルファス
シリコン薄膜において観察される光照射下での特性変化
の様子を示す。この特性変化は01〜1μmの厚みを有
する膜の表面に、アルミニウド等からなる薄膜平行電極
を形成]ッ、′「シ棒間の抵抗を測定することにより、
光照射に伴なう膜の導電率の変化を追跡する。最初、試
別を暗状態1に保っておくと、導電率d]一定値σI)
 (1)に保たiする3、次に時刻t1 にキセノンラ
ンプ等の光源を用いて試料への光照射を開始する。光%
Q寸通常100〜200 mW / cnf程度である
。このとき導電率d:尤電電効果よりσl70)寸で増
加するか、)Y、照射を継続すると(区間2)時間の経
過とともに明状態での導電率はσ+、(1)からσt、
(2)へと徐々に変化していく、。
FIG. 1 shows changes in characteristics observed in a hydrogenated amorphous silicon thin film formed by a glow discharge method under light irradiation. This change in characteristics can be determined by forming thin film parallel electrodes made of aluminum or the like on the surface of a film with a thickness of 0.1 to 1 μm.
Track changes in conductivity of the film due to light irradiation. Initially, if the sample is kept in the dark state 1, the conductivity d] constant value σI)
(1) is maintained at i3, and then, at time t1, light irradiation to the sample is started using a light source such as a xenon lamp. light%
The Q dimension is usually about 100 to 200 mW/cnf. At this time, the electrical conductivity d: increases by σl70) due to the electric effect, or )Y, and as the irradiation continues (section 2), the electrical conductivity in the bright state increases as time passes, σ+, from (1) to σt,
It gradually changes to (2).

次に時刻t2 において光源をうlJるとその後のノ厚
’l’lL率はσD(2)となり、暗状態3てしかも宰
温に保つかぎり変化しない。上記両眼状態での導電率σ
D(1)とσD(2)は通常異なった値を示し、−例と
して5teablerとW r o n s k iの
結果(J、Appl 、Phys、 51(+980)
 3262)ではσD(2)ばσD(])と比較して数
桁低くなったテークが報告されている。
Next, at time t2, when the light source is turned off, the subsequent thickness 'l'lL ratio becomes σD(2), which does not change as long as the dark state 3 is maintained at a constant temperature. Conductivity σ in the above binocular condition
D(1) and σD(2) usually have different values, for example the results of 5tabler and Wronski (J, Appl, Phys, 51(+980)
3262), it has been reported that the take of σD(2) is several orders of magnitude lower than that of σD(]).

5teabler−Wronski効果については、そ
の原因に関しいくつかのモデルが提案されている。1つ
に一表面現象と関連(〜で説明するモデルであるが、光
照射に伴なう膜中のスピン密度やギヤツブ内型fyンの
増加か確t、りされていることから、バルク現象どする
考え力が妥当性が高い。即ち、エネルギーギャップより
大きなエネルギーをもつ)Aトンか薄膜に吸収されてキ
ャリアが生成し、次にそれらがFV結合するときにその
エネルギーが格子系Vこ放出され、水素を含む結合を切
断した9、原子間の結合角等に変化を与える結果が導電
率の変化に反映されると考えられる。又、膜中の水素の
一部が不均質な構造をもつ膜の粒Wに存在して光照射劣
化を促進するとするモデルも提案されている。いずれに
しろ光照射に対して安定な水素化アモルファス7リコン
薄膜を得るには、緻密でしかも均質な構造をもつ薄膜を
形成することが望ましい。又、酸素等膜中不純物がこの
現象に関与している可能性も残されでおり、これらの不
純物は少ないことが望ましい。、 〈発明の目的〉 以−ヒの考察に基ついで鋭、権検肘を進めた結果、本発
明を完成するに至っプこもので、蒸発源/リコンを加熱
しで、水素を主成分と才る券囲気1旧r(7f、発させ
水素アモルファスノリコン薄膜を11)るに稈において
、/リコン蒸気及び水素をイオン化、加速して基板表面
に衝突さぜで膜構造を制御することにより、光照射に対
する安定性の高い薄膜を7(Iることかできる薄膜の形
成方法をbllJ(するい〈実施例〉 本発明でいうイオンを利用し/ン:薄1164の月と成
力法には、イオンブレーテインク法、イオンビーノ、蒸
着法、クラスタイオンビーノー法などが含庄)Iる0、
これらの方法によればイオン+frt白身の化学的な活
性、又イオンの加速によって1jえられる運動エネルギ
ー等を有効に利用することによ、)で基板表面における
原子間の結合を促進し、史に表面マイグレーションの効
果によってグレインの少ない均質かつ緻密な薄膜の形成
が可能となる1、上記の方法のうち、太陽電池、イメー
ジセッサ等への応用を考慮する場合には高光導電率が得
られ、かつキャリア輸送%ll−1の優れたクラスタイ
オンビーム法が適しており、以下てはこの方法に限−っ
で説明する。
5 Several models have been proposed regarding the cause of the Teabler-Wronski effect. One is related to surface phenomena (this is the model explained in ~), but it is certain that the spin density in the film and the internal type fyn in the gear increase due to light irradiation, so it is related to bulk phenomena. In other words, carriers are generated by A (having energy larger than the energy gap) being absorbed by the thin film, and then when they combine with FV, that energy is released into the lattice system V. It is thought that changes in the bond angles between atoms, etc., caused by breaking bonds containing hydrogen, are reflected in changes in electrical conductivity. Furthermore, a model has been proposed in which a part of the hydrogen in the film exists in grains W of the film having a non-uniform structure and promotes deterioration due to light irradiation. In any case, in order to obtain a hydrogenated amorphous 7-licon thin film that is stable against light irradiation, it is desirable to form a thin film with a dense and homogeneous structure. Furthermore, there remains a possibility that impurities in the film, such as oxygen, are involved in this phenomenon, and it is desirable that these impurities be reduced. , <Purpose of the Invention> As a result of careful investigation based on the above considerations, we have finally completed the present invention. By controlling the film structure by ionizing and accelerating the hydrogen vapor and hydrogen in the culm, the film structure is controlled by colliding with the substrate surface. A method for forming a thin film that is highly stable against light irradiation is described in Example 7. , ion-breathing ink method, ion-vino, vapor deposition method, cluster ion-vino method, etc.)Iru0,
According to these methods, by effectively utilizing the chemical activity of ions + frt whites and the kinetic energy obtained by ion acceleration, bonding between atoms on the substrate surface is promoted, and historical results are achieved. The effect of surface migration makes it possible to form a homogeneous and dense thin film with few grains.1 Among the above methods, when considering application to solar cells, image processors, etc., high photoconductivity can be obtained and A cluster ion beam method with an excellent carrier transport rate of %ll-1 is suitable, and the following description will be limited to this method.

クラスタイオンビーム法による水素化アモルファスノリ
コノ被膜の形成ii:、 ’時公昭57−54930吋
公報により既に公知であるか、光照射下での安定性につ
いては従来知られていなかった。
Formation of hydrogenated amorphous Norikono film by cluster ion beam method ii: This method is already known from the Publication of Publication No. 54930/1983, or its stability under light irradiation has not been previously known.

本実施例は、第2図に示す如く、ノズル12を有する密
閉形るつは11内に充填したノリコン10を加熱して蒸
気(ヒレ、その7リコンの蒸気をその圧力の少なくとも
lo−2以1・−の圧力を有する水素を主成分とする雰
囲気中に噴射さぜ、その一部をイオン化用)、Cラメン
ト14の部分を通過させることによりイオン化し、更に
加速電極15で加速して中性粒子とどもに基板表面16
に射突、堆積させてアモルファスシリコン薄膜を得るも
ので、400℃の耐熱性をもつ膜を得ることができる。
In this embodiment, as shown in FIG. 2, a sealed crucible having a nozzle 12 is heated to produce steam (7 mol of steam) at a pressure of at least lo-2 or higher. A part of the hydrogen is injected into an atmosphere containing hydrogen as a main component at a pressure of 1.-1. Substrate surface 16 with sexual particles
This method is used to obtain an amorphous silicon thin film by bombarding and depositing it on a substrate, and it is possible to obtain a film with heat resistance of 400°C.

同図において13はガス導入管であり、17はシ本発明
においては、表面に入射するイオンの量及びそのエネル
ギーを制御することにより緻密でかつ高純度、高品質の
膜が形成できる点に着目し5、光照射耐性の可能性につ
いて検討を進めた結果、適切な条件下で所望の薄膜を得
るに至った3、クラスタイオンビーム法では形成された
膜の構造及び特性は、真空室のベースの真空度、導入水
素圧、基板温度、シリコンの蒸発速度、イオン化率及び
加速電圧によって影響される。ベースのLjt、’空度
は、膜中への酸素等不純物の混入を防ぐ、伍味からI0
6’rorr以下、又基板温度は100〜500℃が望
ましい。導入水素圧はダングリングボンドを不活性化す
るために10−5〜103’rorr が適しでいる。
In the figure, 13 is a gas introduction tube, and 17 is a gas introduction tube.The present invention focuses on the point that a dense, high-purity, and high-quality film can be formed by controlling the amount of ions incident on the surface and their energy. 5. As a result of investigating the possibility of light irradiation resistance, we were able to obtain the desired thin film under appropriate conditions. 3. In the cluster ion beam method, the structure and properties of the formed film are based on the vacuum chamber base. It is influenced by the degree of vacuum, introduced hydrogen pressure, substrate temperature, silicon evaporation rate, ionization rate, and acceleration voltage. The base Ljt, 'emptiness is from 5 to 10 to prevent impurities such as oxygen from entering the film.
6'rorr or less, and the substrate temperature is preferably 100 to 500°C. A suitable hydrogen pressure for introduction is 10-5 to 103'rorr in order to inactivate dangling bonds.

シリコンの蒸発速度は実用性の点から1久/sec以上
が望ましい。イオン化率及び加速電圧は膜構造や光照射
耐性を左右する最も屯要なパラメータである。原子間結
合や表面マイグレー/コンを促進するには10〜50係
のイオン化率、0.5KV以上の加速電圧が望ましい。
From the point of view of practicality, the evaporation rate of silicon is desirably 1 min/sec or more. The ionization rate and acceleration voltage are the most important parameters that affect the film structure and resistance to light irradiation. In order to promote interatomic bonding and surface migration/conversion, an ionization rate of 10 to 50 and an accelerating voltage of 0.5 KV or more are desirable.

但し加速電圧についてば、7〜8KV以上ではスパンタ
現象や膜の損傷が無視でき々くなり、05〜5KVが適
切な範囲である○ 以下に具体的なアモルファスシリコン薄膜の形成力l去
を説明する。
However, regarding the accelerating voltage, if it is 7 to 8 KV or higher, the spunter phenomenon and film damage can no longer be ignored, so 05 to 5 KV is an appropriate range.The following describes the specific amorphous silicon thin film forming power. .

実施例1、第2図の構造のイオン源を有するクラスタイ
オンビーム装置に、有機及び無機洗浄を施しだlOo+
+角、7001tm厚のガラス基板16を基板位置にセ
ットし、5X I O−7Torr に排気しながら1
80℃にこの基板を加熱した。5刈0 イ”rorrの
真空度に−まで達したとき、真空室内にガス導入管13
から112 ガスを導入し、その圧力をlXl0−4T
 O1−rに維持した。シリコンを充填したカーボンる
つぼを電子線衝撃により1900〜2■00℃に加熱し
、シリコン蒸気をノズル12より噴射し、その一部をイ
オン化電流200mAの電子線照射によりイオン化し、
更に3KVで加速して、基板温度180℃の条件でアン
ドープアモルファスシリコン簿膜を3000λ厚形成し
た。この試料の表面に電子ビーム蒸着器を用いて400
0λ厚のアルミニウムの平行電極を形成し光照射効果測
定に供した。
Example 1: A cluster ion beam device having an ion source with the structure shown in Fig. 2 was subjected to organic and inorganic cleaning.
Set a glass substrate 16 with a + angle and a thickness of 7001 tm at the substrate position, and while exhausting to 5X I O-7 Torr,
This substrate was heated to 80°C. 5 When the vacuum level of 0 A"rorr is reached, the gas inlet pipe 13 is inserted into the vacuum chamber.
Introduce 112 gas from
It was maintained at O1-r. A carbon crucible filled with silicon is heated to 1900 to 200°C by electron beam bombardment, silicon vapor is injected from the nozzle 12, and a part of it is ionized by electron beam irradiation with an ionization current of 200 mA.
The process was further accelerated at 3 KV to form an undoped amorphous silicon film with a thickness of 3000λ under conditions of a substrate temperature of 180°C. Using an electron beam evaporator, the surface of this sample was
Parallel aluminum electrodes with a thickness of 0λ were formed and used to measure the effect of light irradiation.

第3図に測定結果を示す。同図において21は光照射前
の状態を示し、暗状態21で導電率σ−2XIO−8(
ΩCTn ) −’を保持した。L−0分で光量50m
W/ cn芝のHe−Neレーザ光を照射し始めるとσ
−4X I O−5(Ωan)−I iで増加した。照
射を続けた結果(区間22)t=+80分での導電率は
σ二a、s x l 0−5(Ωcm)−’と照射開始
時の値をほぼ維持していた。ここでHe −N e光を
切り(点23)暗抵抗を測定したところσ−2,2X 
I O−8(Ωcarry’であった。更に暗状態にお
いて、空気中て30分間200℃試1をアニールし、そ
の後光源をキセノンランプにかえて再度測定を行った。
Figure 3 shows the measurement results. In the figure, 21 indicates the state before light irradiation, and in the dark state 21 the conductivity is σ-2XIO-8 (
ΩCTn) −' was maintained. Light intensity 50m at L-0 minutes
W/cn When we start irradiating the grass with He-Ne laser light, σ
-4X IO-5(Ωan)-I increased with i. As a result of continued irradiation (section 22), the conductivity at t=+80 minutes was σ2a, s x l 0-5 (Ωcm)-', which was almost the same as the value at the start of irradiation. At this point, the He-N e light was turned off (point 23) and the dark resistance was measured.
IO-8 (Ωcarry') Test 1 was further annealed in the dark at 200° C. for 30 minutes in the air, and then the light source was changed to a xenon lamp and the measurement was performed again.

アニール後t=210分における暗抵抗は、表面吸着物
が除去された結果σ=3XIO−8(ΩQn ) −’
寸で増加した。
The dark resistance at t = 210 minutes after annealing is σ = 3XIO-8 (ΩQn) -' due to the removal of surface adsorbents.
It increased by

次にI 00mW/cnVの光量のキセノンランプを照
射したところ(区間24 ) σ=1.2Xio−’(
Ωcm)−’が得られ、t=540分においてその値は
!、3XIO’(ΩCrn)−Iiで僅かに増加した。
Next, when a xenon lamp with a light intensity of I00mW/cnV was irradiated (section 24) σ=1.2Xio-'(
Ωcm)-' is obtained, and at t=540 minutes, the value is! , 3XIO'(ΩCrn)-Ii slightly increased.

ここで光源を切って暗抵抗を測定したところ(点25)
σ−3,4X + □−8(ΩCnT)−1を示した。
Here, when the light source was turned off and the dark resistance was measured (point 25)
It showed σ-3,4X + □-8(ΩCnT)-1.

以上のような、光照射に伴なう特性変化は高々IO〜2
0チと極めて少ないことが判明した。
As mentioned above, the characteristic changes due to light irradiation are at most IO ~ 2
It turned out that the number of cases was extremely low at 0.

実施例2:次に実施例1と同様な方法で基板温度350
℃でリンドープの水素化アモルファスシリコン膜(膜厚
+oooX )を形成した。リンドープは、膜形成時に
水素とともに雰囲気に導入することにより行った。水素
圧はIX l 0−4Torrs PH3量はIOoo
ppmとしだ。得られた膜の暗導電率はσ= 1.5X
 I 0−6(ΩCTn )刊であった。この薄膜に1
00mW/ctAのΔrレーザ光を照射したところ初期
には0.8X10−4(肪++)I、120分照射後0
.7XIO−4(ΩCTn’)’が得られた。ここで光
を切った後の暗導電率は1.3X I 0−6(0cm
 ) −’であった。
Example 2: Next, the substrate temperature was set to 350 in the same manner as in Example 1.
A phosphorus-doped hydrogenated amorphous silicon film (thickness +oooX) was formed at .degree. Phosphorus doping was performed by introducing hydrogen together with the atmosphere during film formation. Hydrogen pressure is IX l 0-4 Torrs PH3 amount is IOoo
ppm and toshida. The dark conductivity of the obtained film is σ = 1.5X
It was published by I 0-6 (ΩCTn). 1 in this thin film
When irradiated with 00mW/ctA Δr laser light, the initial value was 0.8X10-4 (fat++)I, and after 120 minutes of irradiation, it was 0.
.. 7XIO-4(ΩCTn')' was obtained. Here, the dark conductivity after turning off the light is 1.3X I 0-6 (0 cm
) −' was.

〈効 果〉 以上述べたように、イオンの化学的活性と加速エネルギ
ーを有効に利用することにより緻密かつ安定な構造が実
現でき、光照射劣化の少ない水素化アモルファスシリコ
ンを形成することができる。
<Effects> As described above, by effectively utilizing the chemical activity and acceleration energy of ions, a dense and stable structure can be realized, and hydrogenated amorphous silicon with little deterioration due to light irradiation can be formed.

特にクラスタイオンビーム法は優れた制御性により構造
安定かつ特性の優れた薄膜を得ることができ、信頼性の
高い水素化アモルファスンリコンを提供する技術として
波及効果が大きい。
In particular, the cluster ion beam method can obtain thin films with excellent controllability and structural stability, and has a large ripple effect as a technology for providing highly reliable hydrogenated amorphous silicon.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ば5teabler−11’ronskj効果の
説明図、第2図はクラスタイオンビーム装置の基本構成
の説明図、第3図は本発明による一実施例のクラスタイ
オンビーム法により形成したアモルファスンリコン膜の
光照射に伴う特性変化を示す、1.21は光照射前、2
 、22 、2/Iは光1jj射中、3.25は光照射
後、又23はアニール中の状態を示す。10は蒸発源、
11はるつぼ、12はノズル、13はガス導入配管、1
4はイオン化用フィラメント、15は加速電極、16は
基板、17はシャッタである。
Fig. 1 is an explanatory diagram of the 5tabler-11'ronskj effect, Fig. 2 is an explanatory diagram of the basic configuration of a cluster ion beam device, and Fig. 3 is an amorphous recon formed by the cluster ion beam method according to an embodiment of the present invention. Showing the change in characteristics of the film due to light irradiation, 1.21 is before light irradiation, 2
, 22 and 2/I indicate the state during irradiation of light 1jj, 3.25 indicates the state after light irradiation, and 23 indicates the state during annealing. 10 is an evaporation source;
11 is a crucible, 12 is a nozzle, 13 is a gas introduction pipe, 1
4 is an ionization filament, 15 is an accelerating electrode, 16 is a substrate, and 17 is a shutter.

Claims (2)

【特許請求の範囲】[Claims] (1)蒸発源シリコンを加熱して水素を主成分とする雰
囲気中に蒸発さぜ、水素化アモルファスシリコン薄膜を
得る工程において、シリコン蒸気及び水素をイオン化及
び加速して基板表面に衝突させて、膜構造を制御するこ
とにより、光照射に対して安定な薄膜′f:得ることを
特徴とする薄膜の形成方法。
(1) In the step of heating the evaporation source silicon and evaporating it into an atmosphere containing hydrogen as a main component to obtain a hydrogenated amorphous silicon thin film, silicon vapor and hydrogen are ionized and accelerated to collide with the substrate surface, A method for forming a thin film, characterized in that a thin film 'f' stable against light irradiation is obtained by controlling the film structure.
(2)前記/リコン蒸気は、ノズルを有する密閉型るつ
ぼを加熱して内部に充填された蒸発源ノリコンを蒸気化
し、上記ノズルから噴射して薄膜形成を行うことを特徴
とする特許請求範囲第1項記載の薄膜の形成方法。
(2) The recon vapor is produced by heating a closed crucible having a nozzle to vaporize the evaporation source recon filled inside, and injecting it from the nozzle to form a thin film. The method for forming a thin film according to item 1.
JP58113184A 1983-06-21 1983-06-21 Formation of thin film Pending JPS604210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58113184A JPS604210A (en) 1983-06-21 1983-06-21 Formation of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58113184A JPS604210A (en) 1983-06-21 1983-06-21 Formation of thin film

Publications (1)

Publication Number Publication Date
JPS604210A true JPS604210A (en) 1985-01-10

Family

ID=14605679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58113184A Pending JPS604210A (en) 1983-06-21 1983-06-21 Formation of thin film

Country Status (1)

Country Link
JP (1) JPS604210A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325293A (en) * 1986-05-15 1988-02-02 コミツサリア タ レネルギ− アトミ−ク Cell for epitaxy by molecular jet and related methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325293A (en) * 1986-05-15 1988-02-02 コミツサリア タ レネルギ− アトミ−ク Cell for epitaxy by molecular jet and related methods

Similar Documents

Publication Publication Date Title
US7736960B2 (en) Process for producing a photoelectric conversion device
US4584427A (en) Thin film solar cell with free tin on tin oxide transparent conductor
JP2004511655A (en) Preparation method of indium tin oxide thin film using magnetron negative ion sputtering source
JPS61274314A (en) Boosting of evaporation from laser heating target
Hess Plasma-surface interactions in plasma-enhanced chemical vapor deposition
JPH0143449B2 (en)
US7075002B1 (en) Thin-film photoelectric conversion device and a method of manufacturing the same
JP2003524704A (en) Method for depositing thin film of indium oxide or indium tin oxide on polymer substrate
JP3394646B2 (en) Thin film solar cell and method of manufacturing thin film solar cell
JPS5919190B2 (en) Manufacturing method of lead film
JPS604210A (en) Formation of thin film
US5501745A (en) Low temperature method for making a photovoltaic material
JP3503787B2 (en) Thin film formation method
JP5568580B2 (en) Method for manufacturing photoelectric conversion device
JPS62502086A (en) Method and apparatus for epitaxial deposition of doped materials
US6083354A (en) Treatment method for diamonds
JP3205275B2 (en) Hydrogen diffusion treatment method for polycrystalline semiconductor
Hino et al. Deuterium retention in carbon flakes and tungsten–carbon mixed flakes produced by deuterium arc discharge
JPS60257127A (en) Formation of amorphous thin film
Oh et al. Study on Correlation of Thicknesses of Transparent Electrodes and Performance of Silicon Heterojunction Solar Cells
JPS6010682A (en) Forming method for thin film
JP3102540B2 (en) Method for forming low hydrogen content amorphous silicon semiconductor thin film
Gong et al. Hydrogen and disilane adsorption on low energy ion-roughened Si (100)
Hanabusa et al. Reactive Laser–Sputtering for Amorphous Silicon Films
JP3300802B2 (en) Semiconductor manufacturing method