JPS60103150A - Manufacture of alnico type sintered magnet alloy - Google Patents

Manufacture of alnico type sintered magnet alloy

Info

Publication number
JPS60103150A
JPS60103150A JP21211183A JP21211183A JPS60103150A JP S60103150 A JPS60103150 A JP S60103150A JP 21211183 A JP21211183 A JP 21211183A JP 21211183 A JP21211183 A JP 21211183A JP S60103150 A JPS60103150 A JP S60103150A
Authority
JP
Japan
Prior art keywords
alloy
powder
sintered magnet
magnet alloy
alnico
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21211183A
Other languages
Japanese (ja)
Inventor
Koichi Oda
光一 小田
Kazunori Tawara
田原 一憲
Masao Ogata
正男 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP21211183A priority Critical patent/JPS60103150A/en
Publication of JPS60103150A publication Critical patent/JPS60103150A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a sintered magnet alloy having high density and high magnetic characteristics when an alnico type sintered magnet alloy contg. Ti or Nb is manufactured, by using part of starting materials in the form of an alloy so as to prevent deterioration in the sinterability of the powdered starting materials by oxidation. CONSTITUTION:When an alnico type sintered magnet alloy having a composition obtd. by adding Ti or Nb to a composition consisting of Al, Ni, co and Fe is manufactured, Co and starting materials easy to oxidize such as Al and Ti or Nb as part of starting materials for the alloy are used in the form of a Co-Al- Ti or Co-Al-Nb alloy. Powder of this alloy is blended with other powdered starting materials such as Fe and Ni, and the blend is filled into a metallic mold, press-molded, and sintered at 1,200-1,300 deg.C to manufacture an alnico type sintered magnet alloy contg. Nb or Ti. The starting materials easy to oxidize such as Al and Ti or Nb are hardly oxidized, so the superior sinterability is maintained, and the resulting sintered magnet alloy has high density and high magnetic characteristics.

Description

【発明の詳細な説明】 本発明は高密度,高磁気特性を有するTiおよび/又は
Nbを含有するアルニコ系焼結磁石合金の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an alnico-based sintered magnet alloy containing Ti and/or Nb having high density and high magnetic properties.

Al,Ni,CoもしくはAl,Niを主成分とし、残
部実質的にFeからなる磁石合金(以下アルニコ系磁石
合金という)は、代表的な規格としてアルニコ1〜8な
どがあり、一般に溶解鋳造法により製造されているが、
複雑な形状の製品や小物製品などを対象として粉末冶金
の手法を用いて製造することも行なわれている。
Magnet alloys whose main components are Al, Ni, Co or Al, Ni with the remainder substantially Fe (hereinafter referred to as Alnico magnet alloys) have typical standards such as Alnico 1 to 8, and are generally manufactured using the melt casting method. It is manufactured by
Powder metallurgy is also used to manufacture products with complex shapes and small products.

この粉末冶金法すなわち焼結法によりアルニコ系磁石合
金をMSすることにより、溶解から溶体化処理までの複
雑な工程が、原料粉末の混合、成形および焼結の極めて
簡単な工程となりかつ湯道も不要となるため、従来の溶
解鋳造法に比べて特に総合歩留か向上するという利点が
得られる。
By MSing alnico magnet alloys using this powder metallurgy method, that is, the sintering method, the complicated process from melting to solution treatment becomes an extremely simple process of mixing raw material powder, molding, and sintering, and also requires a runner. Since this is not necessary, there is an advantage that the overall yield is particularly improved compared to the conventional melting and casting method.

アルニコ系焼#+’: 磁石合金の製造方法としては、
At * Ni * Co * Cu 、 i”i又は
Ti H2r Fe Ti + Fe等の各成分元素も
しくt゛1その合金の粉末を所望の化学組成となるよう
に混合し、ついで成形、焼結および熱処理を行なう方法
が一般的である。この場合、酸化による磁気特性の低下
を防止するために、Mの代りにFe −Mのlヒ合金粉
末を使用するのが一般的である。
Alnico-based firing #+': As a manufacturing method of magnetic alloy,
Powders of each component element or its alloy such as At*Ni*Co*Cu, i"i, or TiH2rFeTi+Fe are mixed to obtain a desired chemical composition, and then molded, sintered, and A common method is to perform heat treatment. In this case, in order to prevent deterioration of magnetic properties due to oxidation, it is common to use Fe--M alloy powder instead of M.

・ しかるにFe −AlおよびTi 、 Nb等の添
加物は、非常に酸化され易く、上記の単独金属粉末を用
いた〃う合、焼結不良、欠陥等が発生し易かった。特に
アルニコ8系磁石合金は、主成分の一つであるAtのほ
かにTi t Nb #γ多く含むために、ケf、氷1
′10−による製造がより困離であった。
- However, additives such as Fe--Al, Ti, and Nb are very easily oxidized, and when the above-mentioned single metal powder is used, poor sintering and defects are likely to occur. In particular, Alnico 8-based magnet alloys contain a large amount of Ti t Nb #γ in addition to At, which is one of the main components, so
'10- was more difficult to produce.

本発明は上記従来技術の欠点を改良し、焼結密度の冒い
かつ磁気特性の優れたアルニコ系焼結磁石合金な得るこ
とのできる躊造方法を提4Bすることである。
The object of the present invention is to improve the above-mentioned drawbacks of the prior art and to propose a method for fabricating an alnico-based sintered magnet alloy with a low sintered density and excellent magnetic properties.

本発明のアルニコ系焼結磁石合金の製造方法シー1、金
属粉末からなる原料を成形[7、得らJシf−成形体を
焼結した後熱処理を施(7てI’J−I Nl l C
o l li’e’47生体としかつTjおよび/又d
Nbを含む(i7.8布置金をイ4fるアルニコ糸焼結
蛯石合金の製造方法において、ili前記原料の少なく
とも一部としてCoを」ミ体と1〜かつAl 、 Tf
および/又は隅を含む合金粉末を用いることを特徴とし
ている○ 上述したように従来は、棲めて酸化(mk2、窒化)さ
れ易いM、 + Ti 、 Nbを純金稙に近い状γ/
!コで使用するだめ、原料の粉末が酸化し、炒♂結慴が
低下する現象が生じていた。そこで木兄即者等が44+
々検討した結果、原料としてα+ I’J−+ ’l+
および/又けNbを含む合金粉末(以下本合金粉末とい
う)を用いることにより、原料粉末の酸化が有効に防止
され、焼結密度が向上するのを見出した。すなわち本合
金粉末は化学的に比較的qi−足しており、焼結性に優
れL−/ハも焼結後の組織が」す貿化される。
Method for producing alnico-based sintered magnet alloy of the present invention Sea 1: Molding the raw material made of metal powder [7, Heat treatment after sintering the obtained J-shaped body (7: I'J-I Nl l C
o l li'e'47 living body and Tj and/or d
In a method for producing a sintered alnico yarn alloy containing Nb (i7.8 deposited metal), at least part of the raw material contains Co and Al, Tf.
○ As mentioned above, in the past, M, + Ti, and Nb, which are easily oxidized (mk2, nitrided), are used to form γ/
! If used in a hot pot, the raw material powder would oxidize, resulting in a decrease in the quality of frying. Therefore, Kinoe Sokusha etc. were 44+
As a result of various studies, α+ I'J-+ 'l+ was used as a raw material.
It has been found that by using an alloy powder containing Nb and/or Nb (hereinafter referred to as the present alloy powder), oxidation of the raw material powder is effectively prevented and the sintered density is improved. That is, the present alloy powder is chemically relatively Qi-rich, has excellent sinterability, and has a structure after sintering of L-/C.

本合金粉末の作成は、coとMとTi又はNbとが1i
桿組成に幻応する比率となるように配合されだイA’ 
4”i’ 4(柄糸および溶層して得られ/C合金イン
ゴットをイ炭械的に粉砕することによって行なえU1′
よい。
The preparation of this alloy powder requires 1i of co, M, and Ti or Nb.
It is blended so that it has a ratio that corresponds to the composition of the rod A'
4"i' 4 (produced by mechanically crushing the /C alloy ingot obtained by arranging the pattern yarn and melting layer U1'
good.

この場合本分金c、1粉砕性が良好であるため、容易p
tZ合金粉末が4にら!とる。たたし粉砕してイ?jら
れ/こイナ金扮末の粒jむ、j 100メツシユV下(
より好差しく u: 250メツシユ以下)が好寸しい
In this case, since the main gold c, 1 has good crushability, it is easy to
tZ alloy powder costs 4 chiles! Take. Shall I crush it? 100 mesh V lower (
More favorable u: 250 meshes or less) is more favorable.

このようにしてイζIられた本合金粉末はNi 、 C
u 。
This alloy powder prepared in this way contains Ni, C
u.

hの各粉末と混合し2て原料が得られる。またこれたけ
では所定の目(iI酸成分ならない場会幻1、Co。
A raw material is obtained by mixing with each powder of h. In addition, in this case, the prescribed eye (iI acid component is not included, phantom 1, Co.

b’e kl l T1. l Fc Nb #の粉末
を加乏て成分を調ボ′すればよい。/、−なし成分調整
用粉末の配合措け、酸化防止の点から不合金粉末100
 重量部に対し7で10重量部以下が歳当である。なお
本合金粉末にNl + C’u r Feを含1せない
理由は、アルニコ糸合金粉末は成形性が非常に悪いが、
混合粉とすることによりCu 、 Fe #が金属バイ
ンダーの効果を示1゛ためである。
b'e kl l T1. The components may be adjusted by adding or adding 1FcNb# powder. /, -None Unalloyed powder 100 from the viewpoint of blending powder for component adjustment and prevention of oxidation
The annual allowance is 7 to 10 parts by weight. The reason why Nl + C'ur Fe is not included in this alloy powder is that alnico thread alloy powder has very poor formability, but
This is because by forming a mixed powder, Cu and Fe # exhibit the effect of a metal binder.

上記の原料粉末を用いてアルニコ系ジ、桔1結磁石合金
を製jり、する場合は、例えば次のようなや訃で行なえ
ばよい。
When producing an alnico-based di-magnetic magnet alloy using the above raw material powder, it may be carried out, for example, in the following manner.

1ず原■セを末を金2+、り中り(充填し−16〜1[
]tormiの圧力でH」山形し、1200〜1300
℃の範1ノJlf焼結する。ψ結は、真空甲又に112
中で行7rうことが好ましい。
1 Zuhara■ end the end with gold 2+, Rinuri (filling -16 ~ 1 [
] H” chevron at a pressure of tormi, 1200-1300
Sinter in the range 1 Jlf of °C. The ψ connection is 112 on the vacuum instep.
It is preferable to line 7r inside.

次にこのl#結付に熱処理、接体的にに1. tR体体
化処理1占占嬉場処耶・よび時効処坪を施l−Cアルニ
コ系焼結研・布置くシかイ4?られる。ここで熱処」1
11は、溶り化処理を900〜1600℃の錆、“1;
ムに0.5〜111保持し、包温何場処理を2〜5 K
(ト)の嵯」ハ中で750〜850℃の温思に5〜60
分間保軸後放玲して1うない、そして時効処l!l!は
500〜700℃の沼冒c+−pc s〜10h伯−持
して(イリし多段時効でもよい)省なうことが適尚であ
る。
Next, heat treatment is applied to this l# connection, and 1. tR materialization treatment 1. Exercising 1-C alnico sintering and cloth placement 4? It will be done. Here's the heat room" 1
11, solubilization treatment of rust at 900 to 1600°C, "1;
Hold the temperature at 0.5 to 111 degrees Celsius and heat it to 2 to 5 K.
5-60℃ at a temperature of 750-850℃
After holding the axis for a minute, I was released, and the statute of limitations was processed! l! It is appropriate to leave the aging at 500 to 700° C. for 10 to 10 hours (multi-stage aging may also be used).

本発明の範囲が限定されるものではない。The scope of the present invention is not limited.

実施例1゜ 1i”e −50M+ Ni 、 Co + Cu +
 Ti 、 FeNb 、 Feの各粉末からなる従来
の原料と、Co −Al−Ti−Nb合金粉末およびN
i 、 Co 、 Feの各粉末を混合した本発明に従
う原料を7.5 % Al −15%Ni−66%Co
 −2,5%Cu−5%’f’i−[]、55%Nb−
%部実質的にFeのnJ成ICなるようン9各々配合し
、これらの原料を用いて6t/lriの圧)Jでρ11
 X 10 crnmの成形体を作製した。こJl−ら
の成形体を1000℃X2hの粂付で、10−’ To
rr (/−) 4% 4’?中で蓼?5結を行fzイ
、1200〜1250 ℃X 1.1.5 b (D溶
体化処理、800〜850℃×10分の等(LA (l
li J、’+A % JJ4および650 ℃から5
00’C二1での時/j、1jJ))、L理イト施し7
た。熱処理後の密度およびイlμ気it、5性をll躬
i:j 1.− /こところ、第1表に示す値が得r)
iした。
Example 1゜1i”e -50M+ Ni, Co + Cu +
Conventional raw materials consisting of Ti, FeNb, and Fe powders and Co-Al-Ti-Nb alloy powder and N
The raw material according to the present invention, which is a mixture of powders of i, Co, and Fe, was mixed with 7.5% Al-15%Ni-66%Co.
-2,5%Cu-5%'f'i-[], 55%Nb-
% part substantially nJ-containing IC of Fe (9) was blended, and using these raw materials, the pressure of 6t/lri) J was ρ11.
A molded body of X 10 crnm was produced. The molded product of Jl- et al.
rr (/-) 4% 4'? Inside? Perform 5 knots, 1200-1250℃ x 1.1.5b (D solution treatment, 800-850℃ x 10 minutes, etc. (LA
li J,'+A % JJ4 and 5 from 650 °C
00'C21 time/j, 1jJ)), L barit alms 7
Ta. Determine the density and temperature after heat treatment. 1. -/Kotokoro, the values shown in Table 1 are obtained.
I did it.

第 1 表 第1表から、本発明法により著しい密1か向上と磁気時
の向上が認められることが明らかである。
Table 1 From Table 1, it is clear that the method of the present invention provides a significant improvement in density and magnetic properties.

また第1図(a)および(b)にそれぞれ従来法および
本発明法により得られた焼結磁石合金の組織を示す。同
図から従来法の如(Fe Nb粉末を用いた場合は、F
e−Nbが十分に拡散せず残留(7てしまい、密度p1
上を阻害することが明らかである。
Further, FIGS. 1(a) and 1(b) show the structures of sintered magnet alloys obtained by the conventional method and the method of the present invention, respectively. From the same figure, it can be seen that the conventional method (when FeNb powder is used, F
e-Nb does not diffuse sufficiently and remains (7), density p1
It is clear that the above is inhibited.

実施例2゜ 成分が、重量比で7.5 M −15Ni −36Co
 −2,50−5,5Ti −0,5Nb−残Feにな
るように作製した、73 Co −15M −11Ti
 −I Nb合金粉およびカーボニルNi粉、Cu粉、
 Fe粉を混合したもの(本弁明粉)および拘−50A
t 、カーボニルNi粉、 Co s 、 Co粉、 
Ti l(2粉、 Fe 70 Nb粉、■I′O粉を
混合した粉末(従来粉)を混合し、実仙的な0At −
Ti −Nb粉のイ炉用風景比を0〜約50係捷で変化
きせた。
Example 2゜Ingredients were 7.5 M-15Ni-36Co in weight ratio
-2,50-5,5Ti -0,5Nb-73Co -15M -11Ti prepared to have residual Fe
-I Nb alloy powder, carbonyl Ni powder, Cu powder,
Mixed with Fe powder (present powder) and Koi-50A
t, carbonyl Ni powder, Cos, Co powder,
A powder (conventional powder) that is a mixture of Ti l (2 powder, Fe 70 Nb powder, and ■I'O powder) was mixed to give a typical 0 At -
The landscape ratio of Ti-Nb powder for a furnace was varied from 0 to about 50 degrees.

各混合粉を用いて、実施例1と同様にl+It形、焼結
、熱処理を行ない、焼結体密度および磁気特性を測定し
たところ、第2衣に示す値が得られた。
Using each mixed powder, the l+It type, sintering, and heat treatment were performed in the same manner as in Example 1, and the sintered body density and magnetic properties were measured, and the values shown in the second column were obtained.

Co基会合金粉使用よシ、密度あ・よひ化気持伯・が改
哲されることおよびその他iid JJpf用he 5
0 MJ>rre粉等も約10%丑では、%1クーの低
下が■、とんとなく使用できることも明らかである。
Revisions to the use of Co-based gold powder, density, and chemical properties, and other matters for JJpf he 5
It is also clear that 0 MJ>rre powder, etc., can be used to a large extent if it is reduced by about 10%.

実施例6゜ 車’lti:比で8.2 A/−−14Ni −24C
o −2Cu −0,584−0,2Ti −U、5 
Nb+ 8i、 Feになるように73 C。
Example 6゜Car'lti: Ratio: 8.2 A/--14Ni-24C
o-2Cu-0,584-0,2Ti-U,5
Nb+ 8i, 73C to become Fe.

−25M −0,6’ll’i −1,5Nb合金粉と
カーボニルNj’ AD r Cu e + Fe粉の
混合粉(本発明法)と、Fe−50At、カーボニルN
i 、 Co 粉+ Co粉+Fe −30Tt粉、 
Fe −70Nb粉、 Fe粉の混合粉(従来法)を用
いて成形I H2中焼結、磁場中冷却熱処理および時効
処β1!オー行なったところ、掲3訃に示す結果が得ら
第1だ。
-25M -0,6'll'i -1,5Nb alloy powder and carbonyl Nj' AD r Cu e + Fe powder mixed powder (method of the present invention), Fe-50At, carbonyl N
i, Co powder + Co powder + Fe-30Tt powder,
Using a mixed powder of Fe-70Nb powder and Fe powder (conventional method), molding, sintering in IH2, cooling heat treatment in a magnetic field, and aging treatment β1! When I did this, I got the results shown in Figure 3.

アルニコ8糸以外の1.H布置金を製造する」ム合にも
不発明か揃用できることが第3表より明らかである。
1. Other than Alnico 8 yarn. It is clear from Table 3 that the invention can also be used in the case of "manufacturing H deposit money".

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)および(b)はそれぞれ従来法および本発
明法により得られたアルニコ系焼結4iE4石合金の縮
締を示す金梢絹織顕微鏡写真である0 へ8.(川 じ・°八 (C入)
FIGS. 1(a) and (b) are micrographs of gold-tone silk weave showing the shrinkage of alnico-based sintered 4iE4 stone alloys obtained by the conventional method and the method of the present invention, respectively. (Kawa Ji・°8 (C included)

Claims (1)

【特許請求の範囲】[Claims] 金属粉末からなる原料を成形し、得られた成形体を焼結
した後熱処理を施してAI−HNiHCo + Feを
主体とし、かつTiおよび/又は油を含む磁石合金を得
るアルニコ系焼結磁石合金の製造方法において、前記原
料の少なくとも一部としてαを主体としかつAt r 
Tiおよび/又は鳩を含む合金粉末を用いることを特徴
とするアルニコ系焼結磁石合金本発明は高密度、高磁気
特性を有するTtおよび/又は歯を含有するアルニコ系
焼結磁石合金の製造方法に関する。
An alnico-based sintered magnet alloy in which a raw material made of metal powder is molded, the resulting molded body is sintered, and then heat treated to obtain a magnet alloy mainly composed of AI-HNiHCo + Fe and containing Ti and/or oil. In the method for producing At r
Alnico sintered magnet alloy characterized by using alloy powder containing Ti and/or pigeon The present invention is a method for producing an alnico sintered magnet alloy containing Tt and/or teeth, which has high density and high magnetic properties. Regarding.
JP21211183A 1983-11-11 1983-11-11 Manufacture of alnico type sintered magnet alloy Pending JPS60103150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21211183A JPS60103150A (en) 1983-11-11 1983-11-11 Manufacture of alnico type sintered magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21211183A JPS60103150A (en) 1983-11-11 1983-11-11 Manufacture of alnico type sintered magnet alloy

Publications (1)

Publication Number Publication Date
JPS60103150A true JPS60103150A (en) 1985-06-07

Family

ID=16617055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21211183A Pending JPS60103150A (en) 1983-11-11 1983-11-11 Manufacture of alnico type sintered magnet alloy

Country Status (1)

Country Link
JP (1) JPS60103150A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04135893U (en) * 1991-06-12 1992-12-17 株式会社シマノ Structure for fixing operating wires for bicycles
WO1995004362A1 (en) * 1993-07-27 1995-02-09 Pohang Iron & Steel Co., Ltd. Process for manufacturing alnico system permanent magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04135893U (en) * 1991-06-12 1992-12-17 株式会社シマノ Structure for fixing operating wires for bicycles
WO1995004362A1 (en) * 1993-07-27 1995-02-09 Pohang Iron & Steel Co., Ltd. Process for manufacturing alnico system permanent magnet
US5520748A (en) * 1993-07-27 1996-05-28 Pohang Iron & Steel Co., Ltd. Process for manufacturing Alnico system permanent magnet

Similar Documents

Publication Publication Date Title
RU97104447A (en) METHOD FOR PRODUCING AN EVAPORABLE GETTER AND A GETTER OBTAINED BY THIS METHOD
DE3512731A1 (en) SOLID TIT ALLOY, METHOD FOR THE PRODUCTION AND USE THEREOF
JPS6029443A (en) Golden sintered alloy for decoration
CN105369063B (en) A kind of preparation method of medical bone fixation means
US3837838A (en) High strength, ductile cobalt-base dental alloy
JPS60103150A (en) Manufacture of alnico type sintered magnet alloy
DE19626656C2 (en) Coated mold made of refractory ceramic and process for its production
JP2737498B2 (en) Titanium alloy for high density powder sintering
KR102585589B1 (en) High- strength and heat-resisting hierarchical high entropy alloy and method of manufacturing the same
CN105154720A (en) Co-Cr denture alloy material and preparing method thereof
JPS6033335A (en) Heat resistant molybdenum material
JPH05345937A (en) Production of ti-fe-al type sintered titanium alloy
JP2005350710A (en) Heat-resistant alloy for metallic powder to be injection-molded
JPH05148568A (en) High density powder titanium alloy for sintering
JP2560816B2 (en) Method for producing reaction-bonded gold for surface hardening
KR100598819B1 (en) nonvaluable metal alloy for dental prosthesis
JPS5819738B2 (en) Koumitsudoshiyouketsukouno Seizouhouhou
JPS61208807A (en) Permanent magnet
JPH09279287A (en) Grain dispersed powdery heat resistant alloy
JPH09202901A (en) Production of sintered compact of titanium-nickel alloy
JPH06172810A (en) Production of tungsten alloy sintered compact
JPH0436428A (en) Manufacture of high toughness tungsten sintered alloy
KR101828981B1 (en) Co-Cr based alloy for dental porcelain fused metal using vacuum precision casting and manufacturing method thereof
JPH05148567A (en) High density powder titanium alloy for sintering
JPS5919981B2 (en) W-based high toughness sintered alloy