JPS60103159A - Seal bonding alloy - Google Patents

Seal bonding alloy

Info

Publication number
JPS60103159A
JPS60103159A JP21211783A JP21211783A JPS60103159A JP S60103159 A JPS60103159 A JP S60103159A JP 21211783 A JP21211783 A JP 21211783A JP 21211783 A JP21211783 A JP 21211783A JP S60103159 A JPS60103159 A JP S60103159A
Authority
JP
Japan
Prior art keywords
alloy
glass
oxidation
thermal expansion
seal bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21211783A
Other languages
Japanese (ja)
Other versions
JPS624460B2 (en
Inventor
Tsutomu Inui
乾 勉
Daiji Sakamoto
坂本 大司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP21211783A priority Critical patent/JPS60103159A/en
Publication of JPS60103159A publication Critical patent/JPS60103159A/en
Publication of JPS624460B2 publication Critical patent/JPS624460B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Joining Of Glass To Other Materials (AREA)

Abstract

PURPOSE:To obtain a relatively inexpensive seal bonding alloy having a proper coefft. of thermal expansion, ensuring high airtightness with soft glass, and undergoing almost uniform oxidation by providing a specified composition consisting of Cr, Al, Si, C, N, Ti, Zr and Fe and satisfying specified relation. CONSTITUTION:This seal bonding alloy consists of, by weight, 20-35% Cr, 0.05-0.5% Al, 0.05-0.5% Si, 0.02-0.07% C, 0.005-0.04% N, 0.2-0.7% Ti and/ or 0.3-1.0% Zr (Ti+Zr/2=0.3-1.2%) and the balance Fe with inevitable impurities and satisfies relation represented by an equation (Ti+Zr/2)-4X(C+N)= 0.15-0.8%. The alloy has 100-115X10<-7>/ deg.C average coefft. of thermal expansion at 30-500 deg.C and high adhesive strength to glass, ensures high airtightness, and contains no expensive Ni. When the alloy is subjected to oxidation treatment, it undergoes almost uniform oxidation and hardly causes crack in glass.

Description

【発明の詳細な説明】 本発明は軟質ガラスとの気密端子に使用するFe−0r
系合金に良し、気密性がすぐれ、酸化処理時に酸化ムラ
を生じない封着合金に−するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to Fe-0r used for airtight terminals with soft glass.
The purpose is to create a sealing alloy that is good for other alloys, has excellent airtightness, and does not cause oxidation unevenness during oxidation treatment.

ガラスとの封着に供せられる合金として、従来より42
Ni −60r−Fe合金(以下426合金と記す)、
29111−170o −Fe合金、42〜52111
−Fe合金、 180r −−Fe合金(以下430T
i合金と記す)などが知られている。そしてそれぞれに
特有な熱膨張係数、酸化特性等により用途別に使い分け
られている。
Conventionally, 42 is used as an alloy for sealing with glass.
Ni-60r-Fe alloy (hereinafter referred to as 426 alloy),
29111-170o -Fe alloy, 42-52111
-Fe alloy, 180r --Fe alloy (hereinafter 430T
i-alloy) are known. Each type of material is used according to its unique thermal expansion coefficient, oxidation properties, etc.

軟質ガラスとの封着用合金である426合金はガラスと
の封着性、加工性にすぐれ主にTVブラウン管のγノー
ドボタンや螢光表示管のスペーサーフレームに使用され
ているが、N1を多量に含有するため高価となる欠点が
あった。
426 alloy, which is an alloy for sealing with soft glass, has excellent sealing properties with glass and workability, and is mainly used for gamma node buttons of TV cathode ray tubes and spacer frames of fluorescent display tubes. It has the disadvantage that it is expensive because it contains it.

m近スペーサーフレームの省資源材としてFe −Or
合金が検討されているが、426合金の熱膨張係数α(
30〜500℃) −108Xlo−フ/℃に比べて1
80r系の430Ti合金はα、119XIO″′フ/
℃と大きく、ガラス封着時の歪か大きくなってしまう。
Fe-Or as a resource-saving material for near-m spacer frames
Although alloys are being considered, the coefficient of thermal expansion α (
30~500℃) -108Xlo-f/℃ compared to 1
80r series 430Ti alloy has α, 119XIO″′ f/
℃, and the distortion during glass sealing becomes large.

Fe−0r合金の熱膨張係数はOr含有飢が増すと小さ
くなり、426合金の値に近くなり、充分代替されうる
ようになる。
The coefficient of thermal expansion of the Fe-0r alloy becomes smaller as the Or content increases, and becomes close to the value of the 426 alloy, making it a sufficient substitute for the 426 alloy.

ガラス封着合金はガラスとの封着に先立ち、密層強度を
向上させるため成形加工後、一般に弱酸化性雰囲気中で
酸化処理が施される。426合金や′fPe−Or合金
は通常1050〜1200℃で30m1n〜2H、湿潤
水素もしくは湿潤アンモニア分解ガス中で処理される0
そしてこの酸化膜を介してガラスと浴漸されるO ところか従来の’Fe−0r合金を酸化処理すると合金
の結晶粒か粗大イ仁してしまい、螢光表示管用スペーサ
ーフレームのように板厚が025111以下と薄い場合
、1つの結晶゛粒界で板の両′面が結はれる問題もあり
ガスの粒界拡散によるスローリークに問題かあった。ま
た酸化処理において、ウィスカー鼠の差による色ムラを
生じ、ガラスクラックを起す危険性かあった。
Prior to sealing with glass, glass sealing alloys are generally subjected to oxidation treatment in a weakly oxidizing atmosphere after molding in order to improve the tight layer strength. 426 alloy and 'fPe-Or alloy are usually treated at 1050-1200°C in 30m1n-2H in wet hydrogen or wet ammonia decomposition gas.
O2 is then mixed with the glass through this oxide film. However, when conventional 'Fe-0r alloys are oxidized, the crystal grains of the alloy become coarse and irritable, causing the thickness of the plate to become thicker, like spacer frames for fluorescent display tubes. When the thickness is as thin as 025111 or less, there is a problem that both sides of the plate are connected by one crystal grain boundary, and there is a problem of slow leakage due to the diffusion of gas at the grain boundary. In addition, in the oxidation treatment, color unevenness was caused by differences in whisker size, and there was a risk of glass cracking.

本発明はFe−Or金合金組成と熱膨張結晶粒度、酸化
特性およびカラス密着強度との関係について研究したと
ころ、上記欠点を補う合金組成範囲が存在することを発
見した事実に基づくものである。
The present invention is based on the fact that, through research on the relationship between Fe-Or gold alloy composition, thermal expansion grain size, oxidation properties, and glass adhesion strength, it was discovered that there is an alloy composition range that compensates for the above-mentioned drawbacks.

すなわち0r2Q−35%、AID、05−0.5%、
5in−05−0,5%oo、02−0.07%、lJ
O,o05−0.04%、T10.2−0.7%、Zr
O2−10%のいずれか1種又は2柚の場合(Ti%+
9%)をα3〜L2%含み、かつ上記ON、Ti、Zr
の間に(T?十Zr%” 2 ) 4 X (0%+N
%)か0.15−0.8の関係を有し、残部が実質上I
reからなるもので30℃〜500’Cの平均熱膨張係
数か100115Xlo−’/ ℃である合金は気密性
、酸化ムラ性、ガラスとの密層強度が大きく、426合
金と同等以上の特性を示すことが判明した0 次に成分範囲を限定した理由についてのべる。
i.e. 0r2Q-35%, AID, 05-0.5%,
5in-05-0.5%oo, 02-0.07%, lJ
O, o05-0.04%, T10.2-0.7%, Zr
In the case of any one or two types of O2-10% (Ti% +
9%) and α3 to L2%, and the above ON, Ti, Zr
Between (T? 10 Zr%” 2) 4 X (0%+N
%) or 0.15-0.8, with the remainder being substantially I
The alloy, which is composed of re, has an average thermal expansion coefficient of 100115Xlo-'/°C between 30°C and 500'C, and has high airtightness, oxidation unevenness, and close layer strength with glass, and has properties equivalent to or better than 426 alloy. 0 Next, we will discuss the reason for limiting the range of components.

“ Orは20%未満では熱膨張係数が大きくまた高温
加熱時オーステナイトを生じやすいこと、35%を越え
ると加工性か劣化するため!!0−35%に限定したO AA、!l:Siは内部酸化粒子を形成して酸化膜の缶
石強度を高める効果をもつが、各々その量が005%未
満ではその効果かなく、05%を越えると酸化ムラを生
じやすくなるので0.05−α5%に限定した。
“If Or is less than 20%, it has a large coefficient of thermal expansion and tends to form austenite when heated at high temperatures, and if it exceeds 35%, the workability deteriorates. It has the effect of increasing the strength of the oxide film by forming internal oxidation particles, but if the amount of each is less than 0.005%, it has no effect, and if it exceeds 0.05%, oxidation unevenness tends to occur, so 0.05-α5 %.

0とNはT1やZrと結合して、例えはTi(0、N 
)を形成し、酸化処理のとき結晶粒粗大化を防止しスロ
ーリークを防止する上で効果がある。00.02%未満
、NO,005%未満では生成されるT1(0、N)が
少なく結晶粒粗大化防止の作用がない。0が0.07%
を越えるとガラス封着時の発泡と加工性の低下をきたす
。またNが0.04%に−越えると酸化ムラを生じやす
くなるので00.02〜007%、NO,005〜0.
04%に限定したO T1とZrは、0、Nと化合物をつくり結晶粒粗大化防
止に同様な効果を示すが、TiおよびZrともそれぞれ
0.2%未満ではその効果がない。またT1とZrは酸
化膜の密着性、酸化ムラ性に対しても影響を及はす元素
であるか、TiおよびZrはそれぞれα7%と10%を
越えると@N強度の向上がなく、加工性か低下するため
夫々上限を0.7%、10%に限定した。
0 and N combine with T1 and Zr, for example, Ti(0,N
), which is effective in preventing coarsening of crystal grains and slow leakage during oxidation treatment. If it is less than 0.02% or NO, less than 0.005%, less T1 (0, N) is generated and there is no effect of preventing crystal grain coarsening. 0 is 0.07%
Exceeding this will result in foaming during glass sealing and a decrease in workability. Also, if N exceeds 0.04%, oxidation unevenness tends to occur, so 00.02-007%, NO, 005-0.
O T1 and Zr limited to 0.04% form a compound with O and N and exhibit a similar effect in preventing crystal grain coarsening, but Ti and Zr each have no effect at less than 0.2%. In addition, T1 and Zr are elements that also affect the adhesion and oxidation unevenness of the oxide film, and if Ti and Zr exceed α7% and 10%, respectively, there is no improvement in @N strength, and processing The upper limits were limited to 0.7% and 10%, respectively, because the properties of the two components decreased.

また2柚を含有する場合も同じ理由で(T1+”/2)
を0.3〜L2%とした。
Also, for the same reason when containing 2 yuzu (T1+”/2)
was set at 0.3 to L2%.

Q、11.Ti、Zrの開のし1係式(T1%+”’J
) −4X(0%+N%)は合金中にフリーに存在する
T1、zrの総itを示し、これが酸化挙動に関係する
か0・15%未満では酸化ムラを生じやすい。また0・
8%を越えると酸化膜の密着性を害する傾向があるため
(Tl+Zr%l/2)−4X(0%+N%)を0.1
5−0.8とした。
Q, 11. Ti, Zr opening ratio 1 coefficient formula (T1%+”'J
) -4X (0%+N%) indicates the total IT of T1 and zr freely present in the alloy, and this may be related to oxidation behavior, and if it is less than 0.15%, oxidation unevenness tends to occur. Also 0・
If it exceeds 8%, it tends to impair the adhesion of the oxide film, so (Tl+Zr%l/2)-4X(0%+N%) is 0.1
5-0.8.

以下実m Mについてのべる。The actual m M will be described below.

Fe−Or糸合金を7に9高周波真空訴導炉にて俗解し
たのち、鍛造、熱間圧延および冷部圧延によって板厚0
.251mのストリップをえた。このときの熱膨張係数
は鍛造材から5φ×2o111itの試験片を採取し、
900表 (注1) λは(Ti%+Zr%/2) −4X (0
%+N%]を示す。
After the Fe-Or thread alloy is processed in a high frequency vacuum furnace, it is forged, hot rolled and cold rolled to a plate thickness of 0.
.. A 251m strip was obtained. The coefficient of thermal expansion at this time was determined by taking a 5φ x 2o111it test piece from the forged material.
900 table (Note 1) λ is (Ti% + Zr%/2) -4X (0
%+N%].

(注2) αは30℃〜500℃の平均熱膨張係数(×
迫ブ℃〕を示す。
(Note 2) α is the average coefficient of thermal expansion from 30℃ to 500℃ (×
℃] is shown.

(注3)G、S、は結晶粒度を表わし、G、S2より粗
粒を×、細粒を○で示す。
(Note 3) G and S represent the crystal grain size, and coarser grains than G and S2 are indicated by ×, and finer grains are indicated by ○.

(注4) @化ムラに閃してはQ印は「なし」X印は「
あり」を表わす。
(Note 4) When it flashes to @-shaped unevenness, the Q mark is "none" and the X mark is "
"Yes".

(注5) ガラス密着強度は酸化膜の残存面積15%)
を示す。
(Note 5) Glass adhesion strength is based on the remaining oxide film area of 15%)
shows.

’QXIH炉冷処理後測定してめた。'Measured after QXIH furnace cooling treatment.

酸化処理は板厚025uのストリップから20111 
×20關の試験片を採取し、エメリー紙す700で研摩
したのち露点+38℃の水素雰囲気中で1100℃X 
30m1n行った。この試験片について酸化ムラと合金
の結晶粒度を調査した。
Oxidation treatment was performed from 20111 strips with a plate thickness of 025u.
A test piece of 20× was taken, polished with emery paper 700, and then heated to 1100°C in a hydrogen atmosphere with a dew point of +38°C.
I went 30m1n. The oxidation unevenness and crystal grain size of the alloy were investigated for this test piece.

またガラスとの密層強度は次の方法で測定した。In addition, the close layer strength with glass was measured by the following method.

まず上記酸化処理した試験片上にガラスの小片をおき、
大気中1150℃×2m4n処理して、酸化BQ上にガ
ラスを溶着させた。その後室温においてペンチで試験片
を曲げ、ガラスを剥離させたとき、酸化膜が残存してい
る面積%で評価した。
First, place a small piece of glass on the oxidized test piece,
Glass was welded onto the oxidized BQ by treatment in the atmosphere at 1150° C. x 2 m4n. Thereafter, the test piece was bent with pliers at room temperature and the glass was peeled off, and evaluation was made based on the percentage of area where the oxide film remained.

表に発明合金と比較合金の化学組成と各釉テストの結果
を示す。
The table shows the chemical compositions of the invention alloy and comparative alloy and the results of each glaze test.

表より明らかなように本発明合金は結晶粒度特性、酸化
ムラおよびガラスとの密層強度かすぐれ高価な426合
金の代替にも使用できるものであって、工業上に利益す
るところは大きいものである。
As is clear from the table, the alloy of the present invention has excellent crystal grain size characteristics, oxidation unevenness, and close layer strength with glass, and can be used as a substitute for the expensive 426 alloy, so it has great industrial benefits. be.

出願人 日文金風株式会祉−(bApplicant: Nichibun Kinpū Co., Ltd. (b)

Claims (1)

【特許請求の範囲】[Claims] L 重量% ニテ0r20〜35%、AIQ05〜0.
5%、SiO,05〜05%、0002〜007翫 M
O1005〜(LO4%と’l1OJ 〜CL7%、z
rQ、2〜LO%のいずれか1′1fIM又は2柚の場
合(Ttz+2r%’/2) ヲo、3〜ha yb 
含ミ、;6”) 上記X 素’) OlN sTl、Z
rの間に(71%+2%7z)−aX(0%十N%)が
0.15−0.8の関係を有し、残部Feおよび不司避
的不純物からなる30℃〜500℃の平均熱膨張係数が
100−115×10−’/ ℃の気密性と酸化ムラ性
のすぐれた封焉合金。
L Weight% Nite 0r20-35%, AIQ05-0.
5%, SiO, 05~05%, 0002~007 wire M
O1005 ~ (LO4% and 'l1OJ ~CL7%, z
rQ, any of 2~LO% 1'1fIM or 2yu (Ttz+2r%'/2) woo, 3~ha yb
Including Mi, ;6”) Above X element') OlN sTl, Z
(71% + 2% 7z) - aX (0% 10N%) has a relationship of 0.15-0.8 between A sealing alloy with an average coefficient of thermal expansion of 100-115 x 10-'/°C and excellent airtightness and oxidation unevenness.
JP21211783A 1983-11-11 1983-11-11 Seal bonding alloy Granted JPS60103159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21211783A JPS60103159A (en) 1983-11-11 1983-11-11 Seal bonding alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21211783A JPS60103159A (en) 1983-11-11 1983-11-11 Seal bonding alloy

Publications (2)

Publication Number Publication Date
JPS60103159A true JPS60103159A (en) 1985-06-07
JPS624460B2 JPS624460B2 (en) 1987-01-30

Family

ID=16617153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21211783A Granted JPS60103159A (en) 1983-11-11 1983-11-11 Seal bonding alloy

Country Status (1)

Country Link
JP (1) JPS60103159A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2600638A1 (en) * 1986-05-13 1987-12-31 Nisshin Steel Co Ltd METAL SHEET THAT CAN BE SEALED WITH TIGHT GLASS

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0480781U (en) * 1990-11-22 1992-07-14

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2672414A (en) * 1950-01-27 1954-03-16 United States Steel Corp Chromium-titanium steel adapted for sealing to glass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2672414A (en) * 1950-01-27 1954-03-16 United States Steel Corp Chromium-titanium steel adapted for sealing to glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2600638A1 (en) * 1986-05-13 1987-12-31 Nisshin Steel Co Ltd METAL SHEET THAT CAN BE SEALED WITH TIGHT GLASS

Also Published As

Publication number Publication date
JPS624460B2 (en) 1987-01-30

Similar Documents

Publication Publication Date Title
JPS60103159A (en) Seal bonding alloy
US3746536A (en) Sealing alloy
US3737308A (en) Chromium-iron alloy
JPS61501784A (en) dental alloy
JPH0472037A (en) High strength and low thermal expansion alloy and its manufacture
JPS5915976B2 (en) Ferritic stainless steel with excellent oxidation resistance
JPS5816057A (en) Alloy for seal bonding
JPS6244526A (en) Manufacture of alloy for sealing glass
JPS58174556A (en) Alloy for sealing soft glass
JPS63190146A (en) Fe-ni alloy for shadow mask
US3948615A (en) Fine grained glass-to-metal seals
JPS59208066A (en) Method for working internally nitrided molybdenum-zirconium alloy
JPS5914539B2 (en) Alloy for soft glass sealing
JPS62188753A (en) Soft glass sealing alloy
JPS61204354A (en) Alloy for sealing glass
US3948685A (en) Method for making fine grained metals for glass-to-metal seals
JPS60200943A (en) Aluminum alloy having superior strength and workability
JPS60238446A (en) Alloy for lead frame for ic with superior corrosion resistance
JPH04350147A (en) Alloy for glass sealing
KR920004682B1 (en) REFRACTORY AMORPHOUS Co-Ta-Hf ALLOY
JPS61147850A (en) Alloy for sealing glass
JPS5964749A (en) Soft glass sealing alloy
JPS6227550A (en) Alloy for sealing glass
JPS60238445A (en) Alloy for lead frame for ic with superior corrosion resistance
JPH02236255A (en) Alloy for glass sealing