JPS6010300B2 - How to remove bromide ions from photographic developer - Google Patents

How to remove bromide ions from photographic developer

Info

Publication number
JPS6010300B2
JPS6010300B2 JP8082876A JP8082876A JPS6010300B2 JP S6010300 B2 JPS6010300 B2 JP S6010300B2 JP 8082876 A JP8082876 A JP 8082876A JP 8082876 A JP8082876 A JP 8082876A JP S6010300 B2 JPS6010300 B2 JP S6010300B2
Authority
JP
Japan
Prior art keywords
exchange membrane
chamber
developer
anion exchange
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8082876A
Other languages
Japanese (ja)
Other versions
JPS537234A (en
Inventor
武蔵 小野
成喜 入部
峰雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP8082876A priority Critical patent/JPS6010300B2/en
Publication of JPS537234A publication Critical patent/JPS537234A/en
Publication of JPS6010300B2 publication Critical patent/JPS6010300B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Silver Salt Photography Or Processing Solution Therefor (AREA)

Description

【発明の詳細な説明】 本発明は写真現像液中の臭素イオン除去方法に関する。[Detailed description of the invention] The present invention relates to a method for removing bromine ions from photographic developers.

本発明の目的は、ハロゲン化銀写真現像液廃液中に蓄積
した臭素イオンを除去して該廃液を再利用するに際し、
臭素イオンを効率よく除去する方法を提供することにあ
る。ハロゲン化銀白黒写真感光材料は撮影またはプリン
ト露光後、現像一定着−水洗−乾燥処理を経て白黒画像
が形成される。
The purpose of the present invention is to remove bromide ions accumulated in silver halide photographic developer waste and reuse the waste.
The object of the present invention is to provide a method for efficiently removing bromide ions. Silver halide black-and-white photographic materials undergo a process of constant development, washing, and drying after photographing or print exposure to form a black-and-white image.

ハロゲン化銀カラ−写真感光材料は、その種類により撮
影またはプリント露光後の処理方法が若干異なるが、原
理的には発色現像−漂白一定着−水洗−乾燥の処理を経
てカラー画像が形成される。ハロゲン化銀写真感光材料
用現像液は、一般に現像主薬、保存剤、促進剤および抑
制剤の4成分を含む水溶液である。
Silver halide color photographic materials have slightly different processing methods after exposure, such as photographing or printing, depending on the type, but in principle, a color image is formed through the following processes: color development, bleaching, fixing, washing, and drying. . A developing solution for silver halide photographic materials is generally an aqueous solution containing four components: a developing agent, a preservative, an accelerator, and an inhibitor.

現像主薬とは感光材料乳剤層臭化銀の港像の部分のみを
還元し、他を還元しない性質をもつ薬品のことであり、
白黒写真感光材料用現像液の現像主薬としては、ハイド
ロキ/ン、メチルパラアミノフェノール硫酸塩、および
1ーフェニルー3ーピラゾリドン等が使用される。また
、カラー写真感光材料用発色現像液の発色現像主薬とし
てはジェチルパラフェニレンジアミン硫酸塩、ヒドロキ
シェチル・エチル・バラフェニレンジアミン硫酸塩、2
−アミノー5−ジェチルアミノトルェン塩酸塩「 4−
アミノーNーェチル−N−(3メタンスルフオンアミド
エチル)−mトルイジン・競隣・1水塩および4−アミ
ノーNーヒドロキシヱチルーN−エチル一mトルイジン
硫酸塩の如きN・Nージアルキルーpーフェニレンジア
ミン系統の化合物が使用される。保存剤は現像主薬の酸
化を防止するために添加される薬品で亜硫酸ナトリウム
、酸性亜硫酸ナトリウム、異性亜硫酸ナトリウムまたは
ヒドロキシルァミン硫酸塩等が使用される。促進剤は現
像主薬の還元作用を強くする薬品で水酸化ナトリウムの
如きアルカリ、炭酸ナトリウム、第3リン酸ナトリウム
またはホゥ砂の如きアルカリ性の塩が使用される。抑制
剤はハロゲン化銀感光材料の露光不足部分の現像を強く
抑制しカブリを除去する薬品で、臭化カリウム、臭化ナ
トリウム、ョゥ化カリウム等が使用される。写真現像液
中の現像主薬が感光材料乳剤層の露光済みの臭化銀と反
応すると乳剤層内には、銀画像が析出し現像液中には現
像主楽酸化生成物と臭素イオンが創生する。
A developing agent is a chemical that has the property of reducing only the port image portion of silver bromide in the emulsion layer of a light-sensitive material and not reducing the rest.
As the developing agent for the developer for black-and-white photographic materials, hydroquine, methyl para-aminophenol sulfate, 1-phenyl-3-pyrazolidone, and the like are used. In addition, as the color developing agent of the color developing solution for color photographic light-sensitive materials, jetyl paraphenylene diamine sulfate, hydroxyethyl ethyl paraphenylene diamine sulfate, 2
-Amino-5-jethylaminotoluene hydrochloride "4-
N.N-dialkyl-p-phenylene such as amino-N-ethyl-N-(3-methanesulfonamidoethyl)-m-toluidine monohydrate and 4-amino-N-hydroxyethyl-N-ethyl-m-toluidine sulfate. Compounds of the diamine family are used. The preservative is a chemical added to prevent the oxidation of the developing agent, such as sodium sulfite, acidic sodium sulfite, isomeric sodium sulfite, or hydroxylamine sulfate. The accelerator is a chemical that strengthens the reducing action of the developing agent, and is an alkali such as sodium hydroxide, an alkaline salt such as sodium carbonate, tribasic sodium phosphate, or borax. The inhibitor is a chemical that strongly suppresses the development of underexposed areas of the silver halide photosensitive material and removes fog, and potassium bromide, sodium bromide, potassium iodide, etc. are used. When the developing agent in the photographic developer reacts with exposed silver bromide in the emulsion layer of the light-sensitive material, a silver image is precipitated in the emulsion layer, and oxidation products and bromide ions are created in the developer. do.

カラー写真感光材料の発色現像の場合発色現像主薬酸化
物は、乳剤層内の色素カプラーと結合して色素画像を形
成するが、発色現像主薬は空気酸化を受けやすいので白
黒写真用現像液およびカラー写真用発色現像液をとわず
「現像液の廃液中には現像主薬酸化生成物と臭素ィオが
蓄積するので該現像液廃液を再生利用するためにはこれ
ら蓄積物の除去が必要である。写真現像液廃液から臭素
イオンを除去する方法として陰極と陽極の間が陽イオン
交換膜と陰イオン交換膜により交互に仕切られた陰極室
、複数個の脱塩室(陰極側が陽イオン交換膜「陽極側が
陰イオン交換膜で仕切られた室)、複数個の濃縮室(陰
極側が陰イオン交換膜、陽極側が腸イオン交換膜で仕切
られた室)および陽極室とからなるイオン交換膜電気透
析槽の脱塩室に現像液廃液を注ぎ、濃縮室には硫酸ナト
リウム溶液を注いで陰陽両極間に直流を通じ電気透析を
行なう方法(イオン交換膜電気透析法)が知られており
「例えば、S.Miz雌awa、A.Sa−saian
d、N.Mii;B山letinof the S比i
ety of Sc三entific Photogr
aphy ofJapan、No.18、38〜44、
1968にはイオン交換膜の電流密度を0.5船/dで
から2.0A′d枕にした現像液廃液中の臭素イオン除
去に関する実験データが報告されている。本報告による
と現像液廃液中に蓄積した臭素イオンの除去は可能であ
るが、現像主楽酸化生成物は除去されないので完全な再
生はできない。本発明者は先に陰極と陽極の間が陰イオ
ン交換膜で仕切られた陰極室と陽極室とからなる電解槽
の陰極室に写真現像液廃液を注ぎ、陽極室には硫酸ナト
リウムの如き電解質溶液を注いで電解を行なうと現像主
薬生成物は陰極で還元されて現像主楽の状態に戻り、臭
素イオンは陰イオン交換膜を通して陰極室から陽極室へ
移動除去されるので現像液廃液の再生が可能になること
を発見し特許出願した。
In the case of color development of color photographic materials, the color developing agent oxide combines with the dye coupler in the emulsion layer to form a dye image, but since the color developing agent is susceptible to air oxidation, black and white photographic developers and color Regardless of the color developer used for photography, oxidation products of the developing agent and bromine accumulate in the developer waste, so it is necessary to remove these accumulated substances in order to recycle the developer waste. As a method for removing bromide ions from photographic developer waste, there is a cathode chamber in which the cathode and anode are alternately partitioned by cation exchange membranes and anion exchange membranes, and multiple demineralization chambers (the cathode side is partitioned by a cation exchange membrane). An ion exchange membrane electrodialysis system consisting of a chamber separated by an anion exchange membrane on the anode side, multiple concentration chambers (chamber partitioned on the cathode side by an anion exchange membrane and an anode side by an intestinal ion exchange membrane), and an anode chamber. There is a known method (ion exchange membrane electrodialysis method) in which developer waste is poured into the desalination chamber of the tank, sodium sulfate solution is poured into the concentration chamber, and a direct current is passed between the negative and anode electrodes to perform electrodialysis (ion exchange membrane electrodialysis method). .Miz female awa, A. Sa-saian
d, N. Mii; B mountain retinof the S ratio
ety of Sc3entific Photogr
aphy of Japan, No. 18, 38-44,
In 1968, experimental data were reported regarding the removal of bromide ions from developer waste using an ion exchange membrane with a current density of 0.5 A'd to 2.0 A'd. According to this report, it is possible to remove bromide ions accumulated in developer waste, but the oxidation products of the developer are not removed, so complete regeneration is not possible. The inventor first poured photographic developer waste into the cathode chamber of an electrolytic cell consisting of a cathode chamber and an anode chamber with an anion exchange membrane partitioned between the cathode and anode, and placed an electrolyte such as sodium sulfate in the anode chamber. When the solution is poured and electrolysis is performed, the developing agent product is reduced at the cathode and returns to the developer state, and the bromide ions are removed by moving from the cathode chamber to the anode chamber through the anion exchange membrane, thus regenerating the developer waste solution. He discovered that this was possible and applied for a patent.

また、現像主楽酸化生成物の陰極還元法と前述のイオン
交換膜電気透析法を組み合わせても現像液廃液の再生が
可能であることを見出し特許出願した。しかし、本発明
者がイオン交換膜電気透析法による写真現像液廃液中の
臭素イオン除去に関する連続運転を行なったところ運転
日数とともにイオン交換膜の電気抵抗が増加し、また、
運転日数とともにイオン交換膜の臭素イオン除去速度が
減少した。
They also discovered that it was possible to regenerate developer waste by combining the cathodic reduction method of the developer's oxidation product with the aforementioned ion-exchange membrane electrodialysis method, and filed a patent application. However, when the present inventor conducted continuous operation for removing bromide ions from photographic developer waste using ion-exchange membrane electrodialysis, the electrical resistance of the ion-exchange membrane increased with the number of days of operation.
The bromide removal rate of the ion exchange membrane decreased with the number of operating days.

また、陰イオン交換膜にピンホールやクラックが発生し
て連続運転は不可能になった。本発明者は、イオン交換
膜電気透析法による写真現像液廃液中の臭素イオン除去
における上記問題を解決し、かつ効率よく連続運転がで
きる方法を鋭意研究した結果、以下の新規な事実(5項
目)を発見し、本発明に到達した。■ 陰イオン交換膜
の電気密度がo.0泌/dで、以下では、陰イオン交換
膜の臭素イオン除去速度が小さすぎて実用的でない。
Additionally, pinholes and cracks appeared in the anion exchange membrane, making continuous operation impossible. As a result of intensive research into a method that solves the above-mentioned problems in removing bromide ions from photographic developer waste using ion-exchange membrane electrodialysis and enables efficient continuous operation, the inventor discovered the following new facts (5 items). ) and arrived at the present invention. ■ The electrical density of the anion exchange membrane is o. Below 0 secretion/d, the bromide removal rate of the anion exchange membrane is too low to be practical.

■ 陰イオン交換膜の電気密度が0.02A/d〆以上
になると臭素イオン除去速度は増加するが、0.1私/
dで以上では臭素イオン除去速度は逆に減少する。
■ When the electrical density of the anion exchange membrane becomes 0.02 A/d or higher, the bromide ion removal rate increases, but at 0.1 A/d.
Above d, the bromide ion removal rate decreases.

■ 陰イオン交換膜の電流密度を0,o2〜0.1軌/
dれの範囲に維持しつつ連続運転するとイオン交換膜電
気抵抗の増加もみられず、また陰イオン交換膜の臭素イ
オン除去速度の経時減少もみられない。
■ Change the current density of the anion exchange membrane to 0.02 to 0.1 orbit/
When continuous operation is performed while maintaining the d in the range, no increase in the electrical resistance of the ion exchange membrane is observed, and no decrease over time in the bromide ion removal rate of the anion exchange membrane is observed.

■ 陰イオン交換膜の電気密度を0.1軸/d力以上に
保って連続運転するとイオン交換膜の電気抵抗は経時増
加し、かつ、陰イオン交換膜の臭素イオン除去速度は経
時減少する。
(2) If the electrical density of the anion exchange membrane is maintained at 0.1 axis/d force or higher and the operation is continued, the electrical resistance of the ion exchange membrane increases over time, and the bromide removal rate of the anion exchange membrane decreases over time.

■ 陰イオン交換膜の電気密度が0.2私/d力以上に
なると該交換膜にピンホールまたはクラックが発生しや
すくなる。
(2) When the electrical density of the anion exchange membrane exceeds 0.2 I/d force, pinholes or cracks are likely to occur in the exchange membrane.

即ち、本発明は写真現像液中の臭素イオンをイオン交換
膜電気透析法により除去するに際し陰イオン交換膜の電
流密度をo.02〜o.1叫/dめに保つことを特徴と
する写真現像液中の臭素イオン除去方法である。
That is, the present invention reduces the current density of an anion exchange membrane to o. 02~o. This is a method for removing bromine ions from a photographic developer, which is characterized by maintaining the bromine ions at 1 y/d.

本発明のイオン交換膜電気透析法とは陰極と陽極の間が
陽イオン交換膜と陰イオン交換膜とにより交互に仕切ら
れた陰極室、複数の脱塩室(陰極側が陽イオン交換膜、
陽極側が陰イオン交換膜で仕切られた室)、複数個の濃
縮室(陰極側が陰イオン交換膜、陽極側が陽イオン交換
膜で仕切られた室)および陽極室とからなるイオン交換
膜電気透析槽の脱塩室に現像液廃液を注ぎ「陰極室、濃
縮室および陽極室には硫酸ナトリウム溶液の如き電解質
溶液を注いで陰陽両極間に直流を通じ現像液廃液中の臭
素イオンを除去する方法のことである。
The ion exchange membrane electrodialysis method of the present invention includes a cathode chamber in which the cathode and anode are alternately partitioned by cation exchange membranes and anion exchange membranes, a plurality of demineralization chambers (the cathode side is a cation exchange membrane,
An ion exchange membrane electrodialysis tank consisting of a chamber (chamber partitioned by an anion exchange membrane on the anode side), multiple concentration chambers (chamber partitioned by an anion exchange membrane on the cathode side and a cation exchange membrane on the anode side), and an anode chamber. A method of removing bromide ions from the developer waste by pouring an electrolyte solution such as a sodium sulfate solution into the cathode, concentration, and anode chambers and passing a direct current between the negative and anode electrodes. It is.

また、陰極と陽極の間が陰イオン交換膜で仕切られた陰
極室と陽極室とからなる電解槽の陰極室に現像液廃液を
注ぎ陽極室に硫酸ナトリウム溶液の如き電解質溶液を注
いで陰陽両極間に直流を通じ、現像液廃液中の臭素イオ
ンを除去する方法も本イオン交換膜電気透析法に含まれ
る。上記電気透析槽お.よび電解槽の陰極の材料として
は鉄、ニッケル、鉛、亜鉛、ステンレススチール等が、
また、陽極の材料としては白金、白金メッキチタン、黒
鉛等があげられる。
In addition, the waste developer is poured into the cathode chamber of an electrolytic cell consisting of a cathode chamber and an anode chamber, in which the anode and cathode are separated by an anion exchange membrane, and an electrolyte solution such as a sodium sulfate solution is poured into the anode chamber. The ion exchange membrane electrodialysis method also includes a method of removing bromide ions from the waste developer solution by passing a direct current between the steps. The above electrodialysis tank. Iron, nickel, lead, zinc, stainless steel, etc. are used as the material for the cathode of the electrolytic cell.
Furthermore, examples of the material for the anode include platinum, platinum-plated titanium, and graphite.

陰イオン交換膜としては強塩基型、陽イオン交換膜とし
ては強酸性型の交換膜が望ましい。上記電気透析槽の陰
極室、濃縮室、陽極室および上記電解槽の陽極室に注ぐ
電解質溶液としては水酸化ナトリウム溶液または水酸化
カリウム溶液の如きアルカリ溶液、硫酸ナトリウム溶液
の如き塩の溶液、硫酸の如き酸の溶液があげられる。
The anion exchange membrane is preferably a strongly basic type, and the cation exchange membrane is preferably a strongly acidic type. The electrolyte solutions poured into the cathode chamber, concentration chamber, and anode chamber of the electrodialysis tank and the anode chamber of the electrolytic cell include alkaline solutions such as sodium hydroxide solution or potassium hydroxide solution, salt solutions such as sodium sulfate solution, and sulfuric acid. Acid solutions such as

これらの電解質溶液の濃度は0.1〜2規定で十分であ
る。前述の如くイオン交換膜電気透析槽、またはイオン
交換膜電解槽を用いて現像液廃液中の臭素イオン除去の
連続運転を行なう場合、陰イオン交換膜の電流密度が0
.0泌′dで以下では、臭素イオンの除去速度が小さす
ぎて実用的でない。
A concentration of these electrolyte solutions of 0.1 to 2 normal is sufficient. As mentioned above, when performing continuous operation to remove bromide ions from developer waste using an ion exchange membrane electrodialyzer or an ion exchange membrane electrolyzer, the current density of the anion exchange membrane is 0.
.. Below 0, the removal rate of bromide ions is too low to be practical.

陰イオン交換膜の電流密度を増加してやくと臭素イオン
の陰去速度も増加するが、該電流密度が0.1離/dの
以上では臭素イオン除去速度は逆に減少し、かつ該電流
密度が0.1松′dで以上ではィオン交換膜電気抵抗の
経時増加と臭素イオン除去速度の経時低下を招く。また
、該電流密度が0.25A′dで以上になると陰イオン
交換膜にピンホールまたはクラックが発生しやすくなる
。本発明の方法によると、写真現像液廃液中の臭素イオ
ンをイオン交換膜電気透析法により除去する場合イオン
交換膜電気低抗の経時増加も臭素イオン除去速度の経時
減少もおこらないので効率のよい連続運転が可能となる
As the current density of the anion exchange membrane increases, the bromide ion removal rate also increases, but when the current density exceeds 0.1 d/d, the bromide ion removal rate decreases, and the current density If it exceeds 0.1 d, the electrical resistance of the ion exchange membrane increases over time and the bromide removal rate decreases over time. Furthermore, if the current density exceeds 0.25 A'd, pinholes or cracks are likely to occur in the anion exchange membrane. According to the method of the present invention, when bromide ions in photographic developer waste are removed by ion-exchange membrane electrodialysis, the ion-exchange membrane electrodialysis does not increase over time nor does the bromide ion removal rate decrease over time, making it highly efficient. Continuous operation is possible.

また、膜電流密度を0.1虫/d〆以下に保つことによ
り臭素イオン除去の無駄な電力が節約でき、交換膜にピ
ンホールやクラツクが発生し難くなるので運転が容易と
なり、膜の寿命も増大する。このように、写真、現像液
廃液中の臭素イオンをイオン交換膜電気透析法で連続的
に除去する場合、従来公知の陰イオン交換膜電流密度よ
りも遥かに小さい交換膜電流密度が何故良好な結果をも
たらすか詳細は明らかでないが、現像主薬や保存剤が溶
解する写真現像液の特殊な原因にもとずくものと考えら
れる。
In addition, by keeping the membrane current density below 0.1 insects/d〆, wasted electricity for removing bromide ions can be saved, and pinholes and cracks are less likely to occur in the exchange membrane, making operation easier and extending the life of the membrane. also increases. In this way, when bromide ions in photographic and developer waste are continuously removed by ion exchange membrane electrodialysis, why is the exchange membrane current density much smaller than the conventionally known anion exchange membrane current density effective? Although the details of this effect are not clear, it is thought to be due to the special cause of photographic developing solutions in which developing agents and preservatives are dissolved.

本発明の方法を用いて写真現像液廃液を再生利用する場
合には陰極と陽極の間が陰イオン交換膜で仕切られた陰
極室と陽極室とからなる電解槽の陰極室に該現像液廃液
を注ぎ、陽極室には硫酸ナトリウムの如き電解質溶液を
注いで電解を行なう現像主薬酸化生成物の陰極還元方式
と本発明によるイオン交換膜電気透析法を組み合わせて
使用する。
When recycling photographic developer waste using the method of the present invention, the developer waste is stored in the cathode chamber of an electrolytic cell consisting of a cathode chamber and an anode chamber with an anion exchange membrane separating the cathode and anode. The ion exchange membrane electrodialysis method according to the present invention is used in combination with a cathodic reduction method of the oxidized product of the developing agent, in which an electrolyte solution such as sodium sulfate is poured into the anode chamber to carry out electrolysis.

または、陰極と陽極の間が陰イオン交換膜と腸イオン交
換膜により交互に仕切られた陰極室、複数の濃縮室、複
数の脱塩室、および陽極室とからなるイオン交換膜透析
槽の陰極室と脱塩室に写真現像液廃液を注いで、該陰極
室と該脱塩室の間で液を循環させ、濃縮室と陽極室には
硫酸ナトリウムの如き電解質溶液を注ぎ陰イオン交換膜
の電流密度が0.02〜0.15A/d〆になるように
陰陽両極間に直流を通じて現像液廃液中の現像主薬酸化
生成物の陰極還元と該廃液中の臭素イオン除去を行なっ
てもよい。または、本発明によるイオン交換膜電気透析
法と例えば化学吸着剤等による現像主薬酸化生成物の選
択除去法等を組み合わせてもよい。以下実施例をあげて
本発明の方法を説明する。
Or, the cathode of an ion exchange membrane dialysis tank consisting of a cathode chamber, multiple concentration chambers, multiple desalination chambers, and an anode chamber in which the cathode and anode are alternately partitioned by an anion exchange membrane and an intestinal ion exchange membrane. A photographic developer waste solution is poured into the chamber and the desalination chamber, and the solution is circulated between the cathode chamber and the desalination chamber, and an electrolyte solution such as sodium sulfate is poured into the concentration chamber and the anode chamber. A direct current may be passed between the negative and anode electrodes so that the current density is 0.02 to 0.15 A/d, so that the cathodic reduction of the oxidation product of the developing agent in the developer waste solution and the removal of bromide ions from the waste solution may be carried out. Alternatively, the ion-exchange membrane electrodialysis method according to the present invention may be combined with, for example, a method for selectively removing the oxidized product of the developing agent using a chemical adsorbent or the like. The method of the present invention will be explained below with reference to Examples.

本発明の内容がこれに限定されるものでないことは勿論
である。実施例中臭素イオンの除去速度(タ′d〆・H
)とは次式で算出した値のことである。臭素イオンの除
去速度(夕/dで・H)=現像液廃液量(のx{透析前
臭素イオン(夕/の−透析後臭素イオン(夕/の}陰イ
オン交換膜面積(dの)×時間の)実施例 1 第1表A欄の組成を有する発色現像液をカラーフィルム
現像機の発色現像液室に供給しカラーフィルムの現像を
行なった。
Of course, the content of the present invention is not limited to this. In the examples, the removal rate of bromine ions (T'd〆・H
) is the value calculated using the following formula. Removal rate of bromide ions (in/d/H) = amount of developer waste (x {pre-dialysis bromine ions (in/d) - post-dialysis bromine ions (in/in)} anion exchange membrane area (in d) x Time) Example 1 A color developer having the composition shown in Table 1, column A was supplied to the color developer chamber of a color film developing machine to develop a color film.

発色現像液室より排出した発色現像液廃液(第1表B欄
)をステンレススチール陰極と白金メッキチタン陽極の
間が2の叉の強酸型陽イオン交換膜と2の女の強塩基型
陰イオン交換膜で交互に仕切られた。1個の陰極室、2
0個の脱塩室(陰極側が陽イオン交換膜「陽極側が陰イ
オン交換膜で仕切られた室)、1功固の濃縮室(陰極側
が陰イオン交換膜、陽極側が陽イオン交換膜で仕切られ
た室)および1個の陽極室とからなるイオン交換膜電気
透析槽の陰極室と脱塩室に供給し、濃縮室および陽極室
には30夕/その硫酸ナトリウム水溶液を供給して陰陽
両極間に直流を通じ、長期間にわたる連続運転を行なっ
た。
The color developer waste solution (column B in Table 1) discharged from the color developer chamber is transferred to a strong acid cation exchange membrane with 2 prongs and a strong base anion exchange membrane with 2 prongs between the stainless steel cathode and the platinum-plated titanium anode. Alternately partitioned with exchange membranes. 1 cathode chamber, 2
0 desalination chambers (chambers separated by a cation exchange membrane on the cathode side and an anion exchange membrane on the anode side), 1 concentration chamber (separated by an anion exchange membrane on the cathode side and a cation exchange membrane on the anode side) The sodium sulfate solution is supplied to the cathode chamber and demineralization chamber of the ion exchange membrane electrodialysis tank, which consists of one anode chamber) and one anode chamber, and the sodium sulfate aqueous solution is supplied to the concentration chamber and the anode chamber for 30 minutes to connect the anode and negative electrodes. It was operated continuously for a long period of time using direct current.

連続運転に際し「イオン交換膜電気透析槽の脱塩室より
流出する透析後現像液の臭素イオン濃度が第1表A欄記
載の臭素イオン濃度(0.01夕/夕)と同一になるよ
うに、発色現像液廃液の供給量を調節したが「陰イオン
交換膜の電流密度が槽電圧の経時変化および臭素イオン
除去速度の経時変化に及ぼす影響はそれぞれ第2表およ
び第3表のとおりであった。第2表および第3表より特
許請求範囲内の陰イオン交換膜電流密度が連続運転に対
し最も好ましい結果を与えることがわかる。
During continuous operation, make sure that the bromide ion concentration of the dialysis developer flowing out from the demineralization chamber of the ion exchange membrane electrodialysis tank is the same as the bromide ion concentration (0.01 t/t) listed in column A of Table 1. Although the amount of color developer waste solution supplied was adjusted, the effects of the current density of the anion exchange membrane on the time-dependent changes in cell voltage and the time-dependent changes in bromide ion removal rate are shown in Tables 2 and 3, respectively. It can be seen from Tables 2 and 3 that the anion exchange membrane current density within the claimed range gives the most favorable results for continuous operation.

第1表組成 第 2 表 槽電圧(V) 第 3 表 臭素イオン除去速度(タ dが・日実施
例 2第4表A欄記載の組成を有する発色現像液をカフ
ーペーパー現像機の発色現像液室に供給してカフーベー
パーの現像を行なった。
Table 1: Composition Table 2: Tank voltage (V) Table 3: Bromine ion removal rate (T) The Kafu vapor was developed by supplying it to a chamber.

発色現像液室より排出した発色現像液廃液(第4表B欄
)を〜実施例1で記述したイオン交換膜電気透析槽の脱
塩室に供給し、陰極室、濃縮室および陽極室には30多
/その硫酸ナトリウム水溶液を供給して陰陽両極間に直
流を通じ長時間にわたる連続運転を行なつた。連続運転
に際しイオン交換膜電気透析槽の陰極室と脱塩室より流
出する透析後現像液の臭素イオン濃度が第4表A欄記載
の臭素イオン濃度(0.10夕/そ)と同一になるよう
に発色現像液廃液の供給量を調節したが陰イオン交換膜
の電流密度が電圧の経時変化および臭素イオン除去速度
の経変化に及ぼす影響はそれぞれ第5表および第6のと
おりであった。
The color developer waste liquid discharged from the color developer chamber (Table 4, column B) is supplied to the desalination chamber of the ion exchange membrane electrodialysis tank described in ~ Example 1, and the cathode chamber, concentration chamber, and anode chamber are A continuous operation was carried out for a long time by supplying an aqueous sodium sulfate solution of 30% and passing a direct current between the negative and positive electrodes. During continuous operation, the bromide ion concentration of the dialysis developer solution flowing out from the cathode chamber and demineralization chamber of the ion exchange membrane electrodialysis tank becomes the same as the bromide ion concentration (0.10 t/s) listed in column A of Table 4. Tables 5 and 6 show the effects of the current density of the anion exchange membrane on the voltage change over time and the bromide ion removal rate over time, respectively.

第5表および第6表より特許請求範囲内の陰イオン交換
膜電流密度が連続運転に対し、最も好ましい結果を与え
ることがわかる。
It can be seen from Tables 5 and 6 that the anion exchange membrane current density within the claimed range gives the most favorable results for continuous operation.

第4表組成 第 5 表 僧電圧(V) 第 6 表 臭素ィォン除去速度(タソdが・H)
実施例 3第7表A欄記載の組成を有する現像液を白黒
写真フィルム現像機の現像液室に供給し、白黒写真フィ
ルムの現像を行なった。
Table 4 Composition Table 5 Voltage (V) Table 6 Bromine removal rate (Taso d H)
Example 3 A developer having the composition shown in column A of Table 7 was supplied to the developer chamber of a black and white photographic film developing machine to develop a black and white photographic film.

現像液室より排出した現像液廃液(第7表B欄)を実施
例1に記述したイオン交換膜電気透析槽の陰極室と脱塩
室に(2値室)供給し、かつ陰極室と脱塩室の間で相互
に現像液廃液を循環させた。濃縮室と陽極室には30タ
′その硫酸ナトリウム水溶液を供給して陰陽両極間に直
流を通じ長期間にわたる連続運転を行なつた。連続運転
に際しイオン交換膜電気透析槽の陰極室と脱塩室より流
出する透析後現像液の臭素イオン濃度が第7表A欄記載
の臭素イオン濃度(0.1夕/そ)と同一になるように
現像液廃液の供給量を調節したが陰イオン交換膜電流密
度が槽電圧の経時変化および臭素イオン除去速度の経時
変化に及ぼす影響はそれぞれ第8表および第9表のとお
りであった。
The developer waste solution discharged from the developer chamber (column B in Table 7) is supplied to the cathode chamber and demineralization chamber (binary chamber) of the ion exchange membrane electrodialysis tank described in Example 1, and Waste developer solution was circulated between the salt chambers. Thirty tons of the sodium sulfate aqueous solution was supplied to the concentration chamber and the anode chamber, and continuous operation was carried out for a long period of time by passing a direct current between the negative and anode electrodes. During continuous operation, the bromide ion concentration of the dialysis developer solution flowing out from the cathode chamber and demineralization chamber of the ion exchange membrane electrodialysis tank becomes the same as the bromide ion concentration (0.1 t/s) listed in column A of Table 7. Tables 8 and 9 show the influence of the anion exchange membrane current density on the change in cell voltage and the rate of bromide ion removal over time, respectively.

第8表および第9表より特許請求範囲内の陰イオン交換
膜電流密度が連続運転に対し最も好ましい結果を与える
ことがわかる。
It can be seen from Tables 8 and 9 that the anion exchange membrane current density within the claimed range gives the most favorable results for continuous operation.

なお、陰イオン交換膜の電流密度が0.04A/dあと
0.1泌′d〆の場合における透析後現像液に薬品を添
加して、第7表A欄の組成と同一にし白黒フィルムの現
像に使用したが写真特性は正常であった。
In addition, when the current density of the anion exchange membrane is 0.04 A/d and 0.1 'd〆, chemicals are added to the developing solution after dialysis to make it the same as the composition in column A of Table 7, and a black and white film is prepared. When used for development, the photographic properties were normal.

第7表組成 第 8 表 槽電圧(V)Table 7 Composition Table 8 Cell voltage (V)

Claims (1)

【特許請求の範囲】 1 写真現像液中の臭素イオンをイオン交換膜電気透析
法により除去するに際し、、陰イオン交換膜の電液密度
を0.02〜0.15A/dm^2に保つことを特徴と
する写真現像液中の臭素イオン除去方法。 2 陰極と陽極との間が陽イオン交換膜と陰イオン交換
膜とにより交互に仕切られた、陰極側が陽イオン交換膜
であり、陽極側が陰イオン交換膜である脱塩室に満した
写真現像液を電気透析することを特徴とする特許請求の
範囲第1項記載の臭素イオン除去方法。
[Claims] 1. When removing bromide ions in a photographic developer by ion exchange membrane electrodialysis, the electrolyte density of the anion exchange membrane must be maintained at 0.02 to 0.15 A/dm^2. A method for removing bromide ions from a photographic developer, characterized by: 2. A photographic developing chamber filled with a demineralization chamber in which the cathode and anode are alternately partitioned by cation exchange membranes and anion exchange membranes, with the cation exchange membrane on the cathode side and the anion exchange membrane on the anode side. The bromide ion removal method according to claim 1, characterized in that the solution is subjected to electrodialysis.
JP8082876A 1976-07-09 1976-07-09 How to remove bromide ions from photographic developer Expired JPS6010300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8082876A JPS6010300B2 (en) 1976-07-09 1976-07-09 How to remove bromide ions from photographic developer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8082876A JPS6010300B2 (en) 1976-07-09 1976-07-09 How to remove bromide ions from photographic developer

Publications (2)

Publication Number Publication Date
JPS537234A JPS537234A (en) 1978-01-23
JPS6010300B2 true JPS6010300B2 (en) 1985-03-16

Family

ID=13729270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8082876A Expired JPS6010300B2 (en) 1976-07-09 1976-07-09 How to remove bromide ions from photographic developer

Country Status (1)

Country Link
JP (1) JPS6010300B2 (en)

Also Published As

Publication number Publication date
JPS537234A (en) 1978-01-23

Similar Documents

Publication Publication Date Title
US4313808A (en) Electrodialyzer and method of regenerating waste photographic processing solution
JPS6120854B2 (en)
US4089760A (en) Method for regenerating waste developers used for processing silver halide photographic materials and method for storing developers
US4217188A (en) Method for storing developers
US4128464A (en) Process for regenerating bleaching-fixing solution
US4111766A (en) Process for the recovery of silver from fixing solutions
US4256559A (en) Method and apparatus for regenerating spent photographic bleach-fixer solution
US4145271A (en) Method for regenerating oxidized photographic developers
US4204930A (en) Method and apparatus for regenerating spent photographic bleach-fixer solution
US3925175A (en) Electrodialysis of fixer containing solutions
US3746543A (en) Process for the regeneration of fixing photographic solution
JPS6334461B2 (en)
JPS6323528B2 (en)
JPS6010300B2 (en) How to remove bromide ions from photographic developer
US5298371A (en) Method for processing a silver halide photographic light-sensitive material
JPS63158552A (en) Production of lithographic printing plate
EP0329275B1 (en) Method of recovering silver from photographic processing solution and apparatus therefor
JPS6152460B2 (en)
JPH04250449A (en) Photographic processing method
JP3661916B2 (en) Plate making method of silver salt lithographic printing plate
JP2918758B2 (en) Fixer regeneration method
JPS6158029B2 (en)
JPH057468B2 (en)
JPS61223737A (en) Method for removing silver from photographic processing solution and photographic processing machine
JPH0254935B2 (en)