JPS6152460B2 - - Google Patents

Info

Publication number
JPS6152460B2
JPS6152460B2 JP54076159A JP7615979A JPS6152460B2 JP S6152460 B2 JPS6152460 B2 JP S6152460B2 JP 54076159 A JP54076159 A JP 54076159A JP 7615979 A JP7615979 A JP 7615979A JP S6152460 B2 JPS6152460 B2 JP S6152460B2
Authority
JP
Japan
Prior art keywords
solution
exchange membrane
photographic
waste
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54076159A
Other languages
Japanese (ja)
Other versions
JPS561049A (en
Inventor
Minoru Yamada
Noboru Idemoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Tokuyama Corp
Original Assignee
Tokuyama Corp
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp, Fuji Photo Film Co Ltd filed Critical Tokuyama Corp
Priority to JP7615979A priority Critical patent/JPS561049A/en
Priority to DE19803022328 priority patent/DE3022328A1/en
Publication of JPS561049A publication Critical patent/JPS561049A/en
Publication of JPS6152460B2 publication Critical patent/JPS6152460B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/42Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
    • B01D61/44Ion-selective electrodialysis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C5/00Photographic processes or agents therefor; Regeneration of such processing agents
    • G03C5/26Processes using silver-salt-containing photosensitive materials or agents therefor
    • G03C5/395Regeneration of photographic processing agents other than developers; Replenishers therefor
    • G03C5/3956Microseparation techniques using membranes, e.g. reverse osmosis, ion exchange, resins, active charcoal
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/40Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture or use of photosensitive materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)
  • Photographic Developing Apparatuses (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はイオン交換膜法電気透析による写真処
理液廃液の再生方法で使用される電気透析層のガ
スケツトに関するものである。写真現像液中の現
像主薬が現像処理において、感光材料乳剤層の露
光済みの臭化銀及び/又は沃化銀、塩化銀を還元
して銀像を形成するとき、乳剤層内には、現像主
薬酸化生成物と臭素イオン及び/又は沃度イオ
ン、塩素イオンを副生する。 現像液の廃液中にはこの際副生される臭素イオ
ン及び/または沃度イオンが蓄積し、写真特性に
影響を及ぼすので該現像液廃液を再生利用するた
めにはこれらのハライドイオンの除去が必要であ
る。 カラー写真感光材料の現像処理では上記の現像
によつてできた銀像及び末露光のハロゲン化銀は
漂白液及び定着液、または漂白定着液によつて脱
銀されて最終的には色画像のみを残す工程が通常
必要とされている。 しかし、カラー写真感光材料を漂白定着処理す
ると、漂白定着液中にはチオ硫酸銀とハライドイ
オンが蓄積するので、これらを除去すること及び
有機酸第二鉄錯イオンの一部が有機酸第一鉄錯イ
オンに変化して銀に対する酸化能力が低下するの
で第一鉄錯イオンを第二鉄錯イオンに酸化するこ
とがこの漂白定着液を再生して再使用するために
はぜひとも必要である。 上記写真現像液の廃液からハライドイオンを除
去する方法としてまた写真用漂白定着液からチオ
硫酸銀とハライドイオンを除去する方法として、
陰極と陽極の間が陽イオン交換膜と陰イオン交換
膜により交互に仕切られ、陰極側から陽極側へ向
つて陰極室、複数個の脱塩室(陰極側が陽イオン
交換膜、陽極側が陰イオン交換膜で仕切られた
室)、複数個の濃縮室(陰極側が陰イオン交換
膜、陽極側が陽イオン交換膜で仕切られた室)お
よび陽極室とからなるイオン交換膜電気透析槽の
脱塩室に現像液廃液を注ぎ濃縮室には硫酸ナトリ
ウム溶液または、炭酸ナトリウムを注いで陰陽両
極側に直流を通じ、電気透析を行なう方法(イオ
ン交換膜電気透析法)が知られており、例えば、 S.Mizusawa,A.Sasai and N.Mii;Bulletin of
the Society of Scientific Photography of
Japan.No.18.38〜44.1968にはイオン交換膜の電流
密度を0.50A/dm2から2.0A/dm2にした現像液
廃液中の臭素イオン除去に関する実験データが報
告されている。 さらにイオン交換膜電気透析法を用いて現像液
を再生する方法は、特公昭52―34939、特開昭51
―84636、51―85722、51―97432、52―119934、
53―149331、53―46732、54―9626、54―19741、
53―7234、52―146236、52―143018、54―58028
に記載され、漂白定着液を再生する方法は、特開
昭53―60371に記載されている。 電気透析槽には一般にスチレン―ブタジエン共
重合体と天然ゴムの混合体又はネオプレンが用い
られていた。 本発明者は、上記イオン交換膜電気透析槽に用
いられるゴムガスケツトの材質が写真処理液の特
性に極めて重大な影響を与えることを発見した。
すなわち、イオン交換膜電気透析槽に用いられる
ゴムガスケツトは、次のような性質を兼ね備えて
いなければならない。 1 適当な強度 機械的強度、平滑性、イオン交換膜をはり重ね
ていく上にゴムガスケツトが硬すぎても密着が悪
くなる。そのために脱塩液(現像廃液)と濃縮液
との間で、液のリークがあつて、透析効率上、都
合が悪いのみならず、透析槽の表面から液がもれ
てくるという極めて好ましくない事態が起る。ま
た、このゴムが軟らかすぎても一定のゴムガスケ
ツト―イオン交換膜間の間隔を保つて透析槽を組
み立てるのが難かしい。また、これだけ精密な槽
が必要なだけに軟らかすぎることはゴムガスケツ
トに加工精度を低下させることになるし、またイ
オン交換膜をはりつけて槽を組みたてる作業自身
が非常に困難となる。従つて適当な硬度、機械的
な強度が必要である。 2 化学薬品耐性 現像液廃液は特に濃厚なアルカリ性溶液であり
(通常PH>10)、更にベンジルアルコールやジエチ
レングリコールも含むことがある。また漂白定着
液廃液は弱いけれども酸化性を有しており、漂白
定着液にもちこまれた現像液成分も考え合わせる
と種々のPH緩衝剤成分も含んでいる。従つて写真
処理液廃液の透析槽に用いるゴムガスケツトは、
この様な化学薬品に対して充分な耐性を有してい
なければならない。 これらの特性の他に、写真処理液廃液のイオン
交換膜電気透析槽用のゴムガスケツトには一般の
電気透析技術の常識を越える写真特性も満足せね
ばならない。 3 写真特性 ハロゲン化銀写真感光材料は元来微量の化学物
質に対して非常に敏感にその特性を変えることが
ある。 例えば写真感度を減感または増感させたりカブ
リを発生させて一定の処理条件の下での写真性の
均質等が得られなくなることがあるし、また、カ
ラー写真感光材料は最終的には鮮明な色画像のみ
が得られなければならないのに脱銀不良という現
象が起きて色画像鮮明さを低下させるようなこと
がある。これらの問題はたとえ写真処理液を再生
するときであつても完全に回避されなければなら
ない。 一般に写真とは異なる分野で電気透析槽に用い
られる、ネオプレンゴムは、上記の1、2の特性
を満足しながら写真処理液という特殊な分野では
3の写真特性を満足させるものは得られなかつ
た。また、エチレンビニルアセテート共重合体よ
りなるガスケツトは、2、3を満足しながら1に
いう硬度が高すぎてイオン交換膜とガスケツトと
のなじみが悪く液のリークが多いことで使用に耐
えるものではない。また一般的なゴム材質を種々
検討したが、3の写真特性を満足させるものは全
くなかつた。 本発明の目的は、写真処理廃液の再生用イオン
交換膜電気透析槽に用いることができるゴムガス
ケツト材質について上記の必要な特性を具備し、
完べきなものを提供することである。特に再生さ
れた処理液の写真特性を悪化させず、しかも物理
的強度の適当なゴムガスケツトの材料を提供する
ことにある。 本発明の目的は写真用処理液廃液をイオン交換
膜法電気透析に再生する際のイオン交換膜法電気
透析槽のガスケツトの材料としてエチレン―プロ
ピレンゴム状共重合体を用いることにより達成さ
れた。 本発明において写真用処理液廃液は主に写真用
現像液及びカラー写真用漂白定着液の廃液を意味
する。 本発明ではイオン交換膜法電気透析槽のガスケ
ツトは、エチレン―プロピレンゴム状共重合体で
構成されるが該エチレン―プロピレンゴム状共重
合体は特に限定的ではなく公知のゴム状共重合体
が使用出来る。例えばエチレンモノマーとロピレ
ンモノマーと共重合して得られるもの所謂EPR
と称されるもの或いはエチレンモノマー、プロピ
レンモノマー及びジエンモノマーを共重合させて
得られるもの所謂EPT又はEPDMと称されるも
のが好適に使用される。また前記エチレン―プロ
ピレンゴム状共重合体中のエチレンユニツトとプ
ロピレンユニツトとの割合は限定的なものではな
く該共重合体がゴム弾性を表わす範囲であれば任
意の値をとることが出来る。一般にはエチレンユ
ニツトを35〜90%好ましくは50〜75%更に好まし
くは60〜70%含むものが最も広く用いうる。また
前記EPT又はEPDMと称されるエチレンモノマ
ー、プロピレンモノマー及びジエンモノマーを共
重合させて得られる3元素の共重合体にあつては
第3成分としてのジエンモノマーは特に限定的で
はないが一般に数%以下含むものが好適に使用さ
れる。該ジエンモノマーとしては公知のものが使
用出来、一般にはブタジエン、イソプレン素の非
共役二重結合を有するジエンモノマー或は1,4
―ブタジエン、ジシクロペンタジエン、1,4―
シクロヘキサジエン、メチレンノルボレン、エチ
リデンノルボネン等の共役二重結合を有するジエ
ンモノマー等が好適に使用される。 本発明において用いる前記EPR、EPT又は
EPDMと称されるゴム状共重合体をイオン交換膜
法電気透析槽のガスケツト材質として用いた場合
は他の合成樹脂例えば酢酸ビニル―エチレン共重
合体、ネオプレンゴム、シリコンゴム等に比べて
後述する実施例からも明らかな如く廃液を再生し
て得られる再生液を現像液或いは漂白定着液とし
て用いてもほとんど悪影響なしで使用出来る。こ
れに対して他の合成樹脂を該ガスケツト材質に用
いた場合は後述する比較例から明らかな如く廃液
を再生して得られる再生液を現像液或いは漂白用
定着液として用いる時カリが大きくなつたり脱銀
が不完全だつたり或いは液のリークが起りやすい
等の欠陥が生じ満足な再生液となり得ない。この
ような現像がイオン交換膜法電気透析槽のガスケ
ツト材質の差異によつて生ずるのは驚異的なこと
であるがその作用機構については現在尚明らかで
はない。エチレン―プロピレンゴム状共重合体に
あつても加硫剤或いは加硫促進剤として含硫黄素
化合物を用いないものが好適である。また老化防
止剤としてアミン素化合物、添加剤として脂肪酸
及びその塩類の添加も出来るだけ少なくするか全
く使用しないものが好適である。なぜならば前記
添加剤等はイオン交換膜法電気透析処理に際し、
処理液中に少量溶解するか処理液含有成分と化学
的に反応を起し処理液の性能を悪化させるものと
考えられる。特に現像液廃液にはベンジルアルコ
ール、ジエチレングリコールなどの有機溶剤が含
まれておりまた高アルカリであるためにこれらの
ゴム添加剤が一層処理液中に抽出されやすい条件
がそろつているものと考えられる、それだけに写
真処理液用透析槽のゴムガスケツト材質は吟味さ
れなければならないしその精密さはイオン交換膜
電気透析技術においても常識を越えるものがある
ことは何人も認めざるを得ない。 上記電気透析層および電解層の陰極の材料とし
ては鉄、ニツケル、鉛、亜鉛、ステンレススチー
ル等が、また、陽極の材料としては白金、白金メ
ツキチタン、黒鉛等があげられる。陰イオン交換
膜としては強塩基性型、陽イオン交換膜としては
強酸性型の交換膜が望ましい。 上記電気透析層の陰極室、濃縮室、陽極室およ
び上記電解層の陽極室に注ぐ電解質溶液としては
水酸化ナトリウム溶液、炭酸ナトリウム溶液、炭
酸カリウム溶液または水酸化カリウム溶液の如き
アルカリ溶液、硫酸ナトリウム溶液の如き塩の溶
液、硫酸の如き酸の溶液があげられる。これらの
電解質溶液の濃度は0.001規定以上で十分であ
り、より好ましくは0.01から2規定である。これ
らの溶液に、アミノポリカルボン酸またはアミノ
ポリホスホン酸の如き、キレート化剤が含まれて
いることがより好ましい。また特に濃縮液に限つ
ては、現像液廃液の再生には対応する現像液廃液
を、漂白定着液廃液の再生には対応する漂白定着
液又はチオ硫酸塩と亜硫酸ナトリウムで構成して
もよい。またこれら現像処理液廃液のイオン交換
膜電気透析のために通ずる電流密度はイオン交換
膜の特性及び現像処理廃液の特性によつても異な
るが一般に0.1A/dm2〜10A/dm2、より好まし
くは0.2A/dm2〜5A/dm2である。 本発明のイオン交換膜電気透析法とは陰極と陽
極との間が陽イオン交換膜と陰イオン交換膜とに
より交互に仕切られた陰極室、複数の脱塩室(陰
極側が陽イオン交換膜陽極側が陰イオン交換膜で
仕切られた室)、複数個の濃縮室(陰極側が陰イ
オン交換膜、陽極側が陽イオン交換膜で仕切られ
た室)および陽極室とからなるイオン交換膜電気
透析層の脱塩室に現像液廃液又は、漂白定着液廃
液を注ぎ、陰極室、濃縮室および陽極室には硫酸
ナトリウム溶液又は炭酸ナトリウムの如き電解質
溶液を注いで陰陽両極間に直流を通じ現像液廃液
中の臭素イオン及び又は沃度イオン又は漂白定着
液中の銀、錯イオン及びハライドイオンを除去す
る方法また、陰極と陽極の間が陰イオン交換膜で
仕切られた陰極室と陽極室とからなる電解槽の陰
極室に現像液廃液を注ぎ陽極室に硫酸ナトリウム
溶液の如き電解質溶液を注いで陰陽両極間に直流
を通じ現像液廃液中の臭素イオンを除去する方法
も本イオン交換膜電気透析法に含まれる。 本発明のイオン交換膜電気透析法による写真現
像液または漂白定着液の再生には、透析層の脱塩
室に該廃液を供給する直前か又は同時に、特開昭
53―46,732、52―146,236、54―9,626、54―
19,741、53―132,343などに記載されているよ
うなポリマー、樹脂、各種のイオン交換樹脂(例
えば、ダイヤイオンSA―10A、SA―20A、PA―
316,418、WA―11、WA―20、CR―10、PK―
220、PK―208、ジユオライトS―37、アンバー
ライトIR―410)などの吸着体に該廃液を接触処
理することも本発明の方法に含まれる。 本発明の方法による写真処理液の再生には、該
廃液を透析層の脱塩室に供給して電気透析するこ
とには本質的に変りがなければ、該廃液を該脱塩
室に供給する直前、直後又は同時に該陰極室に供
給する場合もあり得る(例えば特開昭51―
85722)し、陰極室とには共通の同一タンクから
電解質溶液を供給するという方法も含まれるし、
濃縮室と陰極室又は濃縮室と陰極室に濃縮液を共
通の同一タンクから電解質溶液を供給するという
う方法も含まれる。 本発明のイオン交換膜電気透析法による写真処
理液廃液の再生方法には、写真処理機から排出す
る処理液廃液を一時的に貯めておいてから、本イ
オン交換膜電気透析法(及びあるときには電解法
と結びつけて)でハライドイオン、塩類、銀など
を除去、回収してから、不足処理剤成分を追添加
して再び補充液として使用するいわゆるバツチ法
も含まれる。特開昭54―37731に記載されている
ような写真処理液中の例えばブロマイドイオンを
検出することにより、イオン交換膜電気透析槽に
通電する電流量をコントロールしながら一定のブ
ロマイド濃度に保つようブロマイドイオンを透析
除去し写真処理機から排出する処理液廃液に、不
足処理剤成分のみを追添加して再び補充液として
使用するいわゆる連続的再生方法も本方法に含ま
れる。また電流効率を高く維持して電気透析する
ためには濃縮液を適宜、水で希釈してもよい。特
に前記の連続的再生方法のときには、濃縮液中の
ハライドイオン濃度、例えばブロマイドイオン濃
度を臭化カリウム換算で2gから20g/の範囲
で一定に保つように、濃縮液を水で希釈すること
が、現像液中のブロマイドイオンを一定に保つ
て、写真性の変動を少なくすること及びブロマイ
ドイオンを現像液から除去する電流効率を高く維
持することのためにより好ましい。この濃縮液を
希釈する水の補給には、例えば自動現像液の現像
液タンクに補充液を補充する補充ポンプと同調さ
せて、ポンプを作動させることなどして補充すれ
ば、現像される感材料に応じた水を補給すること
になり、濃縮液中のブロマイドイオン濃度がほぼ
一定に保たれて、現像液中のブロマイドイオン濃
度がより安定し、効率のよい透析を維持すること
ができる点で更に好ましい。前記バツチ式再生方
法のときには、透析時間と共に濃縮液中のブロマ
イドイオン濃度が上昇するので、透析中は濃縮液
中のブロマイドイオン濃度を2g〜20g/
(KBr換算)になるよう、ポンプで一定の水を補
給し濃縮液を希釈することが好ましい。 本発明を用いて再生すべき現像液は、知られて
いる現像主薬を含むことができる。現像主薬とし
ては、ジヒドロキシベンゼン類(たとえばハイド
ロキノン)、3―ピラゾリドン類(たとえば1―
フエニル―3―ピラゾリドン)、アミノフエノー
ル類(たとえばN―メチル―P―アミノフエノー
ル)、1―フエニル―3―ピラゾリン類、アスコ
ルビン酸、及び米国特許4,067,872号に記載の
1,2,3,4―テトラヒドロキノリン環とイン
ドレン環とが縮合したような複素環化合物類など
を単独もしくは組合せて用いることができる。現
像液には一般にこの他公知の保恒剤、アルカリ
剤、PH緩衝剤、カブリ防止剤などを含み、さらに
必要に応じ溶解助剤、色調剤、現像促進剤、界面
活性剤、消泡剤、硬水軟化剤、硬膜剤、粘性付与
剤などを含んでもよい。 本発明を用いて再生することのできるカラー現
像液は、一般に発色現像主薬を含むアルカリ性水
溶液から成る。発色現像主薬は公知の一級芳香族
アミン現像剤、例えばフエニレンジアミン類(例
えば4―アミノ―N,N―ジエチルアニリン、3
―メチル―4―アミノ―N,N―ジエチルアニリ
ン、4―アミノ―N―エチル―N―β―ヒドロキ
シエチルアニリン、3―メチル―4―アミノ―N
―エチル―N―β―ヒドロキシエチルアニリン、
3―メチル―4―アミノ―N―エチル―N―β―
メタンスルホアミドエチルアニリン、4―アミノ
―3―メチル―N―エチル―N―β―メトキシエ
チルアニリンなど)を用いることができる。この
他L.F.A.Mason著Photographic Processing
Chemistry(Focal Press刊、1966年)の226〜
229頁、米国特許2193015号、同2592364号、特開
昭48―64,933号などに記載のものを用いてよ
い。 カラー現像液はそのほかアルカリ金属の亜硫酸
塩、炭酸塩、ホウ酸塩およびリン酸塩の如きPH緩
衝剤、臭化剤、沃化物および有機カブリ防止剤の
如き現像抑制剤ないしカブリ防止剤などを含むこ
とができる。また必要に応じて、硬水軟化剤、ヒ
ドロキシルアミンの如き保恒剤、ベンジルアルコ
ール、ジエチレングリコールの如き有機溶剤、ポ
リエチレングリコール、四級アンモニウム塩、ア
ミン類の如き現像促進剤、色素形成カプラー、競
争カプラー、ナトリウムボロハイドライドの如き
かぶらせ剤、1―フエニル―3―ピラゾリドンの
如き補助現像薬、粘性付与剤、米国特許4083723
号に記載のポリカルボン酸系キレート剤、西独公
開(OLS)2622950号に記載の酸化防止剤などを
含んでもよい。 本発明を用いて再生可能な漂白定着液は漂白剤
として鉄()、コバルト()、クロム()、
銅()などの多価金属の化合物物、過酸類、キ
ノン類、ニトロソ化合物などを含むことができ
る。たとえばフエリシアン化物、重クロム酸塩、
鉄()またはコバルト()の有機錯塩、たと
えばエチレンジアミン四酢酸、ニトリロトリ酢
酸、1,3―ジアミノ―プロパノール四酢酸など
のアミノポリカルボン酸類あるいはクエン酸、酒
石酸、リンゴ酸などの有機酸の錯塩;過硫酸塩、
過マンガン酸塩;ニトロソフエノールなどを用い
ることができる。これらのうちフエリシアン化カ
リ、エチレンジアミン四酢酸鉄()ナトリウム
およびエチレンジアミン四酢酸鉄()アンモニ
ウムは特に有用である。漂白定着液には、米国特
許3,042,520号、同3,241,966号、特公昭45
―8506号、特公昭45―8836号などに記載の漂白促
進剤、特開昭53―65732号に記載のチオール化合
物の他、種々の添加剤を加えることもできる。 さらに、本発明の方法によるハロゲン化銀感光
材料及び写真処理液及びこれを用いて処理するハ
ロゲン化銀写真感光材料にはL.F.A.Mason著
“Photographic Processing Chemistry”Focal
Press(1974)や、T.H.James著“The Theory
of the Photographic Process”Macmillan
Publishers(1977)や、Research DisclosureNo.
17643(1978年12月)に記載されている通常の写
真処理薬品がすべて包含される。 つぎに実施例をあげて本発明の方法を説明する
が、本発明の内容がこれに限定されるものではな
い。 実施例 第1表の組成を有する発色現像液と第2表の組
成を有する漂白定着液と水洗水とで成るカラーペ
ーパー自動現像機で、プリント露光されたフジカ
ラーペーパーを第3表の如き工程で連続現像処理
した。 第1表 ベンジルアルコール 15ml ジエチレングリコール 8ml エチレンジアミン4酢酸・2トナリウム塩 5g 亜硫酸ナトリウム 2g 無水炭酸カリウム 30g ヒドロキシルアミン硫酸塩 3g 臭化カリウム 0.6g 4―アミノ―N―エチル―N―(β―メタンス
ルフオンアミドエチル)―m―トルイジン・3/
2硫酸塩・1水塩 5g 苛性ソーダでPH10.20に調整した水を加えて
1 第2表 エチレンジアミン4酢酸 2g エチレンジアミン4酢酸第2鉄塩 40g 亜硫酸ナトリウム 5g チオ硫酸アンモニウム 70g 水を加えて 1 第3表 現像工程 発色現像 3分30秒 33℃ 漂白定着 1分30秒 33℃ 水 洗 2分30秒 25〜30℃ この発色現像液タンクに、次のようなイオン交
換膜電気透析槽の脱塩室に連結して、発色現像液
を循環した。この透析槽に通電する電流量を調節
することによつて、発色現像液のKBr濃度を一定
に保つてカラーペーパーを現像した。ここで使用
したイオン交換膜電気透析槽はステンレススチー
ル陰極と、白金メツキチタン陽極の間が20枚の強
酸型陽イオン交換膜と20枚の強塩基型陰イオン交
換膜で交互に仕切られておりこれらのイオン交換
膜の間には第4表に示す各種材質のゴムガスケツ
トがはさまれて1個の陰極室20個の濃縮室(陰極
側が陰イオン交換膜、陽極側が陽イオン交換膜で
仕切られた室)、19個の脱塩室(陰極側が陽イオ
ン交換膜、陽極が陰イオン交換膜で仕切られた
室)および1個の陽極室とから構成されている。
この透析槽の脱塩室には上記のように現像液を供
給し、濃縮室には、30g/の硫酸ナトリウム水
溶液を供給し、更に陰極室と陽極室には30g/
の硫酸ナトリウム水溶液を濃縮室とは別係統で供
給して陰陽極間に直流を通じ、電気透析をしなが
らカラーペーパーの現像を行なつた。 これらの連続現像処理を一定時間行なつた後、
露光量を段階的に変化させた光学ウエツヂを通し
て三色分解露光したストリツプスを現像処理して
得られた写真性能を第5表に示す。
The present invention relates to a gasket for an electrodialysis layer used in a method for regenerating photographic processing solution waste using ion exchange membrane electrodialysis. When the developing agent in the photographic developer reduces exposed silver bromide, silver iodide, and silver chloride in the emulsion layer of a light-sensitive material to form a silver image in the development process, the developing agent in the emulsion layer is Produces main ingredient oxidation products, bromide ions, iodide ions, and chloride ions as by-products. Bromine ions and/or iodide ions, which are by-produced at this time, accumulate in the developer waste and affect photographic properties, so in order to recycle the developer waste, it is necessary to remove these halide ions. is necessary. In the development process of color photographic light-sensitive materials, the silver image and late-exposed silver halide produced by the above development are desilvered by a bleach and fixing solution, or a bleach-fixing solution, and finally only a color image is produced. A process that leaves behind is usually required. However, when color photographic light-sensitive materials are bleach-fixed, silver thiosulfate and halide ions accumulate in the bleach-fix solution. Since the silver oxidizing ability decreases when it changes to iron complex ions, it is absolutely necessary to oxidize the ferrous complex ions to ferric complex ions in order to regenerate and reuse this bleach-fix solution. As a method for removing halide ions from the waste solution of the photographic developer, and as a method for removing silver thiosulfate and halide ions from the photographic bleach-fix solution,
The cathode and anode are alternately partitioned by cation exchange membranes and anion exchange membranes, and from the cathode side to the anode side there are a cathode chamber and multiple desalination chambers (cation exchange membrane on the cathode side, anion exchange membrane on the anode side). A desalination chamber of an ion exchange membrane electrodialysis tank consisting of a chamber separated by an exchange membrane), multiple concentration chambers (chamber divided by an anion exchange membrane on the cathode side and a cation exchange membrane on the anode side), and an anode chamber. A known method is to perform electrodialysis (ion exchange membrane electrodialysis method) by pouring waste developer solution into a concentration chamber, pouring a sodium sulfate solution or sodium carbonate into a concentration chamber, and passing a direct current to both the anode and negative poles (ion exchange membrane electrodialysis method). Mizusawa, A.Sasai and N.Mii;Bulletin of
the Society of Scientific Photography of
Japan.No. 18.38-44.1968 reports experimental data regarding the removal of bromide ions from developer waste using an ion exchange membrane with a current density of 0.50 A/dm 2 to 2.0 A/dm 2 . Furthermore, methods for regenerating the developer using ion-exchange membrane electrodialysis are disclosed in Japanese Patent Publication No. 52-34939,
-84636, 51-85722, 51-97432, 52-119934,
53-149331, 53-46732, 54-9626, 54-19741,
53-7234, 52-146236, 52-143018, 54-58028
A method for regenerating the bleach-fix solution is described in Japanese Patent Application Laid-open No. 53-60371. Electrodialysis cells commonly used a mixture of styrene-butadiene copolymer and natural rubber or neoprene. The present inventor has discovered that the material of the rubber gasket used in the ion exchange membrane electrodialysis cell has a very significant effect on the characteristics of the photographic processing solution.
That is, the rubber gasket used in the ion exchange membrane electrodialysis tank must have the following properties. 1 Appropriate strength Mechanical strength, smoothness, if the ion exchange membranes are layered and the rubber gasket is too hard, the adhesion will be poor. As a result, fluid leaks between the desalting solution (development waste solution) and the concentrated solution, which is not only inconvenient in terms of dialysis efficiency, but also extremely undesirable as the solution leaks from the surface of the dialysis tank. A situation happens. Furthermore, even if this rubber is too soft, it is difficult to assemble a dialysis tank while maintaining a certain distance between the rubber gasket and the ion exchange membrane. Furthermore, since such a precise tank is required, if the rubber gasket is too soft, processing accuracy will be reduced, and the process of attaching the ion exchange membrane and assembling the tank itself will be extremely difficult. Therefore, appropriate hardness and mechanical strength are required. 2 Chemical Resistance Developer waste is a particularly concentrated alkaline solution (usually PH > 10) and may also contain benzyl alcohol and diethylene glycol. In addition, the bleach-fix waste solution has weak oxidizing properties, and when considering the developer components brought into the bleach-fix solution, it also contains various PH buffer components. Therefore, the rubber gasket used in the dialysis tank for photographic processing solution waste is
It must have sufficient resistance to such chemicals. In addition to these properties, a rubber gasket for an ion-exchange membrane electrodialyzer for photographic processing solution waste must also satisfy photographic properties that exceed the common knowledge of general electrodialysis technology. 3 Photographic Properties Silver halide photographic materials are inherently very sensitive to trace amounts of chemical substances and their properties may change. For example, the photographic sensitivity may be desensitized or sensitized, or fog may occur, making it impossible to obtain uniform photographic properties under certain processing conditions.Furthermore, color photographic materials may not be as clear in the end. Although it is necessary to obtain only a color image, a phenomenon of poor desilvering may occur, reducing the sharpness of the color image. These problems must be completely avoided even when regenerating photographic processing solutions. Neoprene rubber, which is generally used in electrodialysis tanks in fields other than photography, satisfies characteristics 1 and 2 above, but in the special field of photographic processing liquids, it has not been possible to obtain one that satisfies photographic characteristics 3. . In addition, although gaskets made of ethylene vinyl acetate copolymer satisfy conditions 2 and 3, they have too high hardness as described in 1, making them difficult to compatibility with the ion exchange membrane and the gasket, resulting in frequent liquid leaks, making them unusable. do not have. In addition, various common rubber materials were investigated, but none satisfied the photographic properties described in 3. The object of the present invention is to provide a rubber gasket material that can be used in an ion exchange membrane electrodialysis tank for regenerating photographic processing waste liquid and has the above-mentioned necessary characteristics.
The goal is to provide the perfect product. In particular, it is an object of the present invention to provide a material for a rubber gasket that does not deteriorate the photographic properties of the recycled processing solution and has appropriate physical strength. The object of the present invention has been achieved by using an ethylene-propylene rubbery copolymer as a gasket material for an ion-exchange membrane electrodialysis tank when photographic processing solution waste is regenerated for ion-exchange membrane electrodialysis. In the present invention, the photographic processing solution waste mainly refers to waste solutions of photographic developers and color photographic bleach-fix solutions. In the present invention, the gasket of the ion exchange membrane electrodialysis tank is composed of an ethylene-propylene rubbery copolymer, but the ethylene-propylene rubbery copolymer is not particularly limited, and known rubbery copolymers may be used. Can be used. For example, the so-called EPR obtained by copolymerizing ethylene monomer and propylene monomer
EPT or EPDM, which is obtained by copolymerizing ethylene monomer, propylene monomer and diene monomer, is preferably used. Further, the ratio of ethylene units to propylene units in the ethylene-propylene rubbery copolymer is not limited and can be any value as long as the copolymer exhibits rubber elasticity. In general, those containing 35 to 90% ethylene units, preferably 50 to 75%, more preferably 60 to 70%, can be most widely used. In addition, in the case of the three-element copolymer obtained by copolymerizing ethylene monomer, propylene monomer, and diene monomer called EPT or EPDM, the diene monomer as the third component is not particularly limited, but generally several % or less is preferably used. As the diene monomer, known ones can be used, and generally diene monomers having a non-conjugated double bond such as butadiene, isoprene, or 1,4
-Butadiene, dicyclopentadiene, 1,4-
Diene monomers having a conjugated double bond such as cyclohexadiene, methylene norbolene, ethylidene norbornene, etc. are preferably used. The above EPR, EPT or
When a rubbery copolymer called EPDM is used as a gasket material for an ion-exchange membrane electrodialysis tank, it will be explained later in comparison to other synthetic resins such as vinyl acetate-ethylene copolymer, neoprene rubber, silicone rubber, etc. As is clear from the examples, the regenerated solution obtained by regenerating the waste solution can be used as a developing solution or a bleach-fixing solution with almost no adverse effects. On the other hand, when other synthetic resins are used as the gasket material, as is clear from the comparative examples described later, when the recycled liquid obtained by recycling the waste liquid is used as a developer or a fixer for bleaching, the potash becomes large. Defects such as incomplete desilvering or easy liquid leakage occur, making it impossible to obtain a satisfactory regenerating liquid. It is surprising that such development is caused by differences in the gasket materials of ion-exchange membrane electrodialyzers, but the mechanism of action is still unclear. Even in the case of ethylene-propylene rubber-like copolymers, those that do not use a sulfur-containing compound as a vulcanizing agent or vulcanization accelerator are preferred. Further, it is preferable that the addition of an amine compound as an anti-aging agent and fatty acids and their salts as additives be minimized or not used at all. This is because the additives mentioned above are used during ion exchange membrane electrodialysis treatment.
It is thought that a small amount of it dissolves in the processing liquid or chemically reacts with the components contained in the processing liquid, thereby deteriorating the performance of the processing liquid. In particular, developer waste liquid contains organic solvents such as benzyl alcohol and diethylene glycol, and is highly alkaline, so it is thought that the conditions are perfect for these rubber additives to be more easily extracted into the processing liquid. For this reason, the material of the rubber gasket in the dialysis tank for photographic processing solutions must be carefully examined, and everyone must admit that its precision exceeds common sense even in ion exchange membrane electrodialysis technology. Materials for the cathode of the electrodialysis layer and electrolytic layer include iron, nickel, lead, zinc, stainless steel, etc., and materials for the anode include platinum, platinum-plated titanium, graphite, etc. The anion exchange membrane is preferably a strongly basic type, and the cation exchange membrane is preferably a strongly acidic type. The electrolyte solution poured into the cathode chamber, concentration chamber, anode chamber of the electrodialysis layer and the anode chamber of the electrolyte layer includes an alkaline solution such as sodium hydroxide solution, sodium carbonate solution, potassium carbonate solution or potassium hydroxide solution, sodium sulfate. Examples include solutions of salts such as solutions, and solutions of acids such as sulfuric acid. It is sufficient that the concentration of these electrolyte solutions is 0.001N or more, and more preferably 0.01 to 2N. More preferably, these solutions contain a chelating agent, such as an aminopolycarboxylic acid or an aminopolyphosphonic acid. In particular, with respect to the concentrated solution, the developer waste solution may be composed of a corresponding developer waste solution for regenerating a developer waste solution, and the bleach-fix solution or thiosulfate and sodium sulfite may be used for regenerating a bleach-fix solution waste solution. In addition, the current density applied to the ion exchange membrane electrodialysis of these developer waste solutions varies depending on the characteristics of the ion exchange membrane and the characteristics of the developer waste solution, but is generally 0.1 A/dm 2 to 10 A/dm 2 , more preferably. is 0.2A/ dm2 to 5A/ dm2 . The ion exchange membrane electrodialysis method of the present invention consists of a cathode chamber in which the cathode and anode are alternately partitioned by cation exchange membranes and anion exchange membranes, and a plurality of demineralization chambers (the cathode side is the cation exchange membrane anode). An ion exchange membrane electrodialysis layer consisting of a chamber (chamber partitioned on the side by an anion exchange membrane), multiple concentration chambers (chamber partitioned by an anion exchange membrane on the cathode side and a cation exchange membrane on the anode side), and an anode chamber. Pour the waste developer solution or waste bleach-fix solution into the desalination chamber, and pour an electrolyte solution such as sodium sulfate solution or sodium carbonate into the cathode, concentration chamber, and anode chamber, and pass a direct current between the negative and anode electrodes to remove the waste solution from the developer solution. A method for removing bromide ions and/or iodide ions or silver, complex ions, and halide ions in a bleach-fix solution.Also, an electrolytic cell consisting of a cathode chamber and an anode chamber in which the cathode and anode are separated by an anion exchange membrane. This ion-exchange membrane electrodialysis method also includes a method in which developer waste is poured into the cathode chamber of the anode chamber, an electrolyte solution such as a sodium sulfate solution is poured into the anode chamber, and a direct current is passed between the negative and anode electrodes to remove bromide ions from the developer waste. . To regenerate a photographic developing solution or a bleach-fixing solution by the ion-exchange membrane electrodialysis method of the present invention, the waste solution is immediately or simultaneously supplied to the desalination chamber of the dialysis layer,
53-46, 732, 52-146, 236, 54-9, 626, 54-
Polymers, resins, and various ion exchange resins (e.g., Diaion SA-10A, SA-20A, PA-
316, 418, WA-11, WA-20, CR-10, PK-
220, PK-208, Diuolite S-37, and Amberlite IR-410), the method of the present invention also includes contact treatment of the waste liquid with an adsorbent such as Amberlite IR-410. To regenerate the photographic processing solution according to the method of the present invention, if there is essentially no change in the fact that the waste solution is supplied to the demineralization chamber of the dialysis layer and subjected to electrodialysis, the waste solution is supplied to the demineralization chamber. It may be supplied to the cathode chamber immediately before, immediately after, or at the same time (for example, in Japanese Patent Application Laid-Open No.
85722), and the cathode chamber also includes a method of supplying the electrolyte solution from the same tank,
It also includes a method in which the electrolyte solution is supplied to the concentration chamber and the cathode chamber or the concentration chamber and the cathode chamber from the same tank. In the method for regenerating photographic processing solution waste using the ion-exchange membrane electrodialysis method of the present invention, the processing solution waste discharged from the photographic processor is temporarily stored, and then the present ion-exchange membrane electrodialysis method (and in some cases It also includes the so-called batch method, in which halide ions, salts, silver, etc. are removed and recovered using a method (combined with an electrolytic method), and then a deficient treatment agent component is added and used again as a replenisher. By detecting, for example, bromide ions in the photographic processing solution as described in Japanese Patent Application Laid-Open No. 54-37731, bromide ions can be maintained at a constant bromide concentration while controlling the amount of current applied to the ion exchange membrane electrodialysis tank. This method also includes a so-called continuous regeneration method in which only the deficient processing agent components are added to the waste processing solution discharged from the photographic processor after dialysis removal of ions and the waste is used again as a replenisher. Further, in order to perform electrodialysis while maintaining high current efficiency, the concentrated solution may be diluted with water as appropriate. In particular, when using the continuous regeneration method described above, the concentrated solution may be diluted with water so as to keep the halide ion concentration, for example, bromide ion concentration, in the concentrated solution constant in the range of 2 to 20 g/concentration in terms of potassium bromide. It is more preferable to keep the bromide ions in the developer constant to reduce fluctuations in photographic properties and to maintain high current efficiency for removing bromide ions from the developer. To replenish water for diluting this concentrated solution, for example, by operating the pump in synchronization with the replenishment pump that replenishes the replenisher tank of the automatic developer, the sensitive material to be developed can be replenished. The bromide ion concentration in the concentrate is kept almost constant, the bromide ion concentration in the developer is more stable, and efficient dialysis can be maintained. More preferred. In the case of the batch regeneration method, the bromide ion concentration in the concentrate increases with the dialysis time, so the bromide ion concentration in the concentrate increases by 2g to 20g/during the dialysis.
It is preferable to dilute the concentrated liquid by replenishing a certain amount of water with a pump so that (in terms of KBr). The developer solution to be regenerated using the present invention can contain known developing agents. As developing agents, dihydroxybenzenes (e.g. hydroquinone), 3-pyrazolidones (e.g. 1-
phenyl-3-pyrazolidone), aminophenols (e.g. N-methyl-P-aminophenol), 1-phenyl-3-pyrazolines, ascorbic acid, and 1,2, as described in U.S. Pat. No. 4,067,872. Heterocyclic compounds in which a 3,4-tetrahydroquinoline ring and an indolene ring are condensed can be used alone or in combination. The developing solution generally contains other well-known preservatives, alkaline agents, PH buffers, antifoggants, etc., and, if necessary, solubilizing agents, color toners, development accelerators, surfactants, antifoaming agents, etc. It may also contain water softeners, hardeners, viscosity-imparting agents, and the like. Color developers that can be regenerated using the present invention generally consist of alkaline aqueous solutions containing color developing agents. The color developing agent is a known primary aromatic amine developer, such as phenylene diamines (for example, 4-amino-N,N-diethylaniline, 3
-Methyl-4-amino-N,N-diethylaniline, 4-amino-N-ethyl-N-β-hydroxyethylaniline, 3-methyl-4-amino-N
-Ethyl-N-β-hydroxyethylaniline,
3-methyl-4-amino-N-ethyl-N-β-
methanesulfamide ethylaniline, 4-amino-3-methyl-N-ethyl-N-β-methoxyethylaniline, etc.) can be used. OthersPhotographic Processing by LFAMason
Chemistry (Focal Press, 1966), 226~
229, those described in U.S. Pat. No. 2,193,015, U.S. Pat. Color developers also contain pH buffering agents such as alkali metal sulfites, carbonates, borates and phosphates, development inhibitors or antifoggants such as bromines, iodides and organic antifoggants. be able to. If necessary, water softeners, preservatives such as hydroxylamine, organic solvents such as benzyl alcohol and diethylene glycol, development accelerators such as polyethylene glycol, quaternary ammonium salts, and amines, dye-forming couplers, competitive couplers, Fogging agents such as sodium borohydride, auxiliary developers such as 1-phenyl-3-pyrazolidone, viscosity-imparting agents, US Pat. No. 4,083,723
It may also contain a polycarboxylic acid chelating agent described in No. 1, an antioxidant described in OLS No. 2622950, and the like. The bleach-fix solution that can be reproduced using the present invention contains iron (), cobalt (), chromium (),
It can include compounds of polyvalent metals such as copper (), peracids, quinones, nitroso compounds, and the like. For example, ferricyanide, dichromate,
Organic complex salts of iron () or cobalt (), such as aminopolycarboxylic acids such as ethylenediaminetetraacetic acid, nitrilotriacetic acid, 1,3-diamino-propanoltetraacetic acid, or complex salts of organic acids such as citric acid, tartaric acid, malic acid; sulfate,
Permanganate; nitrosophenol, etc. can be used. Of these, potassium ferricyanide, sodium ferric ethylenediaminetetraacetate, and ammonium ferric ethylenediaminetetraacetate are particularly useful. Bleach-fix solutions include U.S. Patent No. 3,042,520, U.S. Patent No. 3,241,966,
In addition to the bleach accelerators described in Japanese Patent Publication No. 8506-8506 and Japanese Patent Publication No. 45-8836, and the thiol compounds described in Japanese Patent Application Laid-open No. 65732-1983, various additives can also be added. Further, the silver halide light-sensitive material and photographic processing solution according to the method of the present invention, and the silver halide photographic light-sensitive material processed using the same, are also described in "Photographic Processing Chemistry" by LFA Mason, Focal
Press (1974), “The Theory” by T.H.
of the Photographic Process”Macmillan
Publishers (1977), Research Disclosure No.
17643 (December 1978). Next, the method of the present invention will be explained with reference to Examples, but the content of the present invention is not limited thereto. Example Fuji color paper that has been exposed to print is subjected to the steps shown in Table 3 using a color paper automatic developing machine consisting of a color developing solution having the composition shown in Table 1, a bleach-fixing solution having the composition shown in Table 2, and washing water. Continuous development processing was performed. Table 1 Benzyl alcohol 15ml Diethylene glycol 8ml Ethylenediaminetetraacetic acid/2tonalium salt 5g Sodium sulfite 2g Anhydrous potassium carbonate 30g Hydroxylamine sulfate 3g Potassium bromide 0.6g 4-Amino-N-ethyl-N-(β-methanesulfonamide) ethyl)-m-toluidine 3/
Disulfate/monohydrate 5g Add water adjusted to pH 10.20 with caustic soda
1 Table 2 Ethylenediaminetetraacetic acid 2g Ethylenediaminetetraacetic acid ferric salt 40g Sodium sulfite 5g Ammonium thiosulfate 70g Add water 1 Table 3 Development process Color development 3 minutes 30 seconds 33℃ Bleach fixing 1 minute 30 seconds 33℃ Wash with water 2 minutes and 30 seconds 25-30°C This color developer tank was connected to a desalting chamber of an ion exchange membrane electrodialysis tank as shown below, and the color developer was circulated. By adjusting the amount of current applied to this dialysis tank, color paper was developed while keeping the KBr concentration of the color developer constant. In the ion exchange membrane electrodialysis tank used here, the stainless steel cathode and platinum-plated titanium anode are alternately partitioned by 20 strong acid type cation exchange membranes and 20 strong base type anion exchange membranes. Rubber gaskets made of various materials shown in Table 4 were sandwiched between the ion exchange membranes of the ion exchange membranes to form one cathode chamber and 20 concentration chambers (the cathode side was partitioned by an anion exchange membrane and the anode side was partitioned by a cation exchange membrane. It consists of 19 demineralization chambers (chambers separated by a cation exchange membrane on the cathode side and an anion exchange membrane on the anode side), and one anode chamber.
A developing solution is supplied as described above to the desalination chamber of this dialysis tank, a 30 g/aqueous sodium sulfate solution is supplied to the concentration chamber, and 30 g/aqueous solution is supplied to the cathode chamber and anode chamber.
An aqueous solution of sodium sulfate was supplied in a separate system from the concentration chamber, and a direct current was passed between the cathode and anode, and color paper was developed while performing electrodialysis. After performing these continuous development treatments for a certain period of time,
Table 5 shows the photographic performance obtained by developing strips exposed to three-color separation through an optical wedge in which the exposure amount was changed stepwise.

【表】【table】

【表】【table】

【表】 脱銀は赤感層の定露光部における(脱銀が完全
にされている青光濃度を差しひいている)青光濃
度で示したので、高い値程、脱銀されない銀が残
つて色の純度が悪くなることを示している。 感度は濃度1.0における第1表及び第2表の処
方に従つて作つた新液を用いて処理したカラーペ
ーパーの感度に対する相対感度で示しているので
−は減感+は増感を示す。ゴム硬度はJIS―K―
6301―5で測定された値である。以上の結果から
明らかなように写真処理液廃液の再生(ハライド
イオン除去)に使用できるゴムガスケツトは非常
に限られておりエチレンプロピレン共重合体のみ
が写真性、物理性が同時に満足しうるものであ
る。すなわち透析槽用に一般的に用いられるテス
ト1のスチレン―ブタジエン共重体やネオプレン
ゴムはその物理的性質が満足されながら、写真処
理液用としては著しいカブリを発生したり脱銀不
良を起して適さない。一方エチレン―ビニルアセ
テート共重合体は写真性能としては不満足ながら
使用に耐えうる範囲であるけれども、硬度が高す
ぎて、透析層に使用するには液もれが起つたり、
時には脱塩室と濃縮空間での内部リークが発生し
て透析効率の低下を招くなどで、やはり適さな
い。 従つて本発明の構成のみが特異的に透析層ゴム
ガスケツトに必要な物理的性質と写真特性とを満
足させることができる。
[Table] Desilvering is indicated by the blue light density (subtracting the blue light density at which desilvering is complete) in the constant exposure area of the red-sensitive layer, so the higher the value, the more silver remains that has not been desilvered. This indicates that the color purity deteriorates. The sensitivity is expressed as a relative sensitivity to the sensitivity of color paper processed using the new solution prepared according to the formulations in Tables 1 and 2 at a concentration of 1.0, so - indicates desensitization + indicates sensitization. Rubber hardness is JIS-K-
This is the value measured with 6301-5. As is clear from the above results, the rubber gaskets that can be used for recycling (halide ion removal) of photographic processing solution waste are very limited, and only ethylene propylene copolymer can satisfy both photographic properties and physical properties. . In other words, although the styrene-butadiene copolymer and neoprene rubber of Test 1, which are commonly used for dialysis tanks, have satisfactory physical properties, they cause significant fogging and poor desilvering when used for photographic processing solutions. Not suitable. On the other hand, ethylene-vinyl acetate copolymer has unsatisfactory photographic performance but is usable, but its hardness is too high and causes leakage to be used in the dialysis layer.
Internal leaks sometimes occur in the demineralization chamber and concentration space, resulting in a decrease in dialysis efficiency, making it unsuitable. Therefore, only the configuration of the present invention can specifically satisfy the physical and photographic properties required for a dialysis layer rubber gasket.

Claims (1)

【特許請求の範囲】[Claims] 1 写真用処理液廃液をイオン交換膜法電気透析
により再生するに際し、イオン交換膜法電気透析
槽のガスケツトがエチレン―プロピレンゴム状共
重合体で構成されているものを用いることを特徴
とする写真用処理液廃液の再生方法。
1 Photograph characterized in that when photographic processing solution waste is regenerated by ion-exchange membrane electrodialysis, the gasket of the ion-exchange membrane electrodialysis tank is made of an ethylene-propylene rubber-like copolymer. A method for recycling waste treatment liquid.
JP7615979A 1979-06-15 1979-06-15 Regenerating method for waste photographic processing solution Granted JPS561049A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7615979A JPS561049A (en) 1979-06-15 1979-06-15 Regenerating method for waste photographic processing solution
DE19803022328 DE3022328A1 (en) 1979-06-15 1980-06-13 Regenerating spent photographic processing soln. - by ion exchange membrane electrodialysis using ethylene!-propylene! elastomer seals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7615979A JPS561049A (en) 1979-06-15 1979-06-15 Regenerating method for waste photographic processing solution

Publications (2)

Publication Number Publication Date
JPS561049A JPS561049A (en) 1981-01-08
JPS6152460B2 true JPS6152460B2 (en) 1986-11-13

Family

ID=13597265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7615979A Granted JPS561049A (en) 1979-06-15 1979-06-15 Regenerating method for waste photographic processing solution

Country Status (2)

Country Link
JP (1) JPS561049A (en)
DE (1) DE3022328A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4427507A (en) * 1982-03-22 1984-01-24 Shell Oil Company Process for the separation of glycol from an electrolyte-containing aqueous solution
DE3345346A1 (en) * 1983-12-15 1985-06-27 Fa. Stadler, 7963 Altshausen METHOD FOR RECOVERING USED PHOTOGRAPHIC FILMS AND LIQUIDS
JPS61251852A (en) 1985-04-30 1986-11-08 Konishiroku Photo Ind Co Ltd Method for processing silver halide color photographic sensitive material
JPH04445A (en) 1990-04-17 1992-01-06 Fuji Photo Film Co Ltd Processing method for silver halide color photosensitive material
JPH04346750A (en) * 1991-05-21 1992-12-02 Shimizu Kagaku Kk Method for emulsifying raw material in production of processed food

Also Published As

Publication number Publication date
DE3022328A1 (en) 1980-12-18
JPS561049A (en) 1981-01-08

Similar Documents

Publication Publication Date Title
JPS6152459B2 (en)
EP0456725B1 (en) Bleach-fix regeneration kit and use thereof in photographic processing
US4046571A (en) Processing solution for use as photographic developer bath and replenisher therefor
JPS6318729B2 (en)
JPH06329936A (en) Diaminostilbene compound and formation of image by using the same
US4089760A (en) Method for regenerating waste developers used for processing silver halide photographic materials and method for storing developers
JPS6152460B2 (en)
EP0071344B1 (en) Stable photographic developer and replenisher therefor
US4138257A (en) Process for the treatment of photographic materials
US4159245A (en) Method for removal of fogging components in photographic processing solution
WO1991007698A1 (en) Low effluent replenishment system for colour negative developers
JPS6173147A (en) Conservative method of high ph developing solution
JP2942422B2 (en) Photographic processing apparatus and processing method
JPS62133457A (en) Method for processing silver halide color photographic sensitive material and device for processing developing solution
JPS6158029B2 (en)
EP0605039A1 (en) A method of bleaching and fixing a color photographic element containing high iodide emulsions
JPH025048A (en) Color photographic developer and development of color photographic material
US3664838A (en) Treatment of and developing composition for photographic light-sensitive materials
JP2652499B2 (en) Color developing solution and processing method of silver halide color photographic light-sensitive material using the same
US5922520A (en) Photographic processing method and tank
JP3000248B2 (en) Color developing solution and processing method of silver halide color photographic light-sensitive material using the same
EP0410354B1 (en) Processing of silver halide color photographic material
JPH04249242A (en) Photographic processing method
JPH0580462A (en) Photographic processing method
JP3016988B2 (en) Processing solution for silver halide photosensitive materials