JPS60103315A - Flexible optical waveguide - Google Patents

Flexible optical waveguide

Info

Publication number
JPS60103315A
JPS60103315A JP58212119A JP21211983A JPS60103315A JP S60103315 A JPS60103315 A JP S60103315A JP 58212119 A JP58212119 A JP 58212119A JP 21211983 A JP21211983 A JP 21211983A JP S60103315 A JPS60103315 A JP S60103315A
Authority
JP
Japan
Prior art keywords
light
tube
layer
optical waveguide
internal surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58212119A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sasabe
博之 雀部
Yoshiji Ichihara
祥次 市原
Masahiko Nakajima
正彦 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP58212119A priority Critical patent/JPS60103315A/en
Publication of JPS60103315A publication Critical patent/JPS60103315A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To obtain an optical waveguide which is usable over a wide wavelength range and has superior dynamic properties such as flexibility and superior environmental resistance such as moisture resistance by forming a metallic layer which has a high reflection factor to light with in-use wavelength over the internal surface of a flexible tube. CONSTITUTION:The reflecting layer formed over the internal surface of the flexible tube is preferably a smooth surface with less ruggedness increasing the transmission loss of light and needs to have a high reflection factor to light with in-use wavelength so as to utilize the reflection of light from a metallic surface. However, there are restrictions when metal is stacked on the internal surface of the tube and the metallic layer constituting to the reflecting layer is not limited to one layer. The material and diameter of the tube are not specified specially; silver is deposited as the reflecting layer over the internal surface of a polyethylene tube having, for example, a 1mm. internal diameter by displacement plating to form a flexible optical waveguide, which is used to form a double loop with a 4mm. radius, thereby guiding visible light.

Description

【発明の詳細な説明】 発明の目的、背景 本発明は、光を任意の経路を通して導くだめの導波路に
関するものである。特に赤外光に有用な可撓性の光導波
管に関する。
DETAILED DESCRIPTION OF THE INVENTION OBJECTS AND BACKGROUND OF THE INVENTION The present invention relates to a waveguide for guiding light through an arbitrary path. The present invention relates to flexible optical waveguides particularly useful for infrared light.

可撓性の光導波路としては、いわゆる光ファイバーが種
々研究され、開発されている。現在実用に供されている
光ファイバーは、主に2μm以下の光の導波路で、光通
信用に供するだめのものであり、例えば石英系光ファイ
バーでは、1.5μmの波長の光で伝送損失0・zdB
/kmという、限界に近い性能のものが得られている。
As flexible optical waveguides, various so-called optical fibers have been studied and developed. Optical fibers currently in practical use are mainly optical waveguides with a diameter of 2 μm or less, and are not suitable for optical communication. For example, silica-based optical fibers have 0 transmission loss for light with a wavelength of 1.5 μm. zdB
/km, which is close to the limit performance.

しかし、この波長より短い波長の光に対して’dレイリ
ー散乱等に基く伝送損失が増加]−1まだ、この波長よ
り長波長の光に対しては使用する材料の基本振動に基く
特性吸収のだめに波長の増加と共に急徹に光エネルギー
の伝送損失が増加するという問題がある。高分子系の光
ファイバーについても状況は同じである。
However, for light with a wavelength shorter than this wavelength, the transmission loss due to Rayleigh scattering etc. increases]-1 For light with a wavelength longer than this wavelength, characteristic absorption based on the fundamental vibration of the material used However, there is a problem in that the transmission loss of optical energy increases rapidly as the wavelength increases. The situation is the same for polymer-based optical fibers.

そのため、赤外光用ファイバーとしては、その基本振動
による特性吸収が、より長波長側にある材料、例えば重
金属酸化物やカルコゲン化合物、ハロゲン化合物を用い
た光フィバ−が検利されている。
Therefore, as infrared light fibers, optical fibers using materials whose characteristic absorption due to their fundamental vibration is on the longer wavelength side, such as heavy metal oxides, chalcogen compounds, and halogen compounds, have been investigated.

しかし、重金属酸化物ガラスを用いた光ファイバーの場
合は、重金属による特性吸収波長の長波長側への移動は
それ程大きくないため、波長が2μm以上でGeO□−
8bzOa系ガラスを用いた光ファイバーが石英ガラス
系光ファイバーより低損失であるとはいえ、例えば炭酸
ガスレーザの10.6μmの波長域での低損失化は困難
である。
However, in the case of optical fibers using heavy metal oxide glass, the shift of the characteristic absorption wavelength by heavy metals to the longer wavelength side is not so large, so if the wavelength is 2 μm or more, GeO□-
Although an optical fiber using 8bzOa glass has lower loss than a silica glass optical fiber, it is difficult to reduce the loss in the 10.6 μm wavelength range of a carbon dioxide laser, for example.

ASXSe、S等の化合物、いわゆるカルコゲナイト化
合物が赤外域で透明であることは古くから知られている
が、このうちAsは前件が問題となるため、最近で2.
けAsを含まないカルコゲン化合物ガラスを用いた光フ
ァイバーが主に検討されてい、・る。カルコゲン化合物
ガラスを用いた光ファイバーの場合、2〜6μm帯で低
損失となる可能性があるが、10μm帯ではカルコゲン
化合物の特性吸収の裾の影響で低損失化には限度がある
とし)われでいる。
It has been known for a long time that compounds such as ASXSe and S, so-called chalcogenite compounds, are transparent in the infrared region, but among these, the antecedent of As poses a problem, so recently 2.
Optical fibers using chalcogen compound glass that does not contain As are mainly being studied. In the case of optical fibers using chalcogen compound glass, there is a possibility of low loss in the 2 to 6 μm band, but in the 10 μm band, there is a limit to the reduction in loss due to the characteristic absorption tail of chalcogen compounds. There is.

ハロゲン化合物ガラスとしてはZ r Fd系ガラスや
/uFB系ガラスが検討されているが、透過域は8 /
J +n以下である。また、アルカリハライド化合吻に
ついては、単結晶光ファイバーや多結晶光ファイバーが
検利されているが、結晶のへき開管等のだめ可撓性等の
機械的性能に問題があり、また、多結晶光ファイバーの
場合には、結晶の粒界による散乱のため、低損失化には
限界がある。
Z r Fd type glass and /uFB type glass are being considered as halogen compound glasses, but the transmission range is 8 / uFB type glass.
J+n or less. Regarding alkali halide compound proboscis, single-crystal optical fibers and polycrystalline optical fibers have been tested, but there are problems with mechanical performance such as flexibility due to the cleavage of the crystal, and in the case of polycrystalline optical fibers, There is a limit to reducing loss due to scattering due to crystal grain boundaries.

以上の例は、光ファイバーの中心部が固体から成り、こ
の中心部の外側の屈折率を中心部より低くなるようにす
ることにより光を導くという光ファイバーであるので、
基本的に、使用する拐科の特性吸収Vこよって利用可能
な波長帯が決められ、i「撓性等は使用する相料の性質
に由来する制約からまぬがれることは出来なかった。
The above example is an optical fiber in which the center of the optical fiber is made of solid material, and the refractive index outside the center is lower than that of the center to guide light.
Basically, the usable wavelength band is determined by the characteristic absorption V of the phase material used, and flexibility, etc. cannot be avoided from constraints derived from the properties of the phase material used.

この他に、多くのガラスで10μ7n附近の波長の光に
対する屈折率が1より小さくなることを利用して、例え
ば波長10.67j m用にG e 02 ZIIO−
に20系ガラスから成る中空ファイバーを作成し、光フ
ァイバーとする試みもあるが、使用しつる波長域が10
μηl附近の比較的狭い領域に限定され、可撓性を任意
に変えることは困難である。
In addition, by taking advantage of the fact that many glasses have a refractive index smaller than 1 for light with a wavelength around 10μ7n, for example, G e 02 ZIIO-
There is also an attempt to create a hollow fiber made of 20 series glass and use it as an optical fiber, but the wavelength range used is 10.
It is limited to a relatively narrow region around μηl, and it is difficult to arbitrarily change the flexibility.

発明の概要 本発明は、かかる現状に鑑みてなさIしたもので、その
目的は広い波長域で使用=I能で、(iJ撓性等の力学
的性質や、耐湿性等の4環境性のすぐれた光導波管を供
することにある。
Summary of the Invention The present invention was developed in view of the current situation, and its purpose is to be usable in a wide wavelength range, and to improve mechanical properties such as iJ flexibility and four environmental properties such as moisture resistance. The objective is to provide an excellent optical waveguide.

本発明の対象となる光導波管は、少くとも−)−以上の
材料から成る可撓性を有する管の内面に、この管を通し
て導きたい波長の光に対して扁い反射率を有する金属又
は合金の金属層を、少くとも一層以上積層形成せしめた
ことを特徴と1〜でいる。
The optical waveguide to which the present invention is directed is a flexible tube made of at least one of the above materials, and the inner surface of the tube is made of a metal or Items 1 to 1 are characterized in that at least one metal layer of the alloy is laminated.

すなわち、本発明の対象となる可撓性光導波管は、中心
部の、空気等から成る導波路の外側に、これと接j〜で
導きだい波長の光に対し高い反射率を有し低伝送損失と
なるような滑らかな内面を有する反射層を設け、この反
射層の外側にこれに密着して、反射)鱒の断面形状の外
力による変化を抑え、’jr ’h性等の力学的性質や
、耐環境性等を性能を与えるだめの外1Δを配した構造
を有するものである。
In other words, the flexible optical waveguide that is the subject of the present invention has a central part of the waveguide made of air, etc., and on the outside thereof, which has a high reflectance and a low reflectivity for light of a wavelength corresponding to the wavelength that is guided at a contact with the waveguide. A reflective layer with a smooth inner surface that causes transmission loss is provided on the outside of the reflective layer, and is tightly adhered to the reflective layer to suppress changes in the cross-sectional shape of the trout due to external forces and to reduce mechanical properties such as 'jr'h properties. It has a structure with a diameter of 1∆ outside the chamber that provides performance such as properties and environmental resistance.

3、発明の詳細な説明 本発明可撓性光導波管は、可撓性を有する庁の内面に金
属層が形成される。
3. Detailed Description of the Invention In the flexible optical waveguide of the present invention, a metal layer is formed on the inner surface of the flexible core.

本発明において可撓性と、′d、光を導くべき径路に沿
って屈曲でき、その際殆ど座屈を生じることなくμ]び
元の状態に復元させ得るような状態を意味1−1使用す
る月料及び管の直径、肉厚等構造の而を配属することに
よってdr撓性が付与される。
In the present invention, the term "flexibility" is used to mean a state in which the light can be bent along the path to which light is to be guided, and can be restored to its original state with almost no buckling. DR flexibility can be imparted by adjusting the structure of the pipe, such as the diameter and wall thickness of the pipe.

1吏用さ!する材料としてd1ポリエチレン、ポリプロ
ピレノ、塩化ビニル、A、 B S 4nl脂、ポリア
ミド、ポリエステル等の熱可塑性樹脂あるいは、天然ゴ
ム、5B1(、クロロプレン、エチレンープロピl/ 
7 系−fム等のゴム状物質あるい、ン1、ガラス等を
用いることができる。
For one official! Thermoplastic resins such as d1 polyethylene, polypropyreno, vinyl chloride, A, B S 4nl resin, polyamide, polyester, natural rubber, 5B1 (, chloroprene, ethylene-propyl/
Rubber-like materials such as 7-type rubber, glass, etc. can be used.

管の直径は特に制限がなく、用途に応じて設定できるが
、直径が大となるときはその肉厚を大きくすることによ
って曲げに対する座屈を防止するように配慮される。
The diameter of the tube is not particularly limited and can be set depending on the application, but when the diameter is large, care is taken to prevent buckling due to bending by increasing the wall thickness.

ガラス等剛性の高い材料を用いるときけ、直径を5+l
1m以下好1しくは3#以下とし、その外周を前記の熱
可塑性樹脂又はゴム状物質で破覆することが好ましい。
When using a highly rigid material such as glass, the diameter should be 5+l.
The length is preferably 1 m or less, preferably 3 # or less, and the outer periphery is preferably covered with the above-mentioned thermoplastic resin or rubber-like substance.

可撓性の管の内面に形成される反射層は、金叫表面によ
る光の反射を利用するので、光の低層損失の増加をもた
らすような凹凸が少い滑らかな面であることが好ましく
、まだ、使用する波長の光に対して反射率が高いことが
必要であるが、管の内面に金属を積層する際の制約もあ
り、反射層を構成する金属層が必ずしも一層でなくとも
よい。
The reflective layer formed on the inner surface of the flexible tube utilizes the reflection of light by the golden surface, so it is preferably a smooth surface with few irregularities that would cause an increase in low-layer loss of light. Although it is still necessary to have a high reflectance for light of the wavelength used, there are restrictions when laminating metal on the inner surface of the tube, so the metal layer that constitutes the reflective layer does not necessarily have to be one layer.

使用しうる金属材料は、単一の金属材料でも、合金であ
ってもよいが、広い波長域で高い反射率を有する金属と
して、銀、銅、金、アルミニウム、クロム、ニッケル等
が好寸しいものの例としてあげられる。
The metal material that can be used may be a single metal material or an alloy, but silver, copper, gold, aluminum, chromium, nickel, etc. are suitable as metals that have high reflectance over a wide wavelength range. It can be given as an example.

反射層の厚みは、反射層の材料にもよるか、最近20な
いし30オングストロ一ム以上は必要であるが、上限は
必要な可撓性を損なわない程度であればよい。
The thickness of the reflective layer may depend on the material of the reflective layer, but recently it is necessary to have a thickness of 20 to 30 angstroms or more, but the upper limit may be as long as it does not impair the necessary flexibility.

−j役的には、必要な可撓性の81戻、すなわら、光導
波管を屈曲さぜたときの曲率半径が10z以上でよけれ
ば、金属層の厚みとしては50ないし100μ?n以下
、曲率半径が数口の場合には金属層の厚みは10ないし
20μ7.以下、曲率半径が1重M以下の場合には、金
属層の厚みは5ないし10μm以下が用いられる。
In terms of function, if the required flexibility is 81 degrees, that is, the radius of curvature when the optical waveguide is bent is 10z or more, then the thickness of the metal layer should be 50 to 100μ? When the radius of curvature is several inches or less, the thickness of the metal layer is 10 to 20 μ7. Hereinafter, when the radius of curvature is one fold M or less, the thickness of the metal layer is 5 to 10 μm or less.

導波路となる部分は、一般には空気でよいが、反射層の
酸化などを防ぐだめに、不活性気体を封入してもよく、
寸だ真空であってもよい。
The part that will become the waveguide may generally be filled with air, but it may also be filled with an inert gas to prevent oxidation of the reflective layer.
It may even be a tiny vacuum.

本発明の可撓性光導波管を製造する方法は種々考えられ
る。代表的なものを以下に述べるが、本発明はこれによ
ってなんら限定をうけるものではない。
Various methods can be considered for manufacturing the flexible optical waveguide of the present invention. Typical examples will be described below, but the present invention is not limited thereto in any way.

(1)滑らかな内面を有するプラスチックチューブやガ
ラスチューブの内面をクロム酸混液等で処理し、充分清
浄かつ親水性にし、セン7タイジング、アクチベー7ヨ
ン等の処理を施した後、チューブ内に化学メッキ液を流
してチューブ内面に金属層を形成させる。必要に応じて
この後金属表面を化学研磨し、内面を平滑化してもよい
。この方法で作りうる金属層は銀、銅、ニッケルなどで
あり、これをそのまま反射層としてもよいが、置換メッ
キにより表面を金などに置換えて反射層としてもよい。
(1) The inner surface of a plastic tube or glass tube with a smooth inner surface is treated with a chromic acid mixture, etc. to make it sufficiently clean and hydrophilic, and after performing treatments such as sensitization and activation, chemical Plating solution is flowed to form a metal layer on the inner surface of the tube. If necessary, the metal surface may then be chemically polished to smooth the inner surface. The metal layer that can be made by this method is silver, copper, nickel, etc., and may be used as a reflective layer as is, or may be replaced with gold or the like on the surface by displacement plating to serve as a reflective layer.

(2)滑らかな外面を有し、溶剤または酸、アルカリの
何れかに可溶な繊維または中空糸の表面に、蒸着、化学
メッキ等により金属層を形成せしめた後、この外側−で
必要に応じて接着層を介在させイ保護層(外層ンを形成
し、しかる後、金属層や外層を侵さない溶剤または酸、
アルカリ等で中心部の繊維捷たは中空糸を除去する。
(2) After forming a metal layer by vapor deposition, chemical plating, etc. on the surface of fibers or hollow fibers that have a smooth outer surface and are soluble in solvents, acids, or alkalis, this outer layer is used as needed. If appropriate, an adhesive layer is interposed to form a protective layer (outer layer), and then a solvent or acid that does not attack the metal layer or the outer layer,
Remove the fibers or hollow fibers in the center using an alkali or the like.

(3)プラスチックやガラスのチューブの中に有機金属
化合物を通し、加熱することにより有機金属化合物を分
解せしめ、金属層をチューブ内面に形成させる。
(3) An organometallic compound is passed through a plastic or glass tube and heated to decompose the organometallic compound and form a metal layer on the inner surface of the tube.

(4)ガラスチューブ全体あるいはその内側に金属塩を
溶解させた後、加熱しながら還元性気体を流して内側表
面の金属塩を還元して金属層を形成させる。
(4) After dissolving the metal salt in the entire glass tube or inside it, a reducing gas is flowed while heating to reduce the metal salt on the inner surface and form a metal layer.

(5)内面に真空蒸着可能な程度の太さのガラス管の内
面に、金やアルミニウム等の延性が大きく反射率の高い
金属を蒸着した後、金属層が剥離、切断、液滴化等を生
じない条件下で、酸化しない雰囲気下でガラス管を加熱
伸長し、必要な内径と可撓性を有するものとする。必要
に応じこの後グラスチックコーティングを行い機械的性
質を向上せしめてもよい。
(5) After depositing a highly ductile and highly reflective metal such as gold or aluminum on the inner surface of a glass tube that is thick enough to be vacuum-deposited on the inner surface, the metal layer does not peel, cut, or become droplets. The glass tube is heated and stretched in a non-oxidizing atmosphere under conditions that do not cause oxidation, so that it has the necessary inner diameter and flexibility. If necessary, a glass coating may be applied after this to improve mechanical properties.

本発明によって得られる可撓性光導波管の用途としては
、現在適当な可撓性導波路のない紫外域の導波や、炭酸
ガスレーザ等の赤外線レーザの可撓性導波路として溶接
機や溶断機、レーザメス等に用いうる外、間層の素材に
管の円周方向の可撓性を与えることにより発光ダイオー
ドや半導体レーザ等と通常の光ファイバー等あるいは通
常の光ファイバーどうしのとのコネクタとして用いるの
も、有効な利用法のひとつであるが、この例示によって
、本発明からなる可撓性光導波管をステップインデック
ス形光ファイバーとして他の用途に用いることをさまた
げるものではない。
The flexible optical waveguide obtained by the present invention can be used for waveguide in the ultraviolet region for which there is currently no suitable flexible waveguide, and as a flexible waveguide for infrared lasers such as carbon dioxide lasers, using welding machines and fusing. In addition to being used for machines, laser scalpels, etc., it can also be used as a connector between light emitting diodes, semiconductor lasers, etc. and ordinary optical fibers, etc., or between ordinary optical fibers by giving flexibility in the circumferential direction of the tube to the material of the interlayer. However, this example does not preclude the use of the flexible optical waveguide of the present invention as a step-index optical fiber for other purposes.

以下に本発明の実施例を示すが、本発明はとれによって
何ら制約されるものではない。
Examples of the present invention are shown below, but the present invention is not limited in any way by this.

実施例 内径1 mmのポリエチレン管の内面に、先に示した(
1)の方法により銀を積層し、可撓性光導波管とした。
Example The inner surface of a polyethylene pipe with an inner diameter of 1 mm was coated with the material shown above (
Silver was laminated by the method of 1) to form a flexible optical waveguide.

この導波管を用い、半径4 mmの2重lレーゾを形成
し、可視光を導くことができた。
Using this waveguide, we formed a double laser with a radius of 4 mm and were able to guide visible light.

特許出願人 三菱油化株式会社 代理人 弁理士 古 川 秀 利 (他1名)Patent applicant Mitsubishi Yuka Co., Ltd. Agent: Patent Attorney Hidetoshi Furukawa (1 other person)

Claims (1)

【特許請求の範囲】[Claims] 少なくとも一層以上の材料から成る可撓性を有する管の
内面に、使用波長の光に対して高い反射率を有する金属
層を形成せしめたことを特徴とする可撓性光導波管。
1. A flexible optical waveguide, characterized in that a metal layer having a high reflectance for light at the wavelength used is formed on the inner surface of a flexible tube made of at least one layer of material.
JP58212119A 1983-11-11 1983-11-11 Flexible optical waveguide Pending JPS60103315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58212119A JPS60103315A (en) 1983-11-11 1983-11-11 Flexible optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58212119A JPS60103315A (en) 1983-11-11 1983-11-11 Flexible optical waveguide

Publications (1)

Publication Number Publication Date
JPS60103315A true JPS60103315A (en) 1985-06-07

Family

ID=16617190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58212119A Pending JPS60103315A (en) 1983-11-11 1983-11-11 Flexible optical waveguide

Country Status (1)

Country Link
JP (1) JPS60103315A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0618465A1 (en) * 1993-04-01 1994-10-05 Bridgestone Corporation Fluid filled optical waveguide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0618465A1 (en) * 1993-04-01 1994-10-05 Bridgestone Corporation Fluid filled optical waveguide

Similar Documents

Publication Publication Date Title
US20020187350A1 (en) Robust highly reflective optical construction
US7664356B2 (en) Hollow waveguide and method of manufacturing the same
US4784467A (en) Multi-layered anti-reflection coating
RU93046062A (en) METHOD OF OBTAINING MIRRORS AND MIRRORS
KR940005745A (en) Glass coating
JPS58202408A (en) Heat-ray reflecting film
JPH08315776A (en) Multilayer coating film in metal halide lamp
JP2000314807A (en) Visible light shielding and infrared ray transmitting filter
JPS63235902A (en) Cold mirror
JPS60502173A (en) Anti-reflection coating for optical components made of organic materials
US4840442A (en) Multidielectric mirror for carbon dioxide laser providing the mid infrared, in high reflectance with good protection against mechanical attack
JPS60103315A (en) Flexible optical waveguide
JP2000034557A (en) Reflection enhancing film for near infrared rays and production of the same
JPH04357134A (en) Reflection-reduced glass for vehicle
JP4598177B2 (en) Design method of antireflection film
JP2633866B2 (en) Hollow optical waveguide
US7079739B1 (en) Flexible hollow waveguide and method for its manufacture
CA2436584A1 (en) Robust highly reflective optical construction
EP1445627A2 (en) Robust highly reflective optical construction
CN220271588U (en) Total dielectric reflection film and laser radar rotating mirror comprising same
JPS59137901A (en) Reflection preventive film
JPH09304634A (en) Optical fiber
CA1268362A (en) Hollow waveguide
JPS62165607A (en) Optical fiber
JPH04235502A (en) Reflecting mirror