JPS60105920A - Supply water amount measuring apparatus - Google Patents

Supply water amount measuring apparatus

Info

Publication number
JPS60105920A
JPS60105920A JP21338583A JP21338583A JPS60105920A JP S60105920 A JPS60105920 A JP S60105920A JP 21338583 A JP21338583 A JP 21338583A JP 21338583 A JP21338583 A JP 21338583A JP S60105920 A JPS60105920 A JP S60105920A
Authority
JP
Japan
Prior art keywords
value
transmitter
output
temperature
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21338583A
Other languages
Japanese (ja)
Inventor
Shinichi Yuda
油田 眞一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21338583A priority Critical patent/JPS60105920A/en
Publication of JPS60105920A publication Critical patent/JPS60105920A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Details Of Flowmeters (AREA)

Abstract

PURPOSE:In dispense with a thermostatic chamber, by providing a calculator having a means for correcting the output of a supply water transmitter corresponding to the output of an open air temp. sensor and a means for operating a supply water flow amount from the corrected value and the output of a supply water temp. sensor. CONSTITUTION:The output value of a transmitter 1 is read in a calculator 3 from a process input/output apparatus 2 while the value of an open air temp. sensor 6 is read in the calculator 3 from the input/output apparatus 2. If there is no shift between the read temp. and a reference temp., the value of the transmitter 1 is outputted as it is while converted to a flow amount value and, if there is shift over a predetermined value or more, the shift with a proper temp. value is calculated and correcting calculation is performed on the basis of an experimentally calculated correction formula and the corrected value is outputted after converted to a flow amount. By this method, the transmitter can be provided without using a thermostatic chamber and maintenance can be enhanced.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は監視制御計算機システムに用いる給水流量の測
定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a water supply flow rate measuring device used in a supervisory control computer system.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

原子力発電所においては、給水流量の変化が燃焼度及び
電気出力に与える影響が大きく、給水流量の精密な測定
が重要な問題となる。
In nuclear power plants, changes in the feed water flow rate have a large effect on burnup and electrical output, and accurate measurement of the feed water flow rate is an important issue.

原子炉への給水は、原子炉内の圧力に打勝って注入しな
ければならないことから、水は加圧される。その給水流
量を精密測定するため、配管を流れる流体の温度と差圧
を測定し、流体の密度を計算し、また、温度による流量
オリフィスの熱的膨張などの補正を行なっている。
Water is pressurized because it has to overcome the pressure inside the reactor to supply water to the reactor. In order to precisely measure the water supply flow rate, the temperature and differential pressure of the fluid flowing through the pipes are measured, the density of the fluid is calculated, and corrections are made for thermal expansion of the flow orifice due to temperature.

ところで、その給水トランスミッタは、外気温度による
特性の変化が大きく、給水トランスミッタのある基準温
度で較正された出力との誤差が大きくなるので、通常、
恒温槽に入れて坦1定を行なっている。
By the way, the characteristics of the water supply transmitter vary greatly depending on the outside temperature, and the error with the output calibrated at a certain reference temperature of the water supply transmitter becomes large.
It is placed in a constant temperature bath for constant temperature.

このため保守時に恒温槽を取シはすすなど、保守作業が
やシに<<、また、恒温槽自体の故障も多いので、プラ
ント保守管理上の問題となっていた。
As a result, maintenance work becomes difficult, such as removing soot from the constant temperature chamber during maintenance.Furthermore, the constant temperature chamber itself often breaks down, posing a problem in plant maintenance management.

〔発明の目的〕[Purpose of the invention]

本発明は、流量トランスミッタを恒温槽に入れることな
く、給水流量の精密測定が可能な給水流量測定装置を提
供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a water supply flow rate measuring device that can accurately measure the flow rate of water supply without placing a flow rate transmitter in a constant temperature bath.

〔発明の概要〕[Summary of the invention]

本発明は、流量トランスミッタの外気温度を外部温度セ
ンサーで感知し、プロセス入出方装置によシ計算機へ入
力し、流量トランスミッタの温度による特性変化をめて
入力値を温度補正し1配管を流れる流体の差圧即ち流量
を正しくめるようにしたことを特徴としている。
The present invention detects the outside air temperature of a flow rate transmitter with an external temperature sensor, inputs it to a computer using a process input/output device, and corrects the input value by taking into account changes in characteristics due to the temperature of the flow rate transmitter, and adjusts the temperature of the input value for the flow of fluid flowing through one pipe. The feature is that the differential pressure, that is, the flow rate can be adjusted correctly.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図面を参照して説明する。 Hereinafter, the present invention will be explained with reference to the drawings.

第1図は給水流量測定装置の概念図を示したもので11
はトランスミッタ、2はプロセス人出装置(以下、PI
10配置という)、3は計算機、4は出力装置、5は流
体温度センサー、6はトランスミッタ外気温度センサー
、7は記憶部である。
Figure 1 shows a conceptual diagram of the water supply flow rate measuring device.
is the transmitter, and 2 is the process personnel equipment (hereinafter referred to as PI).
3 is a computer, 4 is an output device, 5 is a fluid temperature sensor, 6 is a transmitter outside air temperature sensor, and 7 is a storage unit.

この構成で、トランスミッタ1の温度補正は第2図に示
す手順で行表われる。即ち、トランスミッタ1の出力値
をP工10装置2よシ計算機3へ読み込み(イ)、記憶
部7へ記憶する。次にトランスミッタ周囲外気温度セン
サー6の値をPI10装置2よシ計算機3へ読み込む(
ロ)。この読み込んだ温度と基準温度とにずれが無けれ
ば(ハ)、トランスミッタ1の値をそのまま流量値に変
換して出力する(へ)。
With this configuration, temperature correction of the transmitter 1 is performed in accordance with the procedure shown in FIG. That is, the output value of the transmitter 1 is read into the computer 3 from the P-engine 10 device 2 (A), and is stored in the storage section 7. Next, read the value of the transmitter ambient outside air temperature sensor 6 from the PI10 device 2 to the computer 3 (
B). If there is no difference between the read temperature and the reference temperature (c), the value of the transmitter 1 is directly converted into a flow rate value and output (step).

しかし、トランスミッタ周囲外気温度と基準温度とに所
定値以上のずれがあれば(ハ)、予め記憶しておいた基
準温度まわシの適正温度範囲とのずれを計算するに)。
However, if there is a deviation of more than a predetermined value between the outside air temperature surrounding the transmitter and the reference temperature (c), the deviation from the appropriate temperature range of the reference temperature range stored in advance is calculated.

次いで、補正計算を行ない(ホ)、流量変換して出力す
る(へ)。
Next, a correction calculation is performed (e), and the flow rate is converted and output (f).

例えば、適正温度の範囲をTI <T<Tt (T ニ
ド2ンスミ、り周囲外気温度℃)とし、測定温度t T
 l とし、トランスミッタ入力記憶値を3’o (m
mHg)とすると、Tt < To < Tzのとき、
つ″!1シ適正温度範囲内にある時は記憶値’10を流
量値に変換した後に出力する。Ts>To又は’ro 
>Ttの場合は、゛温度差Δ’r=’ro −TIの場
合に温度測定値に加えるべき補正値はf(ΔT)なる関
数でめられるとすると、出力値yは、y=31o+f(
ΔT)となシ、yの値を流量値に変換した後に計算機よ
り出力する0ただし、ここでf(ΔT)はトランスミッ
タ出力電圧e=e(ΔR(T) )の逆関数よ請求まる
が実験的には次のようにしてめられる。
For example, if the appropriate temperature range is TI <T
l, and the transmitter input storage value is 3'o (m
mHg), when Tt < To < Tz,
When the temperature is within the appropriate temperature range, the stored value '10 is converted to a flow rate value and then output.Ts>To or 'ro
>Tt, the correction value to be added to the temperature measurement value in the case of temperature difference Δ'r='ro -TI is determined by the function f(ΔT), then the output value y is y=31o+f(
ΔT), which is output from the computer after converting the value of y into a flow rate value. However, here, f(ΔT) is an inverse function of the transmitter output voltage e=e(ΔR(T)). Basically, it can be explained as follows.

即ち、補正値f(ΔT)をめるには、例えば、給水トラ
ンスミッタは第3図のような構造になりておシ、高圧側
10と低圧f11111の圧力を差圧センサー12で受
け、差圧センサー12の抵抗値を変化させる。
That is, in order to calculate the correction value f(ΔT), for example, the water supply transmitter should have a structure as shown in FIG. The resistance value of the sensor 12 is changed.

その差圧センサー12の抵抗値の変化を第4図のブリッ
ジ回路13で取シ出し、増幅器14よシ増幅して差圧と
して出力する。なお、第4図の15は電源を示す。
The change in resistance value of the differential pressure sensor 12 is detected by the bridge circuit 13 in FIG. 4, amplified by the amplifier 14, and output as a differential pressure. Note that 15 in FIG. 4 indicates a power source.

この場合、差圧センサー12の抵抗Rは、第5図のよう
に温度Tによシ変化するため、トランスミッタ1の入力
圧力値を一定にし、トランスミッタ1の環境温度を変化
させ、出力データを取シ、そのデータと基準出力値を元
に補正値f(ΔT)をめる。例えばf(ΔT)を温度の
一次関数として折線で近似する場合は、トランスZツタ
入力データに近い環境温度を変化させた時の出力データ
を01、その時の温度’!rTAx基準出力値を02そ
の時の温度をT1zFランスミッタ入力データ測定時の
温度をToとすると、補正値f(ΔT)は、1) T’
1>ToSるいはT6)Ttの場合It) To < 
To < Ttの場合f(ΔT)=0 となる。
In this case, the resistance R of the differential pressure sensor 12 changes depending on the temperature T as shown in FIG. Based on the data and the reference output value, calculate the correction value f(ΔT). For example, when f(ΔT) is approximated by a polygonal line as a linear function of temperature, the output data when changing the environmental temperature close to the transformer Z ivy input data is 01, the temperature at that time'! If the rTAx reference output value is 02, the temperature at that time is T1zF, and the temperature at the time of transmitter input data measurement is To, then the correction value f(ΔT) is 1) T'
1>ToS or T6) If Tt then It) To <
When To < Tt, f(ΔT)=0.

このように環境温度を検出し、トランスミッタ1の出力
値を補正することによシ、外気温度が大きく変化しても
、恒温槽なしで、トランスミッタ1を設置することがで
きるようにib、保守性が向上する。また、計算機側に
センサー外気温度及び差圧、流体温度等のプロセスを一
括して入力処理することによシ、センサーの構造を複雑
にすることなく、温度補正が実現され、保守性及びス4
−スフアクター上の大きなメリットが得られる。
By detecting the environmental temperature and correcting the output value of the transmitter 1 in this way, even if the outside temperature changes significantly, the transmitter 1 can be installed without a constant temperature bath. will improve. In addition, by inputting processes such as sensor outside air temperature, differential pressure, and fluid temperature into the computer side, temperature correction can be realized without complicating the sensor structure, improving maintainability and speed.
- Significant advantages can be obtained on the sfactoractor.

また、補正量の経年変化等に対する対応処置も記憶して
いる補正量の変更のみで簡単に対応できる。
Moreover, measures to deal with changes in the correction amount over time can be easily handled by simply changing the stored correction amount.

尚、上記実施例におけるpIん装置2、割算機3に代え
て、第6図に示す如く、φ変換器20、マイクロコンピ
ュータ30を用いて構成するとともできる。
Incidentally, instead of the pI device 2 and the divider 3 in the above embodiment, a φ converter 20 and a microcomputer 30 may be used as shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、給水トランスミッタ出力
を温度補正するようにしたので、従来のようにトランス
ミッタを恒温槽に入れておくことなく、高精度の給水流
量測定が可能となシ、給水トランスミッタの保守点検作
業が容易になるという効果が得られる。
As described above, according to the present invention, since the feed water transmitter output is temperature-compensated, it is possible to measure the feed water flow rate with high precision without placing the transmitter in a constant temperature bath as in the past. The effect is that the maintenance and inspection work of the transmitter becomes easier.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る給水流量測定装置のブ
ロック構成図、第2図は第1図の動作フローチャート、
第3図は第1図のトランスミッタの構造断面図、第4図
は第1図のトランスミッタの回路構成図、第5図は第3
図の差圧センサーの温度特性図、第6図は本発明の他の
実施例に係る給水流量測定装置のブロック構成図である
。 l・・・トランスミッタ、2・・・プロセス人出装置、
3・・・計算機、4・・・出力装置、5・・・流体温度
センサー、6・・・トランスミッタ外気温度センサー、
7・・・記憶部。 第1図 6 第2図 第3図 第5図 第6図
FIG. 1 is a block configuration diagram of a water supply flow rate measuring device according to an embodiment of the present invention, FIG. 2 is an operation flowchart of FIG. 1,
Figure 3 is a structural sectional view of the transmitter in Figure 1, Figure 4 is a circuit diagram of the transmitter in Figure 1, and Figure 5 is a cross-sectional view of the transmitter in Figure 1.
FIG. 6 is a temperature characteristic diagram of the differential pressure sensor shown in FIG. 6, and FIG. 6 is a block configuration diagram of a water supply flow rate measuring device according to another embodiment of the present invention. l...Transmitter, 2...Process staffing device,
3... Calculator, 4... Output device, 5... Fluid temperature sensor, 6... Transmitter outside air temperature sensor,
7...Memory section. Figure 1 6 Figure 2 Figure 3 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 給水トランスミッタと、この給水トランスミッタ設置場
所の周囲外気温度を測定する外気温度センサーと、給水
の温度を測定する給水温度センサーと、前記外気温度セ
ンサー出力に応じて前記トランスミッタ出力を補正する
手段およびその補正された値と前記給水温度センサー出
力から給水流量を演算する手段を有する計算機とを備え
ることを特徴とする給水流量測定装置。
A water supply transmitter, an outside air temperature sensor that measures the ambient outside air temperature at a location where the water supply transmitter is installed, a water supply temperature sensor that measures the temperature of the water supply, and means for correcting the transmitter output according to the output of the outside air temperature sensor, and correction thereof. A water supply flow rate measuring device comprising: a calculator having means for calculating the water supply flow rate from the calculated value and the output of the water supply temperature sensor.
JP21338583A 1983-11-15 1983-11-15 Supply water amount measuring apparatus Pending JPS60105920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21338583A JPS60105920A (en) 1983-11-15 1983-11-15 Supply water amount measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21338583A JPS60105920A (en) 1983-11-15 1983-11-15 Supply water amount measuring apparatus

Publications (1)

Publication Number Publication Date
JPS60105920A true JPS60105920A (en) 1985-06-11

Family

ID=16638320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21338583A Pending JPS60105920A (en) 1983-11-15 1983-11-15 Supply water amount measuring apparatus

Country Status (1)

Country Link
JP (1) JPS60105920A (en)

Similar Documents

Publication Publication Date Title
US9400004B2 (en) Transient measurements of mass flow controllers
CN110571171B (en) Calibration method and calibration system of gas flow controller and gas inlet device
CN100462887C (en) Semiconductor production system and semiconductor production process
US6035721A (en) Process for compensating for the incorrect operation of measuring devices caused by external influences
RU2358250C2 (en) Calibration of pressure sensor during engineering process
CN108986939A (en) Method for verifying nuclear reactor power range power coefficient Gk calibration value
KR100199383B1 (en) Improved method for steam generator water level measurement background of the invention
EE03185B1 (en) Method to improve the accuracy of measurement results and corresponding flow meter
WO1993006441A1 (en) Measurement of gas flows with enhanced accuracy
US4103161A (en) Composite transducer
CN111103020A (en) Flow detection device, flow control system and flow detection method
KR20190113569A (en) Thermal flow sensor device and flow rate correcting method
JPS60105920A (en) Supply water amount measuring apparatus
Abdullayev et al. Development of a mathematical model of a temperature calibrator
US4652251A (en) Determining the difference between the temperature of a liquid flowing in a closed system and its saturation temperature
CN106227150B (en) A kind of method and apparatus based on software stated accuracy
JPS59193398A (en) Reactor power distribution monitoring device
EP0076613B1 (en) Methods of determining the difference between the temperature and saturation temperature of a heated, pressurized liquid
JP2005014109A (en) Correction method for thermal deformation error of machine tool
RU2682540C1 (en) Method of adjusting measuring channel for flow rate with narrowing device
JP2663629B2 (en) Automatic calibration method for dissolved oxygen meter
JPS59137823A (en) Measuring device for water level in container
JPH0438294B2 (en)
KR0135730B1 (en) Method and apparatus for digitally determining the level of
JPS5629120A (en) Flow measuring method