JPS60103317A - Fiber type polarizer and its manufacture - Google Patents

Fiber type polarizer and its manufacture

Info

Publication number
JPS60103317A
JPS60103317A JP58210915A JP21091583A JPS60103317A JP S60103317 A JPS60103317 A JP S60103317A JP 58210915 A JP58210915 A JP 58210915A JP 21091583 A JP21091583 A JP 21091583A JP S60103317 A JPS60103317 A JP S60103317A
Authority
JP
Japan
Prior art keywords
fiber
optical fiber
fused
mode optical
dummy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58210915A
Other languages
Japanese (ja)
Inventor
Masao Kawachi
河内 正夫
Morio Kobayashi
盛男 小林
Kazumasa Takada
和正 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58210915A priority Critical patent/JPS60103317A/en
Publication of JPS60103317A publication Critical patent/JPS60103317A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/105Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects

Abstract

PURPOSE:To realize a fiber type polarizer by an easy method by drawing a desired part of a single-mode optical fiber into a biconical taper shape together with dummy fibers, and sticking a metallic film on the drawn part. CONSTITUTION:Dummy fibers 21 and 22 having no core are arranged is parallel at both sides of the single-mode optical fiber 1 to contact therewith and fixed temporarily on drawing tables 23 (23a and 23b). Then a part of the contact area is heated to fuse the fiber array, and one drawing table 23, e.g. 23b is moved in parallel in a Z direction to form a fused and drawn part 24 in the biconical taper shape. Then the fiber array is moved to a support plate 25 and fixed with an adhesive 26, and a metallic film 27 is vapor-deposited on the fused and drawn part 24 in a +y and a -y direction. Thus, the fiber type polarizer which has a high extinction ratio and small excessive loss is realized.

Description

【発明の詳細な説明】 (技術分野) 本発明は、光ファイバセンサや光通信の分野に用いるフ
ァイバ形偏光子及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a fiber polarizer used in the fields of optical fiber sensors and optical communications, and a method for manufacturing the same.

(背景技術) 光ファイバセンサや光通信用の光回路の構成に際し7て
は、偏光子が往々にして必要とされる。ダラムトムソン
プリズムのようなバルク形の偏光子を使用しては、光回
路を小形に出来ない、機械振動等に対する安定性に欠け
る、高価になる、等の問題があり、従来からファイバ形
偏光子の使用が推奨されている。
(Background Art) A polarizer is often required when constructing an optical fiber sensor or an optical circuit for optical communication. Using bulk type polarizers such as the Durham-Thomson prism has problems such as the inability to make optical circuits compact, lack of stability against mechanical vibrations, etc., and high cost.Fiber type polarizers have traditionally been used. is recommended.

従来のファイバ形偏光子の製造例を第】図に示す。まず
、第1図a)は単一モード元ファイバエの中間部分をコ
ア部1aが露出する程度にまでクラッド部1bを除去し
、露出面2に、断面3に示ずように金属膜4を蒸着する
ことによってファイバ形偏光子を得るものである。断面
3において、金属膜4に垂直な偏光成分は金属膜4に吸
収され消失するのに対し、金属膜4に平行な偏光成分は
金属膜4に吸収されることなく露出部を通過し、すなわ
ち偏光子としての動作を示すのであった。
An example of manufacturing a conventional fiber polarizer is shown in FIG. First, in FIG. 1a), the cladding part 1b of the middle part of the single mode original fiber is removed to the extent that the core part 1a is exposed, and a metal film 4 is deposited on the exposed surface 2 as shown in cross section 3. By doing this, a fiber-type polarizer is obtained. In the cross section 3, the polarized light component perpendicular to the metal film 4 is absorbed by the metal film 4 and disappears, whereas the polarized light component parallel to the metal film 4 passes through the exposed part without being absorbed by the metal film 4, i.e. It showed operation as a polarizer.

しかし、このファイバ形偏光子の製造方法では、コア部
1aを精度良く露出するのが難しく、例えば研磨法を使
用する場合、研磨が不足すると、偏光子作用が弱く、研
磨が過剰であるとコア部1aが失われてしまうという欠
点があった。また、そもそも、125μ7n程度の外径
の単一モード光ファイバ1を研磨すること自体きわめて
困難な操作であった。
However, in this method of manufacturing a fiber polarizer, it is difficult to expose the core portion 1a with high precision. For example, when using a polishing method, if polishing is insufficient, the polarizer effect will be weak, and if polishing is excessive, the core portion 1a will be exposed with high precision. There was a drawback that part 1a was lost. Furthermore, in the first place, it was an extremely difficult operation to polish the single mode optical fiber 1 having an outer diameter of about 125μ7n.

第1図b)では、2本の単一モード光ファイバ1゜1′
の端面間に偏光フィルター5を介在せしめて接着し、全
体としてファイバ形偏光子を得ようとするものであるカ
ー偏光フィルター5を介在せしめることによる接続損失
を小さくするためには、偏光フィルター5は50μm程
度以下の厚さでなければならず、逆にそのような薄膜構
造では充分な偏光子機能を得られないという問題があっ
た。
In Figure 1b), two single mode optical fibers 1°1'
In order to reduce the splice loss caused by interposing the Kerr polarizing filter 5, which is intended to obtain a fiber-type polarizer as a whole by interposing and bonding the polarizing filter 5 between the end faces of the polarizing filter 5, the polarizing filter 5 is The thickness must be approximately 50 μm or less, and conversely, such a thin film structure has the problem that a sufficient polarizer function cannot be obtained.

(発明の課題) 本発明は、従来の上記の欠点を解決するために、単一モ
ード光ファイバの所望部分をダミーファイバとともにパ
イコニカルテーパ状に延伸し、延伸部に金属を旧情させ
ファイバ形偏光子とするもので、以下図面について詳細
に説明する。
(Problems to be solved by the invention) In order to solve the above-mentioned drawbacks of the conventional art, the present invention stretches a desired portion of a single mode optical fiber together with a dummy fiber into a piconic taper shape, adds metal to the stretched portion, and creates fiber-shaped polarized light. The drawings will be described in detail below.

(発明の構成および作用) 第2図は本発明の一実施例であり、ファイバ形偏光子の
製造工程を示す。まず、単一モード光ファイバ10両サ
イドにコア部を持たないダミーファイバ2]、 、 2
2を配して、延伸台23a 、 2.31)上に仮固定
する。つづいて、単一モード光ファイバ1、ダミーファ
イバ21,220接触領域の一部を加熱して、これらの
ファイバ列を融着するとともに、延伸台23I)を2方
向に平行移動して、パイコニカルテーパ状の融着延伸部
24を形成する。次にファイバ列を支持板乙に移し、接
着剤26で固定し、つづいて+y方向、−y方向より、
融着延伸部24に金属膜27を蒸着する。第2図d)は
融着延伸部24の拡大断Tftr図である。融着延伸部
24では、コア径が小さくなるため、伝搬光はコア部の
みならずクランド部にも広がって伝わり、金属膜27の
領域にまで達する。ために、第2図d)においてX方向
の偏波成分は、金属膜27に吸収され消失してしまし・
、第2図c)、d)に示した構造はファイバ形偏光子と
し防止する役目を果たしている。
(Structure and operation of the invention) FIG. 2 is an embodiment of the invention, and shows the manufacturing process of a fiber polarizer. First, a dummy fiber 2 which does not have a core part on both sides of the single mode optical fiber 10], , 2
2 and temporarily fixed on the stretching table 23a, 2.31). Next, a part of the contact area of the single mode optical fiber 1 and the dummy fibers 21 and 220 is heated to fuse these fiber rows, and the drawing table 23I) is moved in parallel in two directions to form a piconical fiber. A tapered fused and stretched portion 24 is formed. Next, the fiber array is transferred to the support plate B, fixed with adhesive 26, and then from the +y direction and the -y direction.
A metal film 27 is deposited on the fused extension portion 24 . FIG. 2d) is an enlarged sectional Tftr view of the fused and stretched portion 24. FIG. In the fused and stretched portion 24, the core diameter is small, so the propagating light spreads and propagates not only in the core portion but also in the crund portion, and reaches the region of the metal film 27. Therefore, in Fig. 2 d), the polarized wave component in the X direction is absorbed by the metal film 27 and disappears.
The structure shown in Figures 2c) and d) serves as a fiber polarizer.

次に具体的な実施例について説明する。使用した単一モ
ード光ファイバの外径は125μm、コア径8μm、比
屈折率差03%(コア部のドーパントはGeOり長さ約
1111である。ダミーファイバは、外径125μ7n
の純石英ガラスファイバで長さ約5ocInのものを用
いた。これらのファイバを第2図a)のように配列し、
その一部を約2龍長にわたって、酸素・プロパンガスに
よるミニトーチで加熱融着し、つづいて延伸台23bを
約7關移動させ、パイコニカルテーパ状の融着延伸部2
4を形成した。融着延伸部のウェスト部の寸法はX方向
201tm 、 X方向8μrn程 ーyX方向らそれぞれ0.5μnL厚のAl金属膜を蒸
着してファイバ形偏光子を得た。作製したファイバ形偏
光子の特性を波長1.32μ7nのLiNdJへOI2
レーザを用いて評価したところ、偏光子機能の指数であ
る消光比は一18dB であり、またX方向偏波に対す
る過剰損失は1dBと微小であった。
Next, specific examples will be described. The single mode optical fiber used had an outer diameter of 125 μm, a core diameter of 8 μm, and a relative refractive index difference of 03% (the dopant in the core was GeO, and the length was about 1111 nm. The dummy fiber had an outer diameter of 125 μm and a 7 nm diameter).
A pure silica glass fiber having a length of approximately 5 ocIn was used. Arrange these fibers as shown in Figure 2a),
A part of it is heated and fused over about 2 lengths with a mini torch using oxygen/propane gas, and then the drawing table 23b is moved about 7 steps, and the fused and drawn portion 2
4 was formed. The dimensions of the waist part of the fused and stretched part were 201 tm in the X direction, and an Al metal film having a thickness of about 8 μrn in the X direction and 0.5 μnL in each of the y and X directions was deposited to obtain a fiber type polarizer. The characteristics of the fabricated fiber polarizer were transferred to LiNdJ with a wavelength of 1.32μ7n by OI2.
When evaluated using a laser, the extinction ratio, which is an index of polarizer function, was -18 dB, and the excess loss for X-direction polarization was as small as 1 dB.

以上の実施例では金属膜としてMを用いたが、この他に
、C r + Au + A.g等の金属膜を用いるこ
ともでき、また蒸着やスパッタリングに代わって、メッ
キの手法や、Gaや1−1g等の液体金属を塗伺する等
の方法を用いて金属を融着延伸部に旧情させることも可
能である。
In the above embodiments, M was used as the metal film, but in addition to this, C r + Au + A. It is also possible to use a metal film such as Ga or 1-1g, and instead of vapor deposition or sputtering, a plating method or a method such as coating a liquid metal such as Ga or 1-1g can be used to apply metal to the fused and stretched part. It is also possible to make it look old-fashioned.

第3図は、本発明の別の実施例であり、単一モード光フ
ァイバとして応力付与部を有する複屈折性光ファイバを
用いた例であり断面構造図である。
FIG. 3 is a cross-sectional structural diagram showing another embodiment of the present invention, in which a birefringent optical fiber having a stress applying portion is used as a single mode optical fiber.

■≠テ慢¥配し、これら一部を融着延伸してノ(イコニ
カルテーパ構造を形成し、融着延伸部に金属膜27を旧
情させたものである。第3図右側は融着延伸部の拡大断
面図である。複屈折性元ファイバ31はその主軸方向3
3および直角方向に沿って直線偏波を安定に保持する性
質を持つので、主軸方向33を、ダミーファイバ21 
、22と複屈折性光ファイバ:う1とがなす平面に一致
(X方向)あるいは直角(X方向)に整列させておくこ
とが好都合である。
■ A part of the tapered part is fused and stretched to form an iconic taper structure, and the metal film 27 is placed in the fused and stretched part. The right side of Figure 3 shows the fused and stretched part. It is an enlarged cross-sectional view of a stretched part.The birefringent original fiber 31 is oriented in its main axis direction 3.
3 and the dummy fiber 21 has the property of stably maintaining linearly polarized waves along the orthogonal directions.
.

すなわち、第;3図a)においては複屈折性光ファイバ
31の主軸方向33に沿って入射した直線偏波は、融着
延伸部において金属膜27に吸収され消失するのに対し
、主軸方向33に、直角方向の直線偏波は金属膜27に
吸収されることなく融着延伸部を通過し、しかも、融着
延伸部前後の複屈折性光フアイバアームに曲げやねじり
を与えても、直線偏波が(ずれる懸念が無く、ファイバ
形偏光子を組み込んだ光回路を構成する上での自由度が
増す利点がある。
That is, in FIG. 3a), the linearly polarized wave incident along the principal axis direction 33 of the birefringent optical fiber 31 is absorbed by the metal film 27 at the fused and stretched portion and disappears, whereas the linearly polarized wave incident along the principal axis direction 33 In addition, the linearly polarized wave in the orthogonal direction passes through the fused and stretched portion without being absorbed by the metal film 27, and even if the birefringent optical fiber arm before and after the fused and stretched portion is bent or twisted, it remains straight. There is no concern that the polarization will shift, and there is an advantage that the degree of freedom in configuring an optical circuit incorporating a fiber polarizer is increased.

第3図b)、c)は複屈折性光ファイバ:31として、
コア部31aの両側に応力付与部32cを有するファイ
バを用いた場合であり、やはり、主J(i方向:3:3
の方位に留意することにより、第3図、1)の場合と同
様の動作を得ることができる。− 第3図1))について、より具体的な作製例を述べる。
Figure 3 b) and c) are birefringent optical fibers: 31,
This is a case where a fiber having stress applying parts 32c on both sides of the core part 31a is used, and also the main J (i direction: 3:3
By paying attention to the direction of , it is possible to obtain the same operation as in the case of FIG. 3, 1). - Regarding Fig. 3 1)), a more specific example of production will be described.

用いた応力付与型複屈折性光ファイバは外径125μ?
71.コア径8p、nt 、比屈折率差03チであり、
コア部の両側にそれぞれ15μm離れて内径;30/υ
71の偏光顕微鏡下で、この複屈折性光ファイバをはさ
むように、ダミーファイバを配し、屈折率整合液に浸し
て、応力付与部を透視することにより、主軸方向を第3
図1))のように配列させた。これらのファイバ列の一
部をミニト−チて加熱して、屈折率整合液を蒸発せしめ
るとともに、コアイノくを融着し延伸した。最後にファ
イバ列を支持板に移し、QaとInとを混合した液体金
属を融着延伸部に4伺し、ファイバ形偏光子とした。X
方向偏波を入射したところ、わずか0.8dBの損失を
受けるのみで、融着延伸部を通過したlのに対し、X方
向偏波は、22c113程度の損失を受け、結局ファイ
・々形偏光子は一20d13程度の消光比を示すことが
明らかと、なった。しかも、この消光比は入力側、出力
側いずれの複屈折性光フアイバアームに通常の曲げ等を
与えても安定に確保されていた。
The stress-applied birefringent optical fiber used has an outer diameter of 125μ?
71. The core diameter is 8p, nt, and the relative refractive index difference is 03chi,
15 μm apart on both sides of the core, inner diameter: 30/υ
Under a polarizing microscope of No. 71, a dummy fiber was placed between the birefringent optical fibers, immersed in a refractive index matching liquid, and the stress-applying part was looked through, so that the main axis direction was adjusted to the third direction.
They were arranged as shown in Figure 1)). A portion of these fiber arrays was heated with a mini-torch to evaporate the refractive index matching liquid, and at the same time, the core ink was fused and stretched. Finally, the fiber array was transferred to a support plate, and a liquid metal containing Qa and In was applied to the fused and stretched portion to form a fiber-shaped polarizer. X
When the directional polarized wave was incident, it passed through the fusion and stretching part with only a loss of 0.8 dB, whereas the It was revealed that the molecule exhibits an extinction ratio of about -20d13. Moreover, this extinction ratio was stably maintained even when the birefringent optical fiber arm on either the input side or the output side was subjected to normal bending or the like.

本発明では、ダミーファイバの本数を増すことも可能で
あり、第4図a)の例では、複屈折性光フアイバ310
両側に2本づつのダミーファイバ41゜42、 /13
 、 /Mを配しである。また、第4図b)はダミーフ
ァイバ45 、46として長方形状断面を有するものを
用いた例であり、第4図a)、b)の例では、第;3図
に比べてより高い消光比(−30dB程度)をも実現す
ることが可能である。
In the present invention, it is also possible to increase the number of dummy fibers, and in the example of FIG. 4a), the birefringent optical fiber 310
Two dummy fibers on each side 41°42, /13
, /M is arranged. Furthermore, Fig. 4b) is an example in which dummy fibers 45 and 46 having rectangular cross sections are used, and the examples of Fig. 4a) and b) have higher extinction ratios than those in Fig. 3. (approximately -30 dB).

なお、ダミーファイバは用いる単一モード光ファイバの
クラッド部と同等以下の屈折率を有して(・ることか望
ましく、純石英ガラスファイバの他、ドーパントとして
13□03 やFある(・はGe021P205等を含
み、実質的に石英ガラスよりも低し・屈折率のガラスフ
ァイバも用いることができる。ダミーファイバが用−・
る単一モード光ファイバのコア部と同等以上の屈折率部
を有すると、融着延伸部て伝搬光がダミーファイバに移
行してしまい、望ましくない。
It is preferable that the dummy fiber has a refractive index equal to or lower than the cladding part of the single mode optical fiber to be used (. Glass fibers with a refractive index substantially lower than that of silica glass can also be used. Dummy fibers are used.
If the dummy fiber has a refractive index part equal to or higher than the core part of the single mode optical fiber, the propagating light will transfer to the dummy fiber at the fusion-stretching part, which is undesirable.

(発明の効果) 以上、説明したーように本発明によれば、簡便な方法で
高い消光比と低い過剰損失とを有するファイバ形偏光子
を実現することができ、光フアイバセンサやコヒーレン
ト光通信の分野に応用して効用が犬と期待される。
(Effects of the Invention) As described above, according to the present invention, a fiber polarizer having a high extinction ratio and low excess loss can be realized by a simple method, and can be used for optical fiber sensors and coherent optical communications. It is expected that it will be useful in the field of application.

【図面の簡単な説明】[Brief explanation of the drawing]

第を図(a)及び(1))は、従来のファイバ形偏光子
の作製例図、第2図(a)〜(d)は本発明のファイバ
形偏光子製造工程図、第3図(a)〜(C)は複屈折性
光ファイバを用いたファイバ形偏光子構成例を示す図、
第4図(a)及び(I〕)は本発明の別の実施例を示す
図である。 ■、1′・・単一モード光ファイバ、2・・・露出部、
:3・・・断面、4・・・金属膜、1a・・・コア部、
Ib クラッド部、5・・・偏光フィルター、21 、
22・・・ダミーファイバ、23a、23b・・・延伸
台、24・・・融着延伸部、25・・・支打板、26・
・・接着剤、27・・金属膜、3j・・・複屈折性光フ
ァイバ、3+a ・コア部、32b ・・・クラッド部
、:32c・応カイ」4部、33・・・主軸方向、41
 、42.43 。 411 r 45 r lH汁・ダミーファイバ。 特許出願人 日本電信電話公社 特許出願代理人 弁理士 山 本 恵 − 底40 a)
Figures (a) and (1)) are examples of manufacturing a conventional fiber polarizer, Figures 2 (a) to (d) are manufacturing process diagrams for the fiber polarizer of the present invention, and Figure 3 ( a) to (C) are diagrams showing examples of fiber polarizer configurations using birefringent optical fibers,
FIGS. 4(a) and 4(I) are diagrams showing another embodiment of the present invention. ■, 1'...Single mode optical fiber, 2...Exposed part,
:3...Cross section, 4...Metal film, 1a...Core part,
Ib cladding part, 5... polarizing filter, 21,
22... Dummy fiber, 23a, 23b... Stretching table, 24... Fusion drawing part, 25... Support plate, 26...
・Adhesive, 27 ・Metal film, 3j ・Birefringent optical fiber, 3+a ・Core part, 32b ・Clad part, : 32c 4 parts, 33 ・Main axis direction, 41
, 42.43. 411 r 45 r lH juice/dummy fiber. Patent Applicant Nippon Telegraph and Telephone Public Corporation Patent Application Agent Megumi Yamamoto - Bottom 40 a)

Claims (3)

【特許請求の範囲】[Claims] (1) 単一モード光ファイバと、これと平行に接触し
前記単一モード光ファイバを挟在するコア部をもたない
ダミーファイバと、接触部をテーパ状に融着延伸した融
着延伸部と、融着延伸部の外周に付着させた金属膜とを
有することを特徴とするファイバ形偏光子。
(1) A single-mode optical fiber, a dummy fiber without a core portion that contacts the single-mode optical fiber in parallel and sandwiches the single-mode optical fiber, and a fused-stretched portion in which the contact portion is fused-stretched into a tapered shape. and a metal film attached to the outer periphery of the fused and stretched portion.
(2)単一モード光ファイバが複屈折性光ファイバであ
り、その主軸方向が複屈折光ファイバとダミーファイバ
がなす平面に一致あるいは垂直となるよう、複屈折性光
ファイバを整列させ融着延伸することを特徴とする特許
請求範囲(1)に記載のファイバ形偏光子。
(2) The single mode optical fiber is a birefringent optical fiber, and the birefringent optical fibers are aligned and fused and stretched so that the main axis direction is coincident with or perpendicular to the plane formed by the birefringent optical fiber and the dummy fiber. A fiber-type polarizer according to claim (1), characterized in that:
(3)単一モード光ファイバと、コア部を持たないダミ
ーファイバとを互いに平行に接触させ、接触部を加熱し
て融着し、続いて単一モード光ファイバをダミーファイ
バ間に挟在せしめるようテーパ状に融着延伸し、しかる
後、融着延伸部に金属を付着させることを特徴とするフ
ァイバ形偏光子の製造方法。
(3) A single-mode optical fiber and a dummy fiber without a core are brought into contact with each other in parallel, the contact portions are heated and fused, and the single-mode optical fiber is then sandwiched between the dummy fibers. 1. A method for producing a fiber polarizer, which comprises fusion-stretching the fiber into a tapered shape, and then attaching metal to the fusion-stretching portion.
JP58210915A 1983-11-11 1983-11-11 Fiber type polarizer and its manufacture Pending JPS60103317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58210915A JPS60103317A (en) 1983-11-11 1983-11-11 Fiber type polarizer and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58210915A JPS60103317A (en) 1983-11-11 1983-11-11 Fiber type polarizer and its manufacture

Publications (1)

Publication Number Publication Date
JPS60103317A true JPS60103317A (en) 1985-06-07

Family

ID=16597167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58210915A Pending JPS60103317A (en) 1983-11-11 1983-11-11 Fiber type polarizer and its manufacture

Country Status (1)

Country Link
JP (1) JPS60103317A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0386270A1 (en) * 1988-09-14 1990-09-12 Fujitsu Limited Optical fiber polarizer and a method of producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0386270A1 (en) * 1988-09-14 1990-09-12 Fujitsu Limited Optical fiber polarizer and a method of producing the same

Similar Documents

Publication Publication Date Title
JP2774467B2 (en) Polarization independent optical isolator
JP2996602B2 (en) Optical branching coupler for constant polarization optical fiber
US5042896A (en) Polarization device
JP3490745B2 (en) Composite optical waveguide type optical device
US4976506A (en) Methods for rugged attachment of fibers to integrated optics chips and product thereof
JPS59208509A (en) Optical multiplexer for single mode
CA2357991C (en) Optical phase shifting, splitting and combining device
JPS60103317A (en) Fiber type polarizer and its manufacture
US5146522A (en) Methods for rugged attachment of fibers to integrated optics chips and product thereof
JP2843338B2 (en) Optical waveguide / optical fiber connector
JP3099167B2 (en) Optical communication components with built-in optical filters
JP3214544B2 (en) Planar optical waveguide
JPS60100108A (en) Fiber type directional coupler
JP2846382B2 (en) Optical isolator
JPH0926556A (en) Faraday rotation mirror
JPH08278422A (en) Reflection type optical wavelength plate and its production
JP2524400B2 (en) Polarization-maintaining optical fiber coupler
JPH041604A (en) Fixing method for optical waveguide device
JPS60113214A (en) Fiber type optical switch
JPH05288963A (en) Waveguide device
KR100458367B1 (en) Polarization splitter/combiner by using side-polished fiber coupler with a metal-layer
JPH0727087B2 (en) Polarization separation coupling waveguide
JP2001042263A (en) Faraday rotation mirror
JPS61166504A (en) Optical circuit device
JPH02157730A (en) Base plate type optical switch