JPS60104780A - Pressure setting method of constant-pressurized tank for wave force power generation - Google Patents

Pressure setting method of constant-pressurized tank for wave force power generation

Info

Publication number
JPS60104780A
JPS60104780A JP58213800A JP21380083A JPS60104780A JP S60104780 A JPS60104780 A JP S60104780A JP 58213800 A JP58213800 A JP 58213800A JP 21380083 A JP21380083 A JP 21380083A JP S60104780 A JPS60104780 A JP S60104780A
Authority
JP
Japan
Prior art keywords
air
chamber
constant
energy
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58213800A
Other languages
Japanese (ja)
Other versions
JPH0114427B2 (en
Inventor
Mamoru Shinozaki
篠崎 守
Hidenori Kayano
秀則 茅野
Kenji Tamura
賢治 田村
Yasuhide Nakakuki
中久喜 康秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Engineering Advancement Association of Japan
Takenaka Komuten Co Ltd
Original Assignee
Engineering Advancement Association of Japan
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Engineering Advancement Association of Japan, Takenaka Komuten Co Ltd filed Critical Engineering Advancement Association of Japan
Priority to JP58213800A priority Critical patent/JPS60104780A/en
Publication of JPS60104780A publication Critical patent/JPS60104780A/en
Publication of JPH0114427B2 publication Critical patent/JPH0114427B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/24Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy to produce a flow of air, e.g. to drive an air turbine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PURPOSE:To make a pressure setting value adjustable according to a variation in wave energy as well as to bring the long-term stabilization of wave force power generation to fruition, by installing a loading chamber in the upper part of an air chamber, while feeding or draining a specified quantity of loading work such as fluid or powdery granules, etc., to or from this loading chamber. CONSTITUTION:A wave force power generating set consisting of a constant-pressurized tank system leads air energy produced at an energy absorber converting wave force into the air energy into an air chamber 43 of a constant-pressurized tank 4' via an air feed pipe 3, then feeds the air energy being regulated hereat to an air turbine through a lead-out pipe 5 and drives a generator. In this case, a partition wall 46 is installed inside an air tank 42 of the constant-pressurized tank 4', and a loading chamber 47 is partitively formed in the upper part of the air chamber 43 whereby water 48 as loading work is housed inside the said chamber 47. And, each of control valves 52 and 53 is installed alongside in a feed water pipe 50 and a drain pipe 51, controlling these valves 52 and 53 for their opening or closing, and the water 48 inside the loading chamber 47 is fed or drained each whereby the setting pressure of the constant-pressurized tank 4' is regulated as specified.

Description

【発明の詳細な説明】 この発明は、質のよい、安定した波力発電を行なうだめ
の波力発電用定圧化タンクにおける圧力設定方法に係り
、さらにいえば、載荷材として水等を給排し空気室内の
空気圧を波浪エネルギーの状態に合せて高く又は低く設
定する圧力設定方法に関する。
[Detailed Description of the Invention] The present invention relates to a pressure setting method in a constant pressure tank for wave power generation in order to perform high quality and stable wave power generation, and more specifically, to supply and discharge water etc. as a loading material. The present invention relates to a pressure setting method for setting the air pressure in an air chamber to be high or low according to the state of wave energy.

(背景技術) 第1図は、従来の定圧化タンク方式による波力発電シス
テムを示す。
(Background Art) FIG. 1 shows a conventional wave power generation system using a constant pressure tank system.

即ち、波浪1の上下運動をエネルギ吸収装置2・・・で
空気エネルギーに変換し、該空気エネルギーはヘッダー
パイプ3で定圧化タンク4に導き入れ、短期的に貯蔵す
ると共に定常化する。
That is, the vertical motion of the waves 1 is converted into air energy by the energy absorbing devices 2, and the air energy is introduced into the constant pressure tank 4 through the header pipe 3, where it is stored for a short period of time and stabilized.

定圧化タンク4は、所定レベルまで水40を貯めた上面
開口の水槽41内に、下面開口の空気槽42を昇降自在
に被せ、水面上の閉鎖空間が空気室43に形成されてい
る。上記へラダーパイプ(空気導入管)3は、その出口
44を水面上に突出させ空気室43と接続している。ま
だ、空気導出管5の入口45も水面上に突出させ、空気
室43と接続している。
In the constant pressure tank 4, an air tank 42 with an open bottom is movably placed over a water tank 41 with an open top that stores water 40 to a predetermined level, and an air chamber 43 is formed as a closed space above the water surface. The ladder pipe (air introduction pipe) 3 has an outlet 44 projecting above the water surface and connected to an air chamber 43. The inlet 45 of the air outlet pipe 5 is also projected above the water surface and connected to the air chamber 43.

かくして、空気室43内の空気は、空気槽420重量で
加圧され、その重量に基く圧力に定圧化されるのでおる
In this way, the air in the air chamber 43 is pressurized by the weight of the air tank 420, and the pressure is constant based on the weight.

定圧化タンク4で定圧化された空気エネルギ−は、空気
導出管5でエアタービン6に導き、該エアタービン6の
発生動力で発電機7を回し発電が行なわれる。
The air energy made constant in the pressure regulating tank 4 is led to an air turbine 6 through an air outlet pipe 5, and the power generated by the air turbine 6 rotates a generator 7 to generate electricity.

上述の如く、定圧化タンク4は、エアタービン6に対し
定常な空気エネルギーを供給するためのものであり、エ
アータービン6が最モ良い効率を発揮する圧力、一般に
120 waAq〜250wIAqぐらいの圧力が設定
される。
As mentioned above, the constant pressure tank 4 is for supplying constant air energy to the air turbine 6, and the pressure at which the air turbine 6 exhibits the best efficiency is generally about 120 waAq to 250 wIAq. Set.

この場合、定圧化タンク4の設定圧力は、エネルギ吸収
装置2・・・による波浪エネルギ吸収効率をも考慮して
決めることが肝要である。
In this case, it is important to determine the set pressure of the constant pressure tank 4 in consideration of the wave energy absorption efficiency of the energy absorption device 2 .

何故なら、例えば有給波高が1m以下のとき、定圧化タ
ンク4の圧力設定値が水柱1mであると、エネルギ吸収
装置2で変換された空気エネルギは定圧化タンク4に入
りきらず、エネルギ吸収装置2は有効に作動しない。従
って、定圧化タンク4内の空気エネルギは消費されるに
まかせ減少して空になり、発電不能に陥る。
This is because, for example, when the paid wave height is 1 m or less and the pressure setting value of the constant pressure tank 4 is 1 m of water column, the air energy converted by the energy absorption device 2 will not be able to enter the constant pressure tank 4, and the energy absorption device 2 does not operate effectively. Therefore, the air energy in the constant pressure tank 4 decreases and becomes empty as it is consumed, making it impossible to generate electricity.

逆に、有給波高が2m以上のとき、定圧化タンク4の圧
力設定値が水柱1mのままであると、定圧化タンク4に
空気エネルギがどんどん貯まるが、たちまち満杯となシ
、それ以上はエネルギー吸収を放棄せざるを得す、効率
が悪い。
On the other hand, when the wave height is 2 m or more, if the pressure setting value of the constant pressure tank 4 remains at 1 m of water column, air energy will accumulate in the constant pressure tank 4, but it will not fill up quickly, and any more energy will be lost. Absorption has to be abandoned, which is inefficient.

従って、定圧化タンク4については、エネルギ吸収装置
で吸収し変換した空気エネルギーの定圧化、即ち定常な
空気エネルギをエアタービンに供給可能であり、その上
、波浪エネルギの変化に応じて圧力設定値を随時変動(
調整)可能であシ、もって波浪エネルギ吸収の効率向上
と波力発電の長期安定化を達成することが望まれる。
Therefore, regarding the constant pressure tank 4, it is possible to constant pressure the air energy absorbed and converted by the energy absorption device, that is, to supply steady air energy to the air turbine, and in addition, the pressure setting value can be adjusted according to changes in wave energy. change from time to time (
It is desirable to improve the efficiency of wave energy absorption and achieve long-term stability of wave power generation.

(発明の目的) そこでこの発明の目的は、エネルギ吸収装置で吸収した
空気エネルギの最もタービン効率の良い圧力への定圧化
(定常化)と、波浪エネルギの変化に応じて随時圧力を
高く又は低く変動させることが可能に改良した波力発電
用定圧化タンクの圧力設定方法を提供することにある。
(Purpose of the Invention) Therefore, the purpose of the present invention is to make the air energy absorbed by the energy absorption device constant (steady pressure) to the pressure with the best turbine efficiency, and to increase or decrease the pressure at any time according to changes in wave energy. It is an object of the present invention to provide a pressure setting method for a constant pressure tank for wave power generation, which is improved so as to be able to vary the pressure.

(発明の構成と作用効果) 上記目的を達成するために、この発明の圧力設定方法は
、波力発電用定圧化タンクの空気槽における空気室の上
部に載荷室を設け、この載荷室に対し液体又は粉粒体な
どの載荷材を、波浪エネルギーの大小変化に合せて所定
量供給し又は排出する構成とされている。
(Structure and Effect of the Invention) In order to achieve the above object, the pressure setting method of the present invention provides a loading chamber above the air chamber in the air tank of a constant pressure tank for wave power generation, and It is configured to supply or discharge a predetermined amount of a loading material such as a liquid or granular material in accordance with changes in the magnitude of wave energy.

なお、載荷材としては、水が最も一般的で取シ扱い易い
が、砂あるいはショット々ども同様に使用することがで
きる。
As the loading material, water is the most common and easy to handle, but sand or shot can be used as well.

つまり、載荷室にれ荷材を供給すると、その分空気槽の
重量が大となり、空気室内の空気に対する加圧力が増大
し空気圧を高く設定できる。
In other words, when loading material is supplied to the loading chamber, the weight of the air tank becomes correspondingly large, and the pressure applied to the air in the air chamber increases, so that the air pressure can be set high.

従って、空気室には、設定圧力の上昇と反比例して小さ
な容私で大きな空気エネルギーを収容し定圧化すること
ができる。即ち、有給波高が大きい場合に、同じ容積の
空気室でありながら設定圧力が大きい分だけ空気エネル
ギーを高密度に貯蔵し定圧化でき、効率が高いのである
Therefore, the air chamber can accommodate a large amount of air energy and maintain a constant pressure with a small capacity that is inversely proportional to the increase in set pressure. That is, when the paid wave height is large, the air energy can be stored at a high density and the pressure can be maintained at a constant pressure by the larger set pressure even though the air chamber has the same volume, resulting in high efficiency.

逆に、載荷羽を排出すると、その分空気槽の重量が小さ
くなり、空気室内の空気に対する加圧力が減小し空気圧
を低く設定できる。
On the other hand, when the loading wing is discharged, the weight of the air tank decreases accordingly, the pressure applied to the air in the air chamber decreases, and the air pressure can be set low.

従って、有給波高が小さい場合でも、エネルギー吸収装
置で変換された空気エネルギーをそく波浪エネルギーの
小さいときでも、相変らずエネルギーの吸収補充ができ
、定圧化タンクが空にはならないから、波力発電の長期
安定化を図ることができるのである。
Therefore, even when the paid wave height is small, the air energy converted by the energy absorption device is removed, and even when the wave energy is small, the energy can still be absorbed and replenished, and the constant pressure tank will not be empty, so wave power generation It is possible to achieve long-term stabilization.

なお、定圧化タンクの圧力設定値が変動されることによ
るエアタービンへの影響は、エアータービンを可変ター
ビンとなし、前記圧力一般定値の変動に対してはノズル
絞シ比率等のタービン性状を制御することによジタービ
ンの発生トルク、回転速度を一定化し、もって質の良い
波力発電を行なうことが可能である。
In addition, the influence on the air turbine due to fluctuations in the pressure setting value of the constant pressure tank is determined by making the air turbine a variable turbine, and controlling the turbine properties such as the nozzle throttling ratio in response to fluctuations in the general pressure setting value. By doing so, the generated torque and rotational speed of the diturbine can be made constant, thereby making it possible to perform high-quality wave power generation.

(実施例) 次に、第2図に示した実施例を説明する。(Example) Next, the embodiment shown in FIG. 2 will be explained.

図中4は定圧化タンクの全体を指す。この定圧化タンク
4は、所定レベルまで水40を貯めた上面開口の水槽4
1内に1下面開口の空気槽42を昇降自在に被せ、水面
上の閉鎖空間が空気室43に形成されている。
In the figure, 4 indicates the entire constant pressure tank. This constant pressure tank 4 is a water tank 4 with an open top that stores water 40 to a predetermined level.
An air tank 42 with an opening at the bottom is placed inside the tank 1 so as to be movable up and down, and an air chamber 43 is formed as a closed space above the water surface.

図示省略のエネルギ吸収装置で変換された空気エネルギ
ーを導くヘッダーバイブ3は、その出口44を水面44
上に突出させ、空気室43と接続されている。また、空
気室43内の空気エネルギーを図示省略のエアータービ
ンに導く空気導出管5d5、その人口45を水面上に突
出させ、空気室43と接続されている。
The header vibe 3 that guides the air energy converted by an energy absorption device (not shown) has its outlet 44 connected to the water surface 44.
It projects upward and is connected to the air chamber 43. In addition, an air outlet pipe 5d5 that guides the air energy in the air chamber 43 to an air turbine (not shown) and its port 45 are made to protrude above the water surface and are connected to the air chamber 43.

空気槽42において、仕切壁46で仕切られた空気室4
3の上方に載荷室47が設けられ、ここに載荷材として
の水48が収容されている。
In the air tank 42, an air chamber 4 partitioned by a partition wall 46
A loading chamber 47 is provided above the container 3, and water 48 as a loading material is accommodated here.

載荷室47の上下に給水管50と排水管51が接続され
、各々に制御弁52.53が設置されている。
A water supply pipe 50 and a drain pipe 51 are connected above and below the loading chamber 47, and control valves 52 and 53 are installed in each.

つまり、制御弁52を開き、載荷室47に水48を供給
すると、その分だけ空気室43内の空気に対する加圧力
が増し、設定を気圧を高めることができる。逆に、制御
弁53を開いて載荷室47内の水48を排出すると、そ
の分だけ空気室43内の空気に対する加圧力が減少し、
設定空気圧を低めることができる。
That is, when the control valve 52 is opened and the water 48 is supplied to the loading chamber 47, the pressure applied to the air in the air chamber 43 increases by that amount, and the air pressure can be set higher. Conversely, when the control valve 53 is opened and the water 48 in the loading chamber 47 is discharged, the pressurizing force on the air in the air chamber 43 decreases accordingly.
The set air pressure can be lowered.

従って、エネルギ吸収装置を設置した海岸に波高針を設
置し、tた、各エネルギ吸収装置の空気ピストン室に圧
力針を設置し、例えば2時間おきに20分間程度づつ有
膜波高又は発生空気圧を測定し、この測定結果に基いて
制御弁52又は53を自動制御する。
Therefore, a wave height needle is installed on the coast where the energy absorption device is installed, and a pressure needle is also installed in the air piston chamber of each energy absorption device to measure the membrane wave height or generated air pressure for about 20 minutes every two hours. The control valve 52 or 53 is automatically controlled based on the measurement result.

例えば、有膜波高が1mの場合、定圧化タンク4′の空
気圧を水柱0.5mに設定する。あるいは有膜波高が2
mのときは水柱1.0mに設定し、有膜波高が3mのと
きは水柱1.5mの如くにそれぞれ設定する。
For example, when the membrane wave height is 1 m, the air pressure in the constant pressure tank 4' is set to 0.5 m of water column. Or the membrane wave height is 2
m, the water column is set to 1.0 m, and when the membrane wave height is 3 m, the water column is set to 1.5 m.

かくすることによシ、なぎの如く波浪がおだやかなとき
も、エネルギ吸収装置で吸収し変換した空気エネルギを
定圧化タンク4′に収容できるし、また、強風波浪時に
はたくさんの波浪エネルギーを高密度に吸収貯蔵するこ
とができる。
By doing this, even when the waves are calm, such as when the waves are calm, the air energy absorbed and converted by the energy absorption device can be stored in the constant pressure tank 4', and when there are strong winds and waves, a large amount of wave energy can be stored in a high density. It can be absorbed and stored.

よって、質の良い、しかも長期的に安定な波力発電を行
なうことができるのである。
Therefore, it is possible to generate wave power that is of high quality and stable over the long term.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は定圧化タンク方式波力発電システムを示す概念
図、第2図はこの発明の方法が実施される定圧化タンク
の概念図である。 出 願 人 株式会社 竹中工務店 出 願 人 財団法人工ンジニアリング協会式 理 人
 弁理士 高 雄次廊 第1頁の続き
FIG. 1 is a conceptual diagram showing a constant pressure tank type wave power generation system, and FIG. 2 is a conceptual diagram of a constant pressure tank in which the method of the present invention is implemented. Applicant: Takenaka Corporation Co., Ltd. Applicant: Foundation for Artificial Engineering Foundation Attorney Patent Attorney Yujiro Taka Continued from page 1

Claims (1)

【特許請求の範囲】[Claims] (11所定レベルまで水を貯めた上面開口の水槽内に、
下面開口の空気槽を昇降自在に被せて空気室を形成し、
空気導入管及び空気導出管を水面上に突出させ空気室と
接続してなる波力発電用定圧化タンクの圧力設定方法に
おいて、空気槽(42)における空気室(43)の上部
に載荷室(4力を設け、この載荷室(47)に対し液体
、粉粒体などの載荷利(4B)を所定量供給し又は排出
することを特徴とする定圧化タンクの圧力設定方法0
(11) In a water tank with an opening on the top that stores water up to a predetermined level,
An air chamber is formed by covering an air tank with an opening on the bottom that can be raised and lowered freely.
In a pressure setting method for a constant pressure tank for wave power generation in which an air inlet pipe and an air outlet pipe are protruded above the water surface and connected to an air chamber, a loading chamber ( A pressure setting method for a constant pressure tank characterized by providing four forces and supplying or discharging a predetermined amount of loading (4B) such as liquid or powder to this loading chamber (47).
JP58213800A 1983-11-14 1983-11-14 Pressure setting method of constant-pressurized tank for wave force power generation Granted JPS60104780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58213800A JPS60104780A (en) 1983-11-14 1983-11-14 Pressure setting method of constant-pressurized tank for wave force power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58213800A JPS60104780A (en) 1983-11-14 1983-11-14 Pressure setting method of constant-pressurized tank for wave force power generation

Publications (2)

Publication Number Publication Date
JPS60104780A true JPS60104780A (en) 1985-06-10
JPH0114427B2 JPH0114427B2 (en) 1989-03-10

Family

ID=16645249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58213800A Granted JPS60104780A (en) 1983-11-14 1983-11-14 Pressure setting method of constant-pressurized tank for wave force power generation

Country Status (1)

Country Link
JP (1) JPS60104780A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139088U (en) * 1988-03-16 1989-09-22
GB2460303A (en) * 2008-05-29 2009-12-02 Norman West Bellamy Ring of wave energy converters supply air to common turbine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612062A (en) * 1979-07-11 1981-02-05 Osamu Yoshida Device for generating electricity by hydraulic force and pneumatic pressure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5612062A (en) * 1979-07-11 1981-02-05 Osamu Yoshida Device for generating electricity by hydraulic force and pneumatic pressure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139088U (en) * 1988-03-16 1989-09-22
GB2460303A (en) * 2008-05-29 2009-12-02 Norman West Bellamy Ring of wave energy converters supply air to common turbine

Also Published As

Publication number Publication date
JPH0114427B2 (en) 1989-03-10

Similar Documents

Publication Publication Date Title
US5027000A (en) Method and apparatus for generating electricity using wave energy
US4098081A (en) Tidal power plant and method of power generation
US2484183A (en) Hydropneumatic power plant
CA1160063A (en) Constant pressure air storage installation with water supply for gas turbine power plants
CN105386928B (en) The automatic oscillating floater TRT for adapting to tidal level
CN206903815U (en) Offshore wind farm wave energy support platform
US4235693A (en) Submersible energy storage apparatus
JPS60104780A (en) Pressure setting method of constant-pressurized tank for wave force power generation
US4569200A (en) Control apparatus for tidal turbine
CN115571289A (en) Floating wind power equipment load adjusting system based on yaw influence and control method
US4391705A (en) Ballasting digestor covers
JPS60104779A (en) Wave force power generation by constant-pressurized tank system
KR20190061333A (en) Motion reduction device for floating offshore wind power generator
JP2559064B2 (en) Wave power generation method using constant pressure tank
KR20200091511A (en) Generating apparatus
JP2559063B2 (en) Wave power generation method under low waves
JPS57173573A (en) Solid gravitational turbine
KR20030013892A (en) Power generation system using buoyancy and gravity
GB2231368A (en) Liquid actuated apparatus
JP2021103916A (en) Power management method and power management system
CN210216587U (en) Pressure tank convenient to open and close
JPS62113866A (en) Storage water circulation submersible hydro-electric power station
CN214780968U (en) Water treatment agent powder quantitative adding device for seawater desalination water treatment equipment
US20240191725A1 (en) Compensation Liquid for a Compressed Gas Energy Storage System
JP2019018713A (en) Underwater float-type device