JPS60104779A - Wave force power generation by constant-pressurized tank system - Google Patents

Wave force power generation by constant-pressurized tank system

Info

Publication number
JPS60104779A
JPS60104779A JP58213799A JP21379983A JPS60104779A JP S60104779 A JPS60104779 A JP S60104779A JP 58213799 A JP58213799 A JP 58213799A JP 21379983 A JP21379983 A JP 21379983A JP S60104779 A JPS60104779 A JP S60104779A
Authority
JP
Japan
Prior art keywords
air
wave
wave height
pressure
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58213799A
Other languages
Japanese (ja)
Other versions
JPH0114426B2 (en
Inventor
Mamoru Shinozaki
篠崎 守
Hidenori Kayano
秀則 茅野
Kenji Tamura
賢治 田村
Yasuhide Nakakuki
中久喜 康秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Engineering Advancement Association of Japan
Takenaka Komuten Co Ltd
Original Assignee
Engineering Advancement Association of Japan
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Engineering Advancement Association of Japan, Takenaka Komuten Co Ltd filed Critical Engineering Advancement Association of Japan
Priority to JP58213799A priority Critical patent/JPS60104779A/en
Publication of JPS60104779A publication Critical patent/JPS60104779A/en
Publication of JPH0114426B2 publication Critical patent/JPH0114426B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/141Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector
    • F03B13/142Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy with a static energy collector which creates an oscillating water column
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PURPOSE:To make such wave force power generation as being stabilized all the time attainable, by lowering the setting pressure of a constant-pressurized tank when wave height is small but raising it up when the wave height is large enough, thereby controlling characteristics inherent in an air turbine. CONSTITUTION:A wave force power generating method feeds an air chamber 63 of a constant-pressurized tank 6 with air energy produced at a wave-height damping type energy absorber 1 converting wave energy into air energy, leading the air energy regulated hereat into a variable turbine 9 and driving a generator 10. in this case, a pressure gauge 3 is set up in the absorber 1 while a wave height gauge 5 in the seaside, respectively, whereby each output signal is inputted into a control unit 4. And, effective wave height is calculated at this control unit 4, and simultaneously air pressure in the constant-pressurized tank 6 suitable for this effective wave height is calculated as well, then on the basis of this calculation result, control valves 13 and 14 are controlled for their opening or closing. With this constitution, loading work 65 (water or the like) inside a loading chamber 64 is made to feed or drain, thereby regulating the setting pressure of the constant-pressurized tank.

Description

【発明の詳細な説明】 この発明は、波浪エネルギを利用して、電力系統への供
給電源、水産物の冷凍用電源、離島の電源等として実用
可能な大きさの彼方発電を行なう方法に係シ、さらにい
えば、定圧イビタンクを利用して質のよい、安定した彼
方発電を行なう定圧化タンク方式の波力発電方法に関す
る。
[Detailed Description of the Invention] The present invention relates to a method of generating power from a distance using wave energy to a size that is practical for use as a power supply to power systems, a power source for freezing marine products, a power source for remote islands, etc. More specifically, the present invention relates to a constant-pressure tank type wave power generation method that uses a constant-pressure IBI tank to generate high-quality, stable remote power generation.

(背景技術) 例えば特開昭56−165775号公報に記載された定
圧化タンク方式の波力発電方法は、消波工型の固定式エ
ネルギ吸収装置で波浪エネルギを空気エネルギに変換し
、該空気エネルギを定圧化タンクに送り込み短期的に貯
めて定圧化し、その定常空気エネルギをエアタービンに
供給し、エアタービンで発生した回転動力で発電機を回
し発電を行なう構成になっている。なお、エネルギ吸収
装置は、消波工を兼ねた構造物であり、海岸線に固定し
設置される。
(Background Art) For example, a wave power generation method using a constant pressure tank described in Japanese Patent Application Laid-open No. 56-165775 converts wave energy into air energy using a fixed energy absorption device of the wave dissipation type, and converts the wave energy into air energy. Energy is sent to a constant pressure tank, where it is stored for a short period of time to maintain a constant pressure.The steady air energy is then supplied to an air turbine, and the rotational power generated by the air turbine is used to turn a generator and generate electricity. Note that the energy absorption device is a structure that also serves as a wave dissipator, and is fixed and installed on the coastline.

しかし、上記従来の波力発電方法の場合は、定圧化タン
クの圧力設定値が固定化されているため、次のような欠
点があった。
However, in the case of the above-mentioned conventional wave power generation method, the pressure setting value of the constant pressure tank is fixed, so there are the following drawbacks.

即ち、定圧化タンクの設定圧力が例えば水柱1mである
場合に、波高が1m以下の静かな波浪状態のときは、エ
ネルギ吸収装置で変換された空気エネルギが定圧化タン
クに入シ込めない。
That is, when the set pressure of the constant pressure tank is, for example, 1 m of water column, when there are calm waves with a wave height of 1 m or less, the air energy converted by the energy absorption device cannot enter the constant pressure tank.

従って、定圧化タンクは空になってエアタービンは−゛
−らず、発電ができない。
Therefore, the constant pressure tank becomes empty and the air turbine does not run, making it impossible to generate electricity.

逆に、波高が2m以1の強琳波浪状態のときは、空気エ
ネルギはどんどん定圧化タンクに入り込む。しかし、定
圧化タンクはたちまち満杯状態となシ、それ以上のエネ
ルギ吸収を放棄せざるを得す、効率が悪かった。
On the other hand, in strong wave conditions with wave heights of 2 m or more, air energy steadily enters the constant pressure tank. However, the constant pressure tank quickly filled up and had to give up any further energy absorption, which was inefficient.

(発明の目的) そこでこの発明の目的は、エネルギ吸収装置設置海岸に
おける波高の変化に対して系全体を常にエネルギ吸収効
率のよい状態に保ち、長期的に安定した波力発電を可能
ならしめること、換言すれば、波高が小さいときはそれ
なりに定圧化タンクの設定圧力を下げ、波高が太きいと
きはそれなりに定圧化タンクの設定圧力を高めて対応す
ると共に、こうした設定圧力の変動に対応してエアター
ビンの性状を制御し、質のよい、安定した波力発電が可
能に改良した定圧化タンク方式の波力発電方法を提供す
ることにある。
(Objective of the Invention) Therefore, the object of the present invention is to maintain the entire system in a state with good energy absorption efficiency at all times in response to changes in wave height on the shore where the energy absorption device is installed, and to enable stable wave power generation over a long period of time. In other words, when the wave height is small, the set pressure of the constant pressure tank is lowered accordingly, and when the wave height is large, the set pressure of the constant pressure tank is increased accordingly. An object of the present invention is to provide a constant pressure tank-type wave power generation method that is improved by controlling the properties of an air turbine to enable high-quality and stable wave power generation.

(発明の構成と作用効果) 上記目的を達成するために、この発明の定圧化タンク方
式の波力発電方法は、エネルギ吸収装置を設置した海岸
に波高計を設置し、エネルギ吸収装置の空気ピストン家
に圧力計を設置し、定圧化タンクには載荷材が給排され
る載荷室を設け、載荷室に載荷材を給排する圧力コント
ロール装置を設置し、エアタービンは可変タービンとし
た。そし、て、波高計によシ測定した波高。
(Structure and Effects of the Invention) In order to achieve the above object, the constant pressure tank type wave power generation method of the present invention includes a wave height meter installed on the coast where the energy absorption device is installed, and an air piston of the energy absorption device. A pressure gauge was installed in the house, a loading chamber was installed in the constant pressure tank to supply and discharge the loading material, a pressure control device was installed to supply and discharge the loading material to the loading chamber, and the air turbine was a variable turbine. And then, the wave height measured by a wave height meter.

周期、及び圧力側で測定した発生空気圧を制御装置に入
力して例えば有膜波高を算定させ、この有膜波高に適し
た定圧化タンク圧力を算定させ、かつ、この算定結果に
基いて圧力コントロール装置を制御して圧力設定を行な
い、他方、可変タービンの性状をコントロールし発電を
行なう構成とされている。
The cycle and the generated air pressure measured on the pressure side are input to the control device to calculate, for example, the membrane wave height, and the constant pressure tank pressure suitable for this membrane wave height is calculated, and the pressure is controlled based on this calculation result. The system is configured to control the device to set the pressure, and to control the properties of the variable turbine to generate power.

つまり、エネルギ吸収装置を設置した海岸の波浪状態が
、有膜波高がzJsと測定されたときは、直ちに定圧化
り〉′りの設定圧力を下げる。即ち、エネルギ吸収装置
で吸収、変換された空気エネルギは、小さいなりに定圧
化タンクに収容し定圧化することを可能ならしめ、もっ
て定圧化タンクが空になることを防ぐ。
In other words, when the seashore where the energy absorption device is installed has a membrane wave height of zJs, the set pressure for constant pressure is immediately lowered. That is, the air energy absorbed and converted by the energy absorbing device is stored in a constant pressure tank to a certain extent and can be kept at a constant pressure, thereby preventing the constant pressure tank from becoming empty.

逆に、有膜波高が大と測定されたときは、直ちに定圧化
タンクの設定圧力を高める。即し、エネルギ吸収装置で
吸収、変換された犬なる空気エネルギは、定圧化タンク
に高密度に収容し定圧化することを可能ならし、め、定
圧化タンクのエネルギ容量を倍増し効率を高める。
Conversely, when the membrane wave height is measured to be large, the set pressure of the constant pressure tank is immediately increased. Therefore, the air energy absorbed and converted by the energy absorption device can be stored in a constant pressure tank at high density and kept at a constant pressure, thereby doubling the energy capacity of the constant pressure tank and increasing efficiency. .

そして、定圧化タンクにおける設定圧力の上述の如き変
動に対しては、可変クービア、ンの性状をコントロール
し、回転動力のトルク、辻度を常に一定に保つ。
In response to the above-mentioned fluctuations in the set pressure in the constant pressure tank, the characteristics of the variable coupier cylinder are controlled to keep the torque of the rotational power and the degree of rotation always constant.

従って、長期的に安定した、質のよい波力発電が可能で
あり、離島の電源等として実用可能なのである。
Therefore, long-term, stable, high-quality wave power generation is possible, and it is practical as a power source for remote islands.

なお、システムの安定性、信頼性を確保するため、波高
針、圧力針は、例えにi12時間おきに20分間づつ継
続的に測定し、これをもとにして有給波高算定のデータ
となさしめる。
In order to ensure the stability and reliability of the system, the wave height needle and pressure needle are continuously measured for 20 minutes every 12 hours, and this is used as the data for paid wave height calculation. .

(実施例) 次に、図示しだ実施例を説明する。(Example) Next, the illustrated embodiment will be explained.

第1図において、■は波浪エネルギを空気エネルギに変
換する消波工型のエネルギ吸収装置であり、海岸のコン
クリート製基礎マウンド2上にアンカーにより固定し設
)1″t、されている。該エネルギ吸収装置10本体は
、φ2mのコンクリート製で、上部にJAa化ビニール
製の弁機構が設置され、かくして形成された空気ピスト
ン室に圧力計3が設置されている。圧力計3の測定値は
、制御装置4に入力される。
In Fig. 1, ■ is a wave dissipator type energy absorption device that converts wave energy into air energy, and is fixed with an anchor on a concrete foundation mound 2 on the coast. The main body of the energy absorption device 10 is made of concrete with a diameter of 2 m, and a valve mechanism made of JAa vinyl is installed on the top, and a pressure gauge 3 is installed in the air piston chamber thus formed.The measured value of the pressure gauge 3 is , is input to the control device 4.

上記エネルギ吸収装置1が設置された海岸には、波高計
5が設置K、tされている。該波高計5で測定し゛た波
高、周期などの測定値は、制御装置4に入力される。
On the coast where the energy absorbing device 1 is installed, wave height meters 5 are installed K and t. Measured values such as wave height and period measured by the wave height meter 5 are input to the control device 4.

図中6は定圧化タンクである。これは外径がφ10rn
、窩さが最高5mぐらいの大きさのものである。即ち、
所定レベル丑で水60を貯めた上面開口の水槽61内に
、下面開口の空気槽62を昇降自在に被せ、水面上の閉
鑓空間が空気室63に形成されている。上記エネルギ吸
収装置1で変換された空気エネルギは、送気管7を通じ
て空気室63に送り込まれる。定圧化タンク6は、空気
エネルギを定常化すると共に短期的に貯蔵する機能を併
せ持っている。空気室63内の定常化された空気エネル
ギは、給気管8を通じて可変タービン9に供給される。
In the figure, 6 is a constant pressure tank. This has an outer diameter of φ10rn
, the maximum cavity size is about 5 m. That is,
An air tank 62 with an open bottom is movably placed over a top-opened water tank 61 storing water 60 at a predetermined level, and an air chamber 63 is formed as a closed space above the water surface. The air energy converted by the energy absorbing device 1 is sent into the air chamber 63 through the air pipe 7. The constant pressure tank 6 has the functions of stabilizing air energy and storing it for a short period of time. The stabilized air energy in the air chamber 63 is supplied to the variable turbine 9 through the air supply pipe 8.

可変タービン9は、発電機10と直結されている。この
可変タービン9、発電機10は、それぞれ効率80%、
定格出力125KWぐらいのものである。
The variable turbine 9 is directly connected to a generator 10. The variable turbine 9 and the generator 10 each have an efficiency of 80%,
The rated output is about 125KW.

前記空気槽62において、仕切壁66で仕切られた空気
室63の上方((載荷室64が形成され、ここに載荷材
としての水65(但し、水以外に、砂とかショットなど
でも可。)が収容されている。載荷室64の上下に給水
Tf11、排水管12が接続され、各々に制御弁13.
14が設置されている。即ち、制御弁13.14が圧力
コントロール装置であり、これは、制御装置4によりコ
ントロールされる。定圧化タンク6の圧力設定値は、一
般的に300に!!/n12〜1400 ky7m2の
範囲でコントロールされる。
In the air tank 62, a loading chamber 64 is formed above the air chamber 63 partitioned by a partition wall 66, where water 65 is used as a loading material (however, in addition to water, sand, shot, etc. can also be used.) A water supply Tf11 and a drain pipe 12 are connected to the upper and lower sides of the loading chamber 64, and a control valve 13.
14 have been installed. That is, the control valves 13 , 14 are pressure control devices, which are controlled by the control device 4 . The pressure setting value of the constant pressure tank 6 is generally 300! ! /n12 to 1400 ky7m2.

第2図に制御フロー線図を示したとおり、波高計5によ
り、例えば2時間おきに20分間づつ波浪の波高、周期
を測定し、その測定値が制御装置4の則算機(マイクロ
コンピュータ−)に入力される。
As shown in the control flow diagram in FIG. ) is entered.

同時に、圧力計3により、エネルギ吸収装置1の空気ピ
ストン室における発生空気圧を測定し、これも制御装置
4の計算機に入力される。
At the same time, the pressure gauge 3 measures the air pressure generated in the air piston chamber of the energy absorption device 1, and this is also input into the computer of the control device 4.

制御装置4においては、上記2種の入力に基いで、計算
機が有給波高を算定する。と同時に、前記算定されたイ
J義波高に基いて、定圧化タンク6の適正な設定空気圧
を算定する。
In the control device 4, a computer calculates the paid wave height based on the above two types of inputs. At the same time, an appropriate set air pressure for the constant pressure tank 6 is calculated based on the calculated AJ wave height.

例えば有給波高が1mと算定された場合は、空気圧を水
柱θ、5mに設定し、小さな波浪エネルギでも吸収可能
とする。あるいは有給波高が2mと算定されたときは、
空気圧を水柱1mに設定し、まだ、イ」義波高が3mと
算定されたときは空気圧を水柱J5mK設定し、それぞ
れ大きな波浪エネルギを定圧化タンク6内に高密度に大
川に吸収、貯蔵可能とする。
For example, if the paid wave height is calculated to be 1 m, the air pressure is set to 5 m in the water column θ, so that even small wave energy can be absorbed. Or when the paid wave height is calculated to be 2m,
When the air pressure is set to 1 m of water column, and the wave height is calculated to be 3 m, the air pressure is set to 5 mK of water column, and large wave energy can be absorbed and stored in the constant pressure tank 6 at a high density in the river. do.

そして、制御III装置4は、前記の如く算定された設
定空気圧を実現するべく、圧力コントロール装置6.た
る制御弁13 、14 ’tr:開閉制御し、定圧化タ
ンク6の載荷室64に載荷材たる水65を所定月給排し
て圧力コントロールを行ない、前記算定した圧力を設定
する、。
Then, the control III device 4 operates the pressure control device 6. to realize the set air pressure calculated as described above. Barrel control valves 13 and 14'tr: Control opening and closing, supplying and discharging water 65 as a loading material to and from the loading chamber 64 of the constant pressure tank 6 on a predetermined month to control the pressure and set the calculated pressure.

さらに制F!I装置41L、前述の如くΩ。定しコント
ロールづれた圧力設定値に対応して、適正な可変タービ
ン性状を算定し、可変ター ビン9をその性状に制御す
る。
Even more control F! I device 41L, Ω as described above. In response to the predetermined and controlled pressure setting value, an appropriate variable turbine property is calculated, and the variable turbine 9 is controlled to that property.

例えげ定圧化タンク6の圧力設定値が水柱0.5mと低
いときは、タービン111−状としてのノズル絞り比を
例えば1150ぐらいにし゛し、即ち、流路断面積を大
きくする。逆に、圧力設定値が水柱3 +nと高いとき
υ:、ノズル絞り比を例えば1zj(lflOぐらいに
して、流路断面積を小さくJる。
For example, when the pressure setting value of the constant pressure tank 6 is as low as 0.5 m of water column, the nozzle aperture ratio of the turbine 111 is set to about 1150, that is, the cross-sectional area of the flow path is increased. On the other hand, when the pressure setting value is as high as 3 + n water columns, the nozzle aperture ratio is set to, for example, about 1zz (lflO), and the cross-sectional area of the flow path is made small.

かくすることにより、可変タービン9は、トルク、速度
ともに常に一定の回転動力を51−生し7、発電機10
を回す。
In this manner, the variable turbine 9 generates constant rotational power 51-7 in both torque and speed, and the generator 10
Turning the.

従つ−C,長期的に安定した、質のよい波力発電が行な
えるのであ秩、置方系統への41%給電源。
Therefore, -C, 41% supply power to the Chichi and Okikata systems because long-term, stable and high-quality wave power generation can be performed.

水産物の6此用電源、 自1島の電源等として実用可能
なのである。
It can be put to practical use as a power source for marine products, a power source for the island, etc.

4、図面の(’Ai tl’、 Zi説リす第1図はこ
の発明の方法が実施される波力発電システム・をれ金的
に示した説明し゛〈1、#r 21+、Jl 1.L制
仰フロー程図である。
4. Figure 1 of the drawings ('Aitl', Zi theory) is a schematic illustration of a wave power generation system in which the method of the present invention is implemented. It is an L control flow process diagram.

出 にHri 人 株式会社 竹中工務店出 戸【1 
人 財四法六二〔ンジニアリ/グー1i興協会代 理 
人 弁理士高 雄次部 箪1ピ 6ム It!2日 第1頁の続き [相]発 明 者 中久喜 康秀 東京都江東区南砂術
研究所内
Takenaka Construction Co., Ltd. [1]
Person Wealth Four Laws Sixty-Two
People Patent Attorney High School Yujibe Kano 1 Pi 6 Mu It! Continuing from page 1 on the 2nd [phase] Inventor Yasuhide Nakakuki Minami Sandjutsu Research Institute, Koto-ku, Tokyo

Claims (2)

【特許請求の範囲】[Claims] (1) 波浪エネルギをエネルギ吸収装置で空気エネル
ギに変換し、該空気エネルギを定圧化タンクに貯めて定
圧化し、その定常空気エネルギをエアタービンに供給し
、エアタービンで発生した動力で発電機を回し発電する
定圧化タンク方式の波力発電方法において、 (イ) エネルギ吸収装置(1)が設置された海岸に波
高計(5)を設置し、 (ロ) エネルギ吸収装置(1)の空気ピストン室に圧
力計(3)を設置し、 (ハ)定圧化タンク(6)には載荷材(65)が給排さ
れる載荷室(64)を設けて、載荷室(64)に載荷材
(65)を給排する圧力コントロール装置(至)、04
を設置し、 に) エアータービンは可変タービン(9)となし、(
ホ)波高計(5)により測定した波高、周期、及び圧力
計(3)で測定した発生空気圧を制御装置(4)に入力
して有餞波高卸を算定させ、がっ、との有輪波高Iに適
した定圧化タンクの空気圧力を算定させ、この算定結果
に基いて圧力コントロール装置(至)04を制御して圧
力設定を行ない、他方、可変タービン(9)の性状をコ
ントロールし発電を行なう、 ことを特徴とする、定圧化タンク方式の波力発電方法。
(1) Convert wave energy into air energy using an energy absorption device, store the air energy in a constant pressure tank to make it constant pressure, supply the steady air energy to an air turbine, and use the power generated by the air turbine to drive a generator. In the wave power generation method using a constant pressure tank that generates power by rotating, (a) a wave height meter (5) is installed on the coast where the energy absorption device (1) is installed, and (b) an air piston of the energy absorption device (1) is installed. A pressure gauge (3) is installed in the chamber, (c) the constant pressure tank (6) is provided with a loading chamber (64) into which the loading material (65) is supplied and discharged, and the loading chamber (64) is filled with the loading material (64). 65) Pressure control device for supplying and discharging (to), 04
The air turbine is a variable turbine (9), and the air turbine is a variable turbine (9).
e) The wave height and period measured by the wave height meter (5), and the generated air pressure measured by the pressure gauge (3) are input to the control device (4) to calculate the wave height, and the wave height is calculated. The air pressure in the constant pressure tank suitable for wave height I is calculated, and based on this calculation result, the pressure control device (to) 04 is controlled to set the pressure, and on the other hand, the properties of the variable turbine (9) are controlled to generate electricity. A constant pressure tank type wave power generation method characterized by:
(2) 特許請求の範囲第1項に記載の波高計(5)及
び圧力針(3)は、一定時間おきに一定時間づつ継続的
に測定して制御装置(4)に入力させ、その時期の有輪
波高算定のデータとなさしめる波力発電方法。
(2) The wave height meter (5) and the pressure needle (3) according to claim 1 are continuously measured at regular intervals and inputted into the control device (4). Wave power generation method based on data for calculating wave heights.
JP58213799A 1983-11-14 1983-11-14 Wave force power generation by constant-pressurized tank system Granted JPS60104779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58213799A JPS60104779A (en) 1983-11-14 1983-11-14 Wave force power generation by constant-pressurized tank system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58213799A JPS60104779A (en) 1983-11-14 1983-11-14 Wave force power generation by constant-pressurized tank system

Publications (2)

Publication Number Publication Date
JPS60104779A true JPS60104779A (en) 1985-06-10
JPH0114426B2 JPH0114426B2 (en) 1989-03-10

Family

ID=16645233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58213799A Granted JPS60104779A (en) 1983-11-14 1983-11-14 Wave force power generation by constant-pressurized tank system

Country Status (1)

Country Link
JP (1) JPS60104779A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139088U (en) * 1988-03-16 1989-09-22
WO1992001154A1 (en) * 1990-07-03 1992-01-23 Tsugio Nagata Method of and device for providing compressed air and water pumping device using air thus compressed
CN102799770A (en) * 2012-06-29 2012-11-28 哈尔滨工程大学 Method for modeling sea wave significant wave height inversion model based on particle swarm optimization (PSO) self-adaptive piecewise linear fitting
CN107860372A (en) * 2017-10-30 2018-03-30 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) Sea bottom friction causes the field survey method of wave attenuation
GB2597371A (en) * 2020-07-01 2022-01-26 Panasonic Ip Man Co Ltd Wave power utilization device and control method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165775A (en) * 1980-05-23 1981-12-19 Takenaka Komuten Co Ltd Method of generating electricity from wave power through air turbine by utilizing variable-capacity stock chamber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165775A (en) * 1980-05-23 1981-12-19 Takenaka Komuten Co Ltd Method of generating electricity from wave power through air turbine by utilizing variable-capacity stock chamber

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139088U (en) * 1988-03-16 1989-09-22
WO1992001154A1 (en) * 1990-07-03 1992-01-23 Tsugio Nagata Method of and device for providing compressed air and water pumping device using air thus compressed
US5205720A (en) * 1990-07-03 1993-04-27 Tsugio Nagata Method and apparatus for producing compressed air and water pumping apparatus utilizing the produced air
AU645102B2 (en) * 1990-07-03 1994-01-06 Tsugio Nagata Method of and device for providing compressed air and water pumping device using air thus compressed
CN102799770A (en) * 2012-06-29 2012-11-28 哈尔滨工程大学 Method for modeling sea wave significant wave height inversion model based on particle swarm optimization (PSO) self-adaptive piecewise linear fitting
CN102799770B (en) * 2012-06-29 2015-08-26 哈尔滨工程大学 A kind of wave significant wave height inverse model modeling method based on the matching of PSO dispositif de traitement lineaire adapte
CN107860372A (en) * 2017-10-30 2018-03-30 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) Sea bottom friction causes the field survey method of wave attenuation
GB2597371A (en) * 2020-07-01 2022-01-26 Panasonic Ip Man Co Ltd Wave power utilization device and control method thereof
US11454205B2 (en) 2020-07-01 2022-09-27 Panasonic Intellectual Property Management Co., Ltd. Wave power utilization device and control method thereof

Also Published As

Publication number Publication date
JPH0114426B2 (en) 1989-03-10

Similar Documents

Publication Publication Date Title
WO2022021587A1 (en) Test system for simulating multi-field coupling effect of offshore wind power rock-socketed pile
US8400007B2 (en) Hydroelectric power system
US4310769A (en) Ship lock system with hydroelectric pumped-storage capability
JPS6332986B2 (en)
JPS60104779A (en) Wave force power generation by constant-pressurized tank system
CN108844600A (en) A kind of adjustable measuring device for level of reservoir based on network technology
JP2002142498A (en) Controller of pendulum type wave power generator
Yamasaki Detailed analysis of a tropical cyclone simulated with a 13-layer model
CN207964008U (en) A kind of quick reservoir level measurement device
Song et al. Intermittent wave energy generation system with hydraulic energy storage and pressure control for stable power output
CN116843129A (en) Pumped storage flood control calculation method dynamically considering reserved reservoir capacity
CN206782036U (en) A kind of hydraulic engineering Level monitor
JPS60104780A (en) Pressure setting method of constant-pressurized tank for wave force power generation
Ryrie An optimal control model of tidal power generation
KR101737688B1 (en) Control method for rotation angle of wave energy converter using adjustable tilt sliding floating buoy
CN111982778A (en) Seepage intelligent monitoring system for hydraulic engineering
JP2559064B2 (en) Wave power generation method using constant pressure tank
JPS62228672A (en) Tide utilizing dock type pressure power generating method
CN110566408A (en) Deep-sea floating type water pumping energy storage wind power generation device and method
CN110261696B (en) Monitoring and analyzing system for electric energy quality of power grid
CN208028820U (en) Water surface floating photovoltaic power generation apparatus
CN110259627B (en) Electric power construction safety management system based on electric power internet of things
Greenhill A treatise on hydrostatics
KR20210118629A (en) Thermodyn-amic method for generating underwater buoyancy energy of amonatomic gas exceeding the energy for underwater existence of the gas and an energy generating system utilizing the above method
Bickley Optimal control of a single-basin tidal power scheme in various operating modes