JPS6010408A - Production of thin film magnetic head - Google Patents

Production of thin film magnetic head

Info

Publication number
JPS6010408A
JPS6010408A JP11587083A JP11587083A JPS6010408A JP S6010408 A JPS6010408 A JP S6010408A JP 11587083 A JP11587083 A JP 11587083A JP 11587083 A JP11587083 A JP 11587083A JP S6010408 A JPS6010408 A JP S6010408A
Authority
JP
Japan
Prior art keywords
conductor
film
electrode part
thin film
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11587083A
Other languages
Japanese (ja)
Inventor
Saburo Suzuki
三郎 鈴木
Shunichiro Kuwazuka
鍬塚 俊一郎
Masayoshi Waki
脇 正義
Eisei Togawa
戸川 衛星
Kenji Sugimoto
憲治 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Computer Basic Technology Research Association Corp
Original Assignee
Computer Basic Technology Research Association Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Computer Basic Technology Research Association Corp filed Critical Computer Basic Technology Research Association Corp
Priority to JP11587083A priority Critical patent/JPS6010408A/en
Publication of JPS6010408A publication Critical patent/JPS6010408A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films

Landscapes

  • Magnetic Heads (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

PURPOSE:To obtain a thin film head superior in corrosion resistance and mechanical strength even if a thick conductor in an electrode part is formed in the electro-forming method, by using an inorganic insulator or a metal having a low hydrogen deposition potential as shielding materials. CONSTITUTION:A head element is formed on a ceramic substrate, and an electrode part leading-out conductor 9 and the first protection film 10 are formed in the electrode part. After a foundation film 11 for power supply is accumulated, cromium which is a metal having a low hydrogen generating potential is accumulated by sputtering for the purpose of protecting the part where deposition is unnecessary to form a shielding film 17. The electrode part of this shielding film 17 is removed by etching to expose the foundation film 11 for power supply 11. In this state, when copper is precipitated by electro-gorming, a conductor 13 having a specific thickness is formed only in the electrode part. Thereafter, the conductor 13 is used as a mask material to remove parts other than the electrode part, and an inorganic protection film 14 is formed on this conductor 13 by sputtering, and the surface is worked mechanically to expose said conductor 13, thus completing the electrode part.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は薄膜磁気ヘッド(以下、惟に「薄膜ヘッド」と
いう)の製造方法に関し、特に電極部の導体をエレク1
−ロフオーミングにより形成する薄膜ヘッドの製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method of manufacturing a thin film magnetic head (hereinafter referred to as a "thin film head"), and particularly relates to a method of manufacturing a thin film magnetic head (hereinafter referred to as "thin film head"), and in particular, to
- This invention relates to a method for manufacturing a thin film head formed by loforming.

〔発明の背景〕[Background of the invention]

薄膜ヘッドの電極部にはポンディングパッドとヘッド素
子とを接続するための導体が必要であり、これには抵抗
値の低い銅、銀または金等の金属が用いられる。上記導
体は、30〜40μmの膜厚を必要とするため、この形
成には、高速で、かつ、安価に厚膜を形成することが可
能なエレク(−ロブ2Y−ミング法が用いられる。
The electrode portion of the thin film head requires a conductor for connecting the bonding pad and the head element, and a metal such as copper, silver, or gold having a low resistance value is used for this conductor. Since the above-mentioned conductor requires a film thickness of 30 to 40 μm, the ELEC (-LOB 2Y-ming method), which can form a thick film at high speed and at low cost, is used for its formation.

また、薄膜ヘッドの表面には、素子の保護およびヘッド
の浮上特性を向上させるために厚さ3〇 −μm程度の
無機保護膜が形成さJしている。
Further, an inorganic protective film with a thickness of about 30-μm is formed on the surface of the thin-film head in order to protect the element and improve flying characteristics of the head.

第1図に薄膜ヘッドの構造の一例を、また第2図〜第4
図にその電極部の詳細をいずれも断面図で示した。以下
、上記各図面に基づいて従来の薄膜ヘッド製造方法の概
要を説明する。
Figure 1 shows an example of the structure of a thin film head, and Figures 2 to 4 show an example of the structure of a thin film head.
The details of the electrode portion are shown in cross-sectional views in the figures. Hereinafter, an outline of the conventional thin film head manufacturing method will be explained based on the above-mentioned drawings.

まず、セラミック基板1の全面にスパッタリングにより
無機絶縁体から成る平坦な下地膜2を形成する。次に、
該下地膜2上に同じくスパッタリングにより厚さ2μm
程度のパーマロイを堆積した後、フォトエツチング技術
によりパターンを形成し下部磁性膜3とする。次に、同
じくスパッタリングにより厚さ約1μmの無機絶縁膜を
堆積した後、フォトエツチング技術によりパターンを形
成しギャップスペーサ4とする。
First, a flat base film 2 made of an inorganic insulator is formed on the entire surface of a ceramic substrate 1 by sputtering. next,
A film with a thickness of 2 μm is formed on the base film 2 by sputtering as well.
After depositing a certain amount of permalloy, a pattern is formed by photoetching to form the lower magnetic film 3. Next, an inorganic insulating film having a thickness of about 1 μm is deposited by sputtering, and then a pattern is formed by photoetching to form the gap spacer 4.

次いで有機および無機絶縁膜をパターン形成し、第1絶
縁膜5とする。次に、アルミニウム(AI)。
Next, the organic and inorganic insulating films are patterned to form the first insulating film 5. Next, aluminum (AI).

銅(Cu)または金(Au)等の低抵抗の金属をスパッ
タリングにより堆積した後、フォトエツチング技術で線
幅5〜10μm、線間隔3〜6μmにパターン化して導
体コイル6を形成する。次に、前記第1絶縁膜5の形成
と同様の工程により、第2絶縁膜7を形成する。その後
、厚さ2μm程度のパーマロイをスパッタリングにより
堆積した後、フォトエツチング技術でパターン化して上
部磁性膜8を形成する。
After depositing a low-resistance metal such as copper (Cu) or gold (Au) by sputtering, the conductor coil 6 is patterned by photoetching to have a line width of 5 to 10 μm and a line spacing of 3 to 6 μm. Next, a second insulating film 7 is formed by a process similar to that of forming the first insulating film 5. Thereafter, permalloy with a thickness of about 2 μm is deposited by sputtering, and then patterned by photoetching to form the upper magnetic film 8.

−」−記−1一部課性膜8゛を形成する際、前記導体コ
イル6との接合部を設け、ヘッド素子からの電極部引出
し用導体9のパターンを同時に形成する。次に、エレン
1へロフォーミング]二程において用いられる薬品から
ヘッド素子を保護するための、第1保護膜10を形成す
る。その後、第2図に詳細に示す如く、エレン1−ロフ
ォーミングを行うための通電用下地膜11をスパッタリ
ングあるいは蒸着により堆積し、所定の電極q゛法にな
るようにレジスト膜12をパターン形成グする。
-''-Note-1 When forming the partially imposed film 8', a joint portion with the conductor coil 6 is provided, and a pattern of the conductor 9 for leading out the electrode portion from the head element is formed at the same time. Next, a first protective film 10 is formed to protect the head element from the chemicals used in the second step of "roforming to Ellen 1". Thereafter, as shown in detail in FIG. 2, a conductive base film 11 for performing Ellen 1-roforming is deposited by sputtering or vapor deposition, and a resist film 12 is patterned to form a predetermined electrode pattern. do.

上記レジスト膜12の厚さは、ヘッド素子の種類にもよ
るが、一般には3〜10μm程度である。
The thickness of the resist film 12 depends on the type of head element, but is generally about 3 to 10 μm.

この状態で導体13のエレクトロフォーミングを行った
後、不要となった上記レジスト膜12を除去し保護膜1
4を堆積してその表面を機械加工し、ポンディングパッ
ドと接続することにより、薄膜ヘッドを得ることができ
る。
After electroforming the conductor 13 in this state, the unnecessary resist film 12 is removed and the protective film 1
A thin film head can be obtained by depositing 4 and machining its surface and connecting it with a bonding pad.

ここで問題となるのは、上記導体13のエレクトロフォ
ーミングを行う場合に、該導体13の厚さが前記レジス
ト膜12の厚さを越えると、析出が厚さ方向だけでなく
水平方向にも進行することである。上記導体13の析出
が前述の如く30〜40μm程度の厚さに達した時点に
おいては、上記水平方向へのオーバーハング部の寸法も
20〜/10μm程度になる。このため、レジスト膜1
2を除去した後には、高さ3〜10μrn 、幅20〜
40μm程度の隙間ができていることになる。隙間がこ
の程度の大きさを有すると、−上記導体13上にスパッ
タリングにより保護膜14を堆積する場合、−に記隙間
を完全に覆うことができず、第3図、第4図に示す如く
、保護膜14に空洞15やクラック16を生ずるため、
電極部の耐蝕性が著しく低下するという問題を生ずるこ
とになる。
The problem here is that when electroforming the conductor 13, if the thickness of the conductor 13 exceeds the thickness of the resist film 12, precipitation will proceed not only in the thickness direction but also in the horizontal direction. It is to be. When the conductor 13 has been deposited to a thickness of about 30 to 40 μm as described above, the dimension of the horizontal overhang portion also becomes about 20 to 10 μm. For this reason, resist film 1
After removing 2, the height is 3~10μrn and the width is 20~
This means that a gap of about 40 μm is created. If the gap has this size, - when depositing the protective film 14 on the conductor 13 by sputtering, it will not be possible to completely cover the gap as shown in FIGS. 3 and 4. , since cavities 15 and cracks 16 are formed in the protective film 14,
This results in a problem that the corrosion resistance of the electrode portion is significantly reduced.

この問題に対しては、特殊なスパッタリング法を用いる
ことにより、上記空洞15あるいはクランク16を生じ
ないようにすることも提案されているが、現状では機械
的強度が劣る等の別の問題があり実用には至っていない
To solve this problem, it has been proposed to use a special sputtering method to prevent the formation of the cavity 15 or crank 16, but currently there are other problems such as poor mechanical strength. It has not been put into practical use.

〔発明の目的〕[Purpose of the invention]

本発明は」−記事情に鑑みてなされたもので、その目的
とするところ゛は、従来の薄膜ヘッドの製造方法におけ
る一ヒ述の如き問題を解消し、電極部の厚い導体をエレ
クトロフォーミング法により形成した(Q合にも、オー
バーハング部に空洞やクランクを生ずることがなく、耐
蝕性および機械的強度の優れた薄膜ヘラ1−の製造方法
を提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to solve the above-mentioned problems in the conventional thin-film head manufacturing method, and to form a thick conductor in the electrode portion by electroforming. It is an object of the present invention to provide a method for manufacturing a thin film spatula 1- which does not produce cavities or cranks in the overhang portion even when formed by the method (Q) and has excellent corrosion resistance and mechanical strength.

〔発明の概要〕[Summary of the invention]

本発明の要点は、電極部の導体をエレン1−〇フ2r−
ミング工程により形成する薄膜ヘッドの製造方法におい
て、前記エレクトロワ21−ミング工程における遮蔽材
料として、無機絶縁体あるいは水素析出電位の低い金属
を用いるようにした点にある。
The main point of the present invention is that the conductor of the electrode part is
In the method of manufacturing a thin film head formed by a heating process, an inorganic insulator or a metal having a low hydrogen deposition potential is used as a shielding material in the electrowarming process.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面に基づいてtY:綱に説明
する。
Hereinafter, embodiments of the present invention will be explained based on the drawings.

第5図〜第9図は本発明の一実施例である薄膜ヘッドの
電極部の製造工程の要部を示す断面図である。各図にお
いて記号2,9〜11.13および14は第1図〜第4
図に示したと同じ構成要素を示しており、17は遮蔽膜
を示している。
FIGS. 5 to 9 are cross-sectional views showing essential parts of the manufacturing process of the electrode portion of a thin film head according to an embodiment of the present invention. In each figure, symbols 2, 9 to 11, 13 and 14 refer to figures 1 to 4.
The same components as shown in the figure are shown, and 17 indicates a shielding film.

まず、第5図に示す如く、従来と同様にセラミック基板
上にヘラ1く素子を形成し、電極部には電極部引出し用
導体9および第1保護膜10を形成する。次に、エレク
I−ロフォーミングの際の通電用下地膜11を堆積した
後、析出不要部分を保護するための水素析出電位の低い
金属として知られているクロム(Cr)をスパッタリン
グにより堆積し、遮Wl膜17を形成する。
First, as shown in FIG. 5, a spatula element is formed on a ceramic substrate as in the conventional method, and a conductor 9 for leading out the electrode part and a first protective film 10 are formed on the electrode part. Next, after depositing a base film 11 for conduction during electro-I-roforming, chromium (Cr), which is known as a metal with a low hydrogen deposition potential, is deposited by sputtering to protect areas where deposition is not required. A Wl shielding film 17 is formed.

次に、第6図に示す如く、上記遮蔽膜】7の電極部分を
エツチング技術により除去して通電用下地膜11を露出
させる。この状態でエレクトロフォーミングにより銅(
Cu)を析出させると、第7図に示す如く、電極部のみ
に厚さ30〜40μInの導体13が形成される。その
後、該導体13をマスク材としてエツチング技術により
電極部以外の」二記遮蔽膜17および通電用下地膜11
を除去する。次いで、第8図に示す如く、スパッタリン
グにより上記導体13上に無機保護膜14を形成した後
、その表面を第9図に示す如く機械加工することにより
、前記導体13を露出させて電極部が完成する。
Next, as shown in FIG. 6, the electrode portion of the shielding film 7 is removed by etching to expose the current-carrying base film 11. In this state, copper (
When Cu) is deposited, a conductor 13 having a thickness of 30 to 40 .mu.In is formed only at the electrode portion, as shown in FIG. Thereafter, using the conductor 13 as a mask material, etching techniques are used to remove the shielding film 17 and the current-carrying base film 11 other than the electrode portion.
remove. Next, as shown in FIG. 8, an inorganic protective film 14 is formed on the conductor 13 by sputtering, and the surface thereof is machined as shown in FIG. 9 to expose the conductor 13 and form an electrode portion. Complete.

本実施例に示した方法によ4しば、エレン1−ロフフI
−−ミングを行う際に用いた遮蔽膜17は遮蔽作用を果
たした後に電極部に残っており、従来のレジスト膜の如
く保護膜14中に空洞やクラックを生ずることがないの
で、機械的強度が高く、かつ。
According to the method shown in this example, Ellen 1-Loff I
--The shielding film 17 used when performing the mixing remains on the electrode part after fulfilling its shielding effect, and does not create cavities or cracks in the protective film 14 unlike conventional resist films, so it has mechanical strength. is high and.

面1蝕性の優11.た電極部を形成することが可能であ
る。
Surface 1 Excellent corrosion resistance 11. It is possible to form an electrode section that has a different shape.

上記実施例においては、遮蔽膜17の材料としてクロA
(Cr>を用いたが、これは水素析出電位の低い他の金
属、例えば、モリブデン(Mo)、チタン(Ti)ある
いはタングステン(W)等を用いても良いことは言うま
でもない。また、」二連の如き水素析出電位の低い金属
の代りに、無機絶縁体を用いても良いことも言うまでも
ない。
In the above embodiment, the material of the shielding film 17 is black A.
(Cr) was used, but it goes without saying that other metals with a low hydrogen deposition potential, such as molybdenum (Mo), titanium (Ti), or tungsten (W), may also be used. It goes without saying that an inorganic insulator may be used instead of a metal having a low hydrogen deposition potential such as a metal.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明によれば、電極部の導体をエレ
クトロフォーミング工程により形成する薄膜ヘッドの製
造方法において、前記エレク1へロフォーミング工程に
おける遮蔽材料として無機絶縁体あるいは水素析出電位
の低い金属を用いるようにしたので、耐蝕性および機械
的強度の優れた薄膜ヘッドの製造を可能とする薄膜ヘッ
ドの製造方法を実現できるという顕著な効果を奏するも
のである。
As described above, according to the present invention, in the method for manufacturing a thin film head in which the conductor of the electrode portion is formed by an electroforming process, an inorganic insulator or a metal with a low hydrogen deposition potential is used as a shielding material in the electroforming process. By using the above method, it is possible to realize a method for manufacturing a thin film head that makes it possible to manufacture a thin film head with excellent corrosion resistance and mechanical strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は薄膜ヘッドの構造の一例を示す断面図、第2図
〜第4図はその電極部の製造工程を示す断面図、第5図
〜第9図は本発明の一実施例である製造工程の要部を示
す断面図である。 1:セラミック基板、2:下地膜、3:下部磁性膜。 4:ギャツプスペーサ、5:第1絶縁膜、6:導体コイ
ル、7:第2絶縁膜、8:上部磁性膜、9:電極部引出
し用導体、10:第1保護膜、■ll逆通電用下地膜1
3:導体、14:保護膜、】7:遮蔽膜。 第 1 図 第 2 図 ]ス 第 3 図 4 第 4 図 第 5 図 第 6 図 ]7 第 7 図 3 第 8 図 第 9 図
FIG. 1 is a cross-sectional view showing an example of the structure of a thin film head, FIGS. 2 to 4 are cross-sectional views showing the manufacturing process of the electrode part, and FIGS. 5 to 9 are one embodiment of the present invention. FIG. 3 is a cross-sectional view showing the main parts of the manufacturing process. 1: ceramic substrate, 2: base film, 3: lower magnetic film. 4: Gap spacer, 5: First insulating film, 6: Conductor coil, 7: Second insulating film, 8: Upper magnetic film, 9: Conductor for leading out the electrode part, 10: First protective film, ■ll For reverse current conduction Base film 1
3: Conductor, 14: Protective film, ]7: Shielding film. Figure 1 Figure 2] Figure 3 Figure 4 Figure 4 Figure 5 Figure 6] Figure 7 Figure 3 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】[Claims] 電極部の導体をエレクトロフォーミング工程により形成
する薄膜磁気ヘッドの製造方法において、前記エレクト
ロフォーミング工程における遮蔽材料として、無機絶縁
体あるいは水素析出電位の低い金属を用いることを特徴
とする薄膜磁気ヘソ1〜の製造方法。
A method of manufacturing a thin film magnetic head in which a conductor of an electrode part is formed by an electroforming process, characterized in that an inorganic insulator or a metal with a low hydrogen deposition potential is used as a shielding material in the electroforming process. manufacturing method.
JP11587083A 1983-06-29 1983-06-29 Production of thin film magnetic head Pending JPS6010408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11587083A JPS6010408A (en) 1983-06-29 1983-06-29 Production of thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11587083A JPS6010408A (en) 1983-06-29 1983-06-29 Production of thin film magnetic head

Publications (1)

Publication Number Publication Date
JPS6010408A true JPS6010408A (en) 1985-01-19

Family

ID=14673191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11587083A Pending JPS6010408A (en) 1983-06-29 1983-06-29 Production of thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS6010408A (en)

Similar Documents

Publication Publication Date Title
JPS6185879A (en) Formation of conductive pattern
JPS6032311B2 (en) Electric conductor and its manufacturing method
US4806725A (en) Circuit substrate and thermal printing head using the same
JPS6010408A (en) Production of thin film magnetic head
JPS61122910A (en) Production of thin film-like magnetic head
JPS60136906A (en) Production of thin film magnetic head
JPS628943B2 (en)
JPH068053B2 (en) Thermal head
JPS60140513A (en) Production for thin film magnetic head
JPH0376533B2 (en)
JPS60140515A (en) Production of thin film magnetic head
JPH023926A (en) Forming method of wiring
JPS59165221A (en) Manufacture of thin-film magnetic head
JPH01200683A (en) Magnetoresistance element and manufacture thereof
JPH0439064A (en) Thermal head
JPH03113816A (en) Thin film magnetic head
KR940003922B1 (en) Making method of resistor
JPS6348200B2 (en)
JPS5910227A (en) Semiconductor device
JPS6261334A (en) Formation of pattern
JPS6160426B2 (en)
JPS61211810A (en) Electrode formation of thin film magnetic head
JPS60210871A (en) Semiconductor device and manufacture thereof
JPH0680845B2 (en) How to make a Josephson device
JPS60127513A (en) Production for thin film magnetic head