JPS60101677A - Multicolored line graphic reading device - Google Patents

Multicolored line graphic reading device

Info

Publication number
JPS60101677A
JPS60101677A JP58208525A JP20852583A JPS60101677A JP S60101677 A JPS60101677 A JP S60101677A JP 58208525 A JP58208525 A JP 58208525A JP 20852583 A JP20852583 A JP 20852583A JP S60101677 A JPS60101677 A JP S60101677A
Authority
JP
Japan
Prior art keywords
line
circuit
reading device
color separation
multicolor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58208525A
Other languages
Japanese (ja)
Inventor
Kazufumi Suzuki
一史 鈴木
Yukifumi Tsuda
津田 幸文
Hiroaki Kodera
宏曄 小寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58208525A priority Critical patent/JPS60101677A/en
Publication of JPS60101677A publication Critical patent/JPS60101677A/en
Pending legal-status Critical Current

Links

Landscapes

  • Image Input (AREA)

Abstract

PURPOSE:To enable automatic reading of a multicolored line graphic such as a drawing of integrated circuit etc., free a man from simple work, eliminate erroneous reading and shorten working time by providing an apex detecting mechanism, a color resolving mechanism etc. CONSTITUTION:An original drawing 11 is wound on a drum 12 and the drum 12 is rotated to make main scanning. At the same time, a subscanning stand 16 provided with an optical system, apex detecting mechanism and color resolving mechanism is scanned along a screw for subscanning 24 by a pulse motor 25 and subscanning is performed. The original drawing 1 is read by the subscanning made in the direction X which is paralled to the drum axis. The read data are stored in a memory 19 through a bus 17, and processed by a computer 18. It is also possible to confirm the course of processing by a color display 20 and give instruction for processing from a tablet 21. Thus, by providing a subscanning stand 16, automatic reading of multi-colored line graphic becomes possible, man is freed from simple work, erroneous reading is eliminated and working time can be shortened.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は集積回路の図面などの多色線図形を自動的に読
み取る多色線図形読取装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a multicolor line figure reading device for automatically reading multicolor line figures such as drawings of integrated circuits.

従来例の構成とその問題点 一般に第1図に示す集積回路の図面などの多色線図形を
、CA D’ (計算機を利用した設計システム)によ
って修正2編集などする場合、原図1を読み取り、計算
機の記憶装置に(メモリ)に入力する必要がある。メモ
リへは色C1,C2,・・・毎に線をたどって、頂点P
11.P12・・・、P21.P22.・・・。
Conventional configuration and its problems In general, when a polychrome line figure such as the drawing of an integrated circuit shown in Fig. 1 is modified or edited using CAD' (computer-aided design system), it is necessary to read the original drawing 1, It is necessary to input it into the computer's storage device (memory). To the memory, trace the line for each color C1, C2,... and select the vertex P.
11. P12..., P21. P22. ....

の座標を入力する。通常は図面上の線は10色程度の色
で塗り分けられているが、第1図では実線C1、破線C
2、点線C3・・・などによって色の区別を表わしてい
る。
Enter the coordinates of Normally, lines on drawings are colored in about 10 different colors, but in Figure 1, solid line C1 and broken line C1
2, dotted line C3, etc., represent color distinctions.

従来、この多色線図形の読取りは人間が行うのが普通で
あった。
Conventionally, this multicolored line figure has usually been read by a human.

第2図に示すように、原図1を座標読取機(ディジタイ
ザ)2にセットし、色毎に、目で色を識別しながら、同
じ色の線をたどって次々に現われる頂点Pijの位置へ
、座標読取りヘッド3を移動させ、頂点Pijでスイッ
チなどを操作し、頂点Pijの座標をメモリに入力して
いく。
As shown in Fig. 2, the original drawing 1 is set on the coordinate reader (digitizer) 2, and while visually identifying each color, follow the lines of the same color to the positions of the vertices Pij that appear one after another. The coordinate reading head 3 is moved, a switch or the like is operated at the vertex Pij, and the coordinates of the vertex Pij are input into the memory.

この作業は単純だが細かいので操作者の神経が疲れ、ミ
スも多い。また読み取りにかなり長い作業時間が必要な
上、確認後ミスが発見されると再度行わねばならず、無
駄な作業、時間をとられることが多い。
This work is simple but detailed, making it tiring for the operator and prone to mistakes. Furthermore, reading requires a considerable amount of time, and if a mistake is discovered after confirmation, the process must be repeated, which often results in wasted work and time.

発明の目的 本発明の目的は、多色線図形の頂点の読取りを自動化す
る装置を提供することにより、人間を単純作業から解放
し、ミスをなくシ、時間の短縮を図ることである。
OBJECTS OF THE INVENTION An object of the present invention is to provide a device that automates the reading of vertices of multicolored line figures, thereby freeing humans from simple tasks, eliminating errors, and reducing time.

発明の構成 本発明は、多色線図形の頂点の座標と、頂点を構成する
線の方向とを検出する頂点検出機構と、線を形成する画
素の色分解データを得る色分解機構と、頂点の座標及び
方向、画素の色分解データと座標を格納する記憶装置と
、各種演算を行う計算機とから構成され、多色線図形を
計算機中に再構成する多色線図形読取装置を提供する。
Structure of the Invention The present invention provides a vertex detection mechanism that detects the coordinates of vertices of a multicolor line figure and the directions of lines forming the vertices, a color separation mechanism that obtains color separation data of pixels forming the lines, and Provided is a multicolor line figure reading device that is comprised of a storage device for storing the coordinates and directions of pixels, color separation data and coordinates of pixels, and a computer for performing various calculations, and that reconstructs multicolor line figures in the computer.

実施例の説明 以下本発明を実施例にもとづいて詳細に説明する。Description of examples The present invention will be described in detail below based on examples.

第3図は本発明の1実施例の構成を示す図である。原図
11をドラム12に巻き付け、ドラム12を回転させて
主走査を行なうとともに、光学系、頂点検出機構および
色分解機構を具備した走査台16をパルスモータ25に
より副走査スクリュー24に沿ってドラム軸と平行なX
方向へ副走査することにより、原図11を読み取ってゆ
く、読み取って得られたデータはバス17を経てメモリ
19へ格納され、計算機18により処理される。又処理
経過をカラーディスプレイ20で確認したり、タブレッ
ト21などから処理の指示を行うこともできる。22は
ドラム軸、23は角度エンコーダである。
FIG. 3 is a diagram showing the configuration of one embodiment of the present invention. The original image 11 is wound around a drum 12, and the drum 12 is rotated to perform main scanning, and a scanning table 16 equipped with an optical system, a vertex detection mechanism, and a color separation mechanism is moved along the sub-scanning screw 24 by a pulse motor 25 to the drum axis. X parallel to
By sub-scanning in the direction, the original drawing 11 is read. The data obtained by reading is stored in the memory 19 via the bus 17 and processed by the computer 18. It is also possible to check the progress of the process on the color display 20 and give instructions for the process from the tablet 21 or the like. 22 is a drum shaft, and 23 is an angle encoder.

読み取りの対象とする原図11上の線は、第4図に示す
ような8つの方向D1.D2・・−・・D8に規格化さ
れてこれらの方向しかとらないものとし、原図11はド
ラム12上にB3.B7の方向がX方向となるように巻
き付けられているものとする。複数の線の交わりによっ
て生成される頂点の種類は、線の数が2本の時は第6図
に示す24種である。
The lines on the original drawing 11 to be read are arranged in eight directions D1. as shown in FIG. It is assumed that the original drawing 11 is standardized to D2...D8 and can only take these directions, and the original drawing 11 is placed on the drum 12 as B3. It is assumed that the wire is wound so that the direction of B7 is the X direction. When the number of lines is two, there are 24 types of vertices generated by the intersection of a plurality of lines as shown in FIG.

これは。C2” 28種からDl B6.D2D6.D
3D7゜D4D8という直線になる4種を除いたもので
ある。
this is. C2” 28 types to Dl B6.D2D6.D
This excludes four types that form a straight line: 3D7°D4D8.

同様に第6図に示すように、線が3本の場合は8C3=
66種、線が4本の場合は、C4=70種、線が6本で
66種、6本で28種、7本で8種、8本で1種である
。合計では2−256種から直線になる分を除いて、2
8−8co−801−4−243種である。
Similarly, as shown in Figure 6, if there are three lines, 8C3=
66 types, if there are 4 lines, C4 = 70 types, 6 lines = 66 types, 6 lines = 28 types, 7 lines = 8 types, 8 lines = 1 type. In total, from 2-256 species, excluding the straight line, 2
8-8co-801-4-243.

第7図a、bに示すように頂点検出機構27は、原図1
1の線の方向に合致させた8本の放射状の枝B1.B2
・・・B8から成り、レンズ系26で結像させた原図1
1の像を分析する。各校B1〜B8には第8図に示すよ
うに複数の感光素子(光センサ)PSl、PS2・・・
・・が配置されており、各センサがらの信号28は増幅
器29によって増幅され、しきい値回路30によって、
原図11の下地部分や低濃度で書かれた罫線の部分では
Qで、線の部分でだけ1になるように2値化される。こ
の2値信号31がしきい値回路33に入力され、′1′
”の信号が、あらかじめ設定した数より多い場合、信号
34に1″を出力する。この操作により多少途切れた線
も完全な線として判定し、逆に線が枝を横切った場合な
ど、ごく一部のセンサ信号だけが°゛1″′になった場
合には線でないと判定できる。
As shown in FIGS. 7a and 7b, the vertex detection mechanism 27
Eight radial branches aligned with the direction of line B1. B2
... Original image 1 consisting of B8 and imaged by lens system 26
Analyze image 1. Each school B1 to B8 has a plurality of photosensitive elements (photosensors) PS1, PS2, . . . as shown in FIG.
... are arranged, and the signal 28 from each sensor is amplified by an amplifier 29, and by a threshold circuit 30,
The background part of the original drawing 11 and the ruled line part drawn in low density are binarized with Q, and the value is 1 only in the line part. This binary signal 31 is input to the threshold circuit 33, and '1'
If the number of signals ``is greater than the preset number, 1'' is output to the signal 34. With this operation, even lines that are slightly interrupted can be determined as complete lines, and conversely, when only a small portion of the sensor signal becomes °゛1'', such as when a line crosses a branch, it can be determined that it is not a line. .

光学系は第9図に示すように、結像面の各校B1〜B8
に相当する部分から光ファイバ36−1゜36−2・・
・・36−8によって他所に置いた感光素子37−1〜
37−8へ像を導くようにしてもよい。
As shown in FIG.
Optical fiber 36-1゜36-2...
...Photosensitive element 37-1 placed elsewhere by 36-8
The image may be guided to 37-8.

各校B1〜B8からの信号34により、以下のように頂
点を検出することができる。例えば第10図に示すよう
に、原図11上の4本の線L1.L2゜B3.B4上に
センサがきた場合にはB1.B3.B6゜B7が1とな
るので、Dl、B3.B5.B7の方向からの線の交わ
った頂点であると認識することができる。第11図読取
りの場合は枝B1.B5が1″なので頂点でないと認識
できる。頂点であると認識した場合は頂点の座標と、1
″になったセンサの番号とをメモリへ格納する。座標は
主走査方向は第3図のドラム軸22直結の角度エンコー
ダ23のパルス数、副走査方向は副走査用スクリュー2
4を駆動するパルスモータ26の印加パルス数によって
各々知る。
The apex can be detected as follows using the signals 34 from each school B1 to B8. For example, as shown in FIG. 10, four lines L1. L2゜B3. If the sensor comes on B4, then B1. B3. Since B6°B7 becomes 1, Dl, B3. B5. It can be recognized as the vertex where the lines from the direction B7 intersect. In the case of reading FIG. 11, branch B1. Since B5 is 1", it can be recognized that it is not a vertex. If it is recognized as a vertex, the coordinates of the vertex and 1
'' is stored in the memory.The coordinates are the pulse number of the angle encoder 23 directly connected to the drum shaft 22 in Fig. 3 in the main scanning direction, and the number of pulses of the angle encoder 23 directly connected to the drum shaft 22 in the sub-scanning direction, and the coordinates of the sub-scanning screw 2 in the sub-scanning direction.
Each is determined by the number of pulses applied by the pulse motor 26 that drives the motor 4.

頂点検出機構として第12図a、b、cに示ずような1
次元の感光素子(例えば電荷結合素子など)70を用い
ることもできる。レンズ系71、光ファイバ72、セル
フォックレンズ73などによって副走査方向Xの適当当
な長さの部分を、例えば16素子の感光素子で読みとる
。第13図で示すように、感光素子70で読みとった信
号をしきい値回路74に入力し、あらかじめ設定したし
きい値より大きい時は++ 111、そうでない時はO
“とし”で16個並んだシリアル入力パラレル出力のデ
ィジタルシフトレジスタ76に入力する。1ラインの走
査が主走査方向yに1画素進む間に行なわれるようにし
、走査が主走査方向に1画素進んだらシフトレジスタ7
6の出カフ7−1.〜77−16を同じくシリアル入力
パラレル出力の16個のシフトレジスタ78−1〜78
−16 へ入力する。この時各シフトレジスタ78−1
〜78−16内のデータも−y方向へシフトされ、シフ
トレジスタ群78にはCCD70が読み取った1 6X
16の画素の面状領域の画像データが次々と再現される
。このデータから第4図で示す8方向の枝に当る部分の
データ、即ち第14図に黒く塗った部分で示すように、
Dl の方向であれば78−7−1 、78−7−2 
、・・78−7−s、B2の方向であれば、78−1−
1゜78−2−2 、78−3−3 、・・・7 B 
−7−8などをまとめる。
1 as shown in Fig. 12 a, b, and c as the apex detection mechanism.
A dimensional photosensitive device (eg, a charge coupled device, etc.) 70 may also be used. A portion of an appropriate length in the sub-scanning direction X is read using a lens system 71, an optical fiber 72, a Selfoc lens 73, etc., using, for example, 16 photosensitive elements. As shown in FIG. 13, the signal read by the photosensitive element 70 is input to the threshold circuit 74, and if it is larger than a preset threshold value, it is ++111, otherwise it is O.
The signal is inputted to a serial input/parallel output digital shift register 76 in which 16 pieces are arranged in a row. The scanning of one line is performed while advancing one pixel in the main scanning direction y, and when the scanning advances one pixel in the main scanning direction, the shift register 7
6 out cuff 7-1. ~77-16 are connected to 16 shift registers 78-1 to 78 with serial input and parallel output.
-16. At this time, each shift register 78-1
The data in ~78-16 is also shifted in the -y direction, and the shift register group 78 contains the 16X data read by the CCD 70.
Image data of a planar area of 16 pixels is reproduced one after another. From this data, the data corresponding to the branches in the eight directions shown in Figure 4, as shown by the black parts in Figure 14, are obtained.
If it is in the direction of Dl, 78-7-1, 78-7-2
,...78-7-s, in the direction of B2, 78-1-
1゜78-2-2, 78-3-3,...7 B
-7-8 etc. are summarized.

まとめた各校のデータを各枝部に第8−′のしきい値回
路33と同様のしきい値回路80へ入力し、++11+
の値のデータの数かあらかじめ定めたしきい値より多い
場合だけ°゛1″′の信号81を出力する。
The summarized data of each school is input to each branch into a threshold circuit 80 similar to the 8-'th threshold circuit 33, and ++11+
Only when the number of data having the value of is greater than a predetermined threshold value, a signal 81 of °1' is output.

各校からの信号によって前述のように頂点を検出するこ
とができる。頂点を検出したら頂点の座標及びパ1′に
なった枝の方向をメモリへ格納する。
The apex can be detected as described above using the signals from each school. When a vertex is detected, the coordinates of the vertex and the direction of the branch that has become P1' are stored in memory.

原図の線の色の種類によっては1組の感光素子7oでは
、すべての色の線を検出できない場合がある。このよう
な場合は第15図に示すように光82をグイクロイック
ミラー83−1〜83−3によって分け、複数のn素子
−次元感光素子70−1〜70−3で受け、それぞれし
きい値回路74−1〜74−3を通し、任意の色の線で
少くとも1つは+1c+を出力するようにして、論理和
回路86によって論理和をとった後n行×n列の2次元
のシフトレジスタ76へ入力し、第13図と同様にしき
い値回路80より原画の線の方向に合わせて2次元放射
状の板に相当する部分の出力をとり出す。
Depending on the color types of lines in the original drawing, one set of photosensitive elements 7o may not be able to detect all colored lines. In such a case, as shown in FIG. 15, the light 82 is divided by the microchroic mirrors 83-1 to 83-3, received by a plurality of n-dimensional photosensitive elements 70-1 to 70-3, and set to a threshold value, respectively. Through the value circuits 74-1 to 74-3, at least one line of an arbitrary color outputs +1c+, and after the logical sum is performed by the logical sum circuit 86, a two-dimensional image of n rows by n columns is formed. The input signal is input to the shift register 76, and the output of the portion corresponding to the two-dimensional radial plate is taken out from the threshold circuit 80 in the same manner as in FIG. 13 in accordance with the direction of the lines of the original image.

この場合には感光素子70からの色分解データ90−1
〜90−3をアナログディジタル変換器(A/D変換器
)91−1−91−3によってディジタル変換しメモリ
98へ記憶するようにすれば後述の色分解機構をも兼ね
ることができる。感光素子70などを走査しているクロ
ック信号92からタイミング回路93によって、感光素
子70の中のあらかじめ定めた素子の信号をメモリ98
へ記憶するようにタイミング信号94を作り、論理和回
路86の出力96が1″の場合だけ記憶するように、論
理積回路96を通しメモリへ書込信号97を送る。
In this case, color separation data 90-1 from the photosensitive element 70
90-3 can be digitally converted by analog/digital converters (A/D converters) 91-1-91-3 and stored in the memory 98, so that it can also serve as a color separation mechanism, which will be described later. From the clock signal 92 scanning the photosensitive element 70, a timing circuit 93 stores signals from predetermined elements in the photosensitive element 70 into a memory 98.
A timing signal 94 is generated so as to be stored in the memory, and a write signal 97 is sent to the memory through the AND circuit 96 so as to be stored only when the output 96 of the OR circuit 86 is 1''.

又、第16図に示すように異なる位置からの光86−1
〜86−3をフィルタ87−1〜87−3を通し、複数
の感光素子7o−1〜7o−3で受ける場合は、位置の
差の分を遅延回路88−1〜88−2で補償し、同じ位
置のデータにして処理を行う。色分解データ9o−1〜
90−3についても遅延回路99−1〜99−2を通し
て補償する。その他の各部分は第16図と同一であるの
で説明を省略する。
Also, as shown in FIG. 16, light 86-1 from different positions
86-3 are passed through filters 87-1 to 87-3 and received by a plurality of photosensitive elements 7o-1 to 7o-3, the difference in position is compensated for by delay circuits 88-1 to 88-2. , perform processing using data at the same location. Color separation data 9o-1~
90-3 is also compensated for through delay circuits 99-1 to 99-2. The other parts are the same as those in FIG. 16, so their explanation will be omitted.

色分解機構は第17図に示すように、頂点検出機構27
(側面図)の中心部(第7図の0)の光41をグイクロ
イックミラー42−1 、42−2 、フィルタなどで
複数のスペクトルの光43に分け、光センサ44で受け
て電気信号45に変換し、増幅器46で増幅し、アナロ
グディジタル変換器(A/D変換器)48でディジタル
変換して、ディジタル信号49の形で色分解データを得
、メモリ52へ送るものである。原図の下地の部分は不
要なデータなので、色分解データ49をしきい値回路6
0に入力し、各スペクトルの強度の和などがあらかじめ
設定した値を越えた場合にだけ線の部分であると判定し
てメモリ62へ書込信号51を送る。メモリ62は線の
部分の画素の色分解データと画素の座標値とを記憶する
As shown in FIG. 17, the color separation mechanism includes a vertex detection mechanism 27.
(side view) The light 41 at the center (0 in FIG. 7) is divided into light 43 of a plurality of spectra by guichroic mirrors 42-1, 42-2, filters, etc., and is received by a light sensor 44 to generate an electrical signal. 45, amplified by an amplifier 46, and digitally converted by an analog/digital converter (A/D converter) 48 to obtain color separation data in the form of a digital signal 49, which is sent to the memory 52. Since the background part of the original image is unnecessary data, the color separation data 49 is sent to the threshold circuit 6.
0, and only when the sum of the intensities of each spectrum exceeds a preset value, it is determined that it is a line part and the write signal 51 is sent to the memory 62. The memory 62 stores color separation data of pixels in the line portion and coordinate values of the pixels.

線の部分である事を判定するには次のようにしてもよい
。第18図に示すように入射光をハーフミラ−60で分
割した光61を頂点検出機構に使用したと同種の光セン
サ62で受け、増幅してしきい値回路66へ入力し、レ
ベルがあらかじめ設定した値を越えた場合にだけメモリ
62へ書込信号67を送るようにしてもよい。なお、信
号65は頂点検W構の中心部のセンサの信号と同じであ
るからそれから分けてもよい。
To determine that it is a line part, the following may be used. As shown in FIG. 18, light 61 obtained by dividing the incident light by a half mirror 60 is received by a light sensor 62 of the same type as used in the apex detection mechanism, amplified and inputted to a threshold circuit 66, and the level is set in advance. The write signal 67 may be sent to the memory 62 only when the value exceeds the specified value. Note that since the signal 65 is the same as the signal of the sensor at the center of the apex detection W structure, it may be separated from that signal.

原図上の線のデータをメモリ62へ格納したら各頂点に
ついて、頂点の周囲のセンサが“1″となった方向の画
素の色を調べ、線のつながりを調べるO 画素にの色を調べるのは次のようにする。読み取りに先
立って各色の標本を採取し色分解して、第19図に示す
ように各スペクトル81〜S3のデータ値の平均値(m
112m122m13)、(m219m22゜m23)
、・・・・・・を計算し、この平均値mの近傍に適当な
幅の許容域(tll、t12tt13)(’21jt2
2tt23)(図中 で示す。)を設定し、画素にのス
ペクトルデータ値(ZKl、ZK2.ZK3)が許容域
(t□11 ti2.ti3)に含まれた場合、画素に
の色はiであると判定する。いずれの色の許容域にも含
まれぬ場合には不明色とする。他に、画素にのスペクト
ルデータ値(ZKl、ZK2.ZK3)と、各色の平均
(lf(mi12mi21mi3)との距離が最も小さ
くなるiを画素にの色とするなどの方法でもよい。
After storing the line data on the original drawing in the memory 62, for each vertex, check the color of the pixels in the direction where the sensor around the vertex becomes "1" and check the connection of the lines. Do as follows. Prior to reading, samples of each color are collected and color separated, and the average value (m
112m122m13), (m219m22゜m23)
, ......, and set a tolerance range (tll, t12tt13) ('21jt2) of an appropriate width around this average value m.
2tt23) (indicated in the figure), and the spectral data value (ZKl, ZK2.ZK3) of the pixel is included in the tolerance range (t□11 ti2.ti3), the color of the pixel is i. It is determined that there is. If the color is not included in any of the allowable color ranges, it is treated as an unknown color. Alternatively, a method may be used in which i, which has the smallest distance between the spectrum data value (ZKl, ZK2, ZK3) of the pixel and the average (lf (mi12mi21mi3)) of each color, is set as the color of the pixel.

なお同一方向の画素が別の色に判定される場合もありう
る。このような場合は、多数決によってその枝の色を決
める。
Note that pixels in the same direction may be determined to be different colors. In such a case, the color of the branch is determined by majority vote.

こうして各校の色が判別されると、線のつながりを認識
することができる。
Once the colors of each school are identified in this way, the connections between the lines can be recognized.

例えば第10図でB1.B7方向の枝が赤、B3.B5
方向の画素が青であれば、LlとB4とがつながりB2
とB3とがつながっているから、この頂点は赤の線、宵
の線両方の頂点であると認識することができる。又同じ
く第10図で、B1.B6方向の画素が赤で、B3.B
7方向の画素が青であれば、この頂点は単に赤の直線と
青の直線とが交わっただけで、どちらの色の線にとって
も頂点ではないことが認識できる。この操作を全頂点に
施して色別の頂点と頂点を構成する線の方向とをめる。
For example, in FIG. 10, B1. The branch in the B7 direction is red, B3. B5
If the pixel in the direction is blue, Ll and B4 are connected and B2
Since and B3 are connected, this vertex can be recognized as the vertex of both the red line and the evening line. Also in FIG. 10, B1. The pixels in the B6 direction are red, and the pixels in the B3. B
If the pixels in the seven directions are blue, it can be recognized that this vertex is simply the intersection of a red straight line and a blue straight line, and is not a vertex for either color line. This operation is applied to all vertices to determine the directions of the vertices for each color and the lines that make up the vertices.

次に第20図に示すように、色別に線をたどってその図
形を構成する頂点の座標を順に並べることによって、線
図形を計算機の中に再構成することができる。線の追跡
は例えば以下のように行なう。第2o図でPll、B1
2.B13.B14が赤の頂点である時、Pllから出
発するとして、”11 を構成する線の方向がDD で
あるから、D509 7 方向を見て、即ちX座標が同じでX座標がPllより小
さい頂点を探し、B12 を見出す。原図の線の太さ、
濃さ、多少の位置ずれなどによりPllとPl。とのX
座標は多少ずれている可能性もあるので、探索時にX座
標には幅をもたせて行なう。こうしてPllのB5方向
の枝と、B12のDlの方向の枝とが結ばれる。次に”
12の残りのB7方向の枝の方向の最も近い頂点を探索
してB13を見出し、同様にしてB14を経てPll蛎
る。この線はこれで閉じたので終了とし、他の頂点P1
.へ移り、B16.P1□を結ぶ。P1□の先に頂点が
存在しない場合はここで終了とする。
Next, as shown in FIG. 20, the line figure can be reconstructed in the computer by tracing the lines for each color and arranging the coordinates of the vertices constituting the figure in order. For example, line tracing is performed as follows. In Figure 2o, Pll, B1
2. B13. When B14 is a red vertex, starting from Pll, the direction of the line forming "11" is DD, so look in the D509 7 direction, that is, find a vertex with the same X coordinate and smaller X coordinate than Pll. Search and find B12.The thickness of the line in the original drawing,
Pll and Pl due to density, slight positional deviation, etc. X with
Since there is a possibility that the coordinates are slightly shifted, a width is given to the X coordinate during the search. In this way, the branch of Pll in the B5 direction and the branch of B12 in the Dl direction are connected. next"
12, the nearest vertex in the direction of the branch in the B7 direction is found to find B13, and in the same way, Pll is retrieved via B14. This line is now closed, so it is finished and the other vertex P1
.. Move on to B16. Connect P1□. If there is no vertex beyond P1□, the process ends here.

以上のようにして計算機中に原図と同様の多色線図形を
再構成することができる。
In the manner described above, a multicolored line figure similar to the original figure can be reconstructed in the computer.

上の説明では色分解データを得るだめの光を頂点検出機
構の中心から採るようにしていたが、第21図に示すよ
うに頂点検出機構57の外側で、走査方向Xの先の側に
、色分解機構の光検出部58を配置することにより、頂
点の検出に先立って、線を形成する画素の色分解データ
が得られる。従って頂点が検出された時点で直ちに、こ
の頂点がどの色のどの方向の線で構成されているもので
あるかを分析する事ができ、認識時間を短縮することが
できる。
In the above explanation, the light for obtaining color separation data was taken from the center of the vertex detection mechanism, but as shown in FIG. By arranging the light detection section 58 of the color separation mechanism, color separation data of pixels forming a line can be obtained prior to detection of vertices. Therefore, as soon as a vertex is detected, it is possible to analyze which lines of which color and in which direction this vertex is composed of, thereby shortening the recognition time.

以上の説明では、原図をドラムに巻きつけて回転走査す
る構成としたが、移動台をXYプロ・ツタのヘッドの位
置に設置し、平面走査で読みとる事も可能である。
In the above explanation, the original image is wound around a drum and rotated for scanning, but it is also possible to install a moving table at the position of the head of the XY Pro Ivy and read it by plane scanning.

まだ以上の説明では原図上の線の方向を8方向に限った
が、頂点検出機構のセンサの増減、配置の変更などによ
り、他の場合にも対処することができる。
In the above explanation, the directions of the lines on the original drawing are limited to eight directions, but other cases can be handled by increasing or decreasing the number of sensors of the apex detection mechanism, changing the arrangement, etc.

発明の効果 以上のように、本発明は多色線図形の頂点の座標と、頂
点を構成する線の方向とを検出する頂点検出機構と、線
を形成する画素の色分解データを得る色分解機構と、検
出したデータを格納する記憶装置と、データ処理を行な
う計算機とを有し、多色線図形を計算機中に再構成する
ようにした多色線図形読取装置で集積回路の図面など多
色の線図形を自動的に読取る事により、人間を単純作業
から解放し、読取誤りをなくシ、作業時間の短縮を実現
することができる。
Effects of the Invention As described above, the present invention provides a vertex detection mechanism that detects the coordinates of the vertices of a multicolor line figure and the direction of the lines forming the vertices, and a color separation system that obtains color separation data of pixels forming the lines. It is a multicolor line figure reading device that has a mechanism, a storage device for storing detected data, and a computer for data processing, and is designed to reconstruct multicolor line figures in the computer. By automatically reading colored line figures, humans can be freed from simple tasks, reading errors can be eliminated, and work time can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用される読取り原図の例を示す平面
図、第2図は従来の手動の座標読取装置(ディジタイザ
)の平面図、第3図は本発明による多色線図形読取り装
置の構成を示すプロ・ツク図、第4図は読取り図面中の
線の方向を示す図、第6図は2本の線の交わりによって
構成される頂点を示す図、第6図は3〜8本の線によっ
て構成される頂点を示す図、第7図は本発明における頂
点検出機構の実施例を示す概念図、第8図は本発明にお
ける頂点検出機構の1つの枝に対応する回路図、第9図
は2界発明における頂点検出機構の他の実施例を示す概
念図、第10図および第11図は本発明による頂点検出
機構の動作を説明するだめの図、第12図は1次元感光
素子による頂点検出機構の実施例を示す側面図、第13
図は本発明における1次元感光素子による頂点検出機構
の回路図、第14図は第13図の中の記憶回路部分の記
憶態様図、第15図および第16図は各々本発明による
複数の1次元感光素子による色分解機構を兼lllコた
頂点検出機構の回路図、第17図は本発明における色分
解機構の回路図、第18図は線検出センサを付加した色
分解機構の他の実施例を示す回路図、第19図は本発明
における色分解データの平均値、許容域の説明図、第2
0図は計算機内での線の追跡の方法を説明する図、第2
1図は本発明における頂点検出機構と色分解機構との配
置関係の他の実施例を示す平面図である。 1.11・・・・・・原図、2・・・・・・座標読取装
置、3・・・・・・座標読取装置ヘッド、12・・・・
・・ドラム、13・・・・・・光学系、16・・・・・
・副走査台、17・・・・・・データバス、18・・・
−・・・計算機、19・・・・・・記憶装置、20・・
・・・・カラーディスプレイ、21・・・・・・タブレ
ット、22・・・・・・ドラム軸、23・・・・・・角
度エンコーダ、24・・・・・・副走査用スクリュー、
26・・・・・・パルスモータ、28・・・・・・感光
素予信、26・・・・・・レンズ系、27・・・・・・
頂点検出機構の感光素子群、29・・・・・・増幅器、
30,33・・・・・・しきい値回路、36・・・・・
・結像面、36・・・・・・光ファイバ、37・・・・
・・感光素子、41・・・・・・入射光、42・・・・
・・ダイクロイックミラー、43・・・・・・スペクト
ル光、44・・印・光センサ、46・・・・・・色分解
信号、46・・・・・・増幅器、48・・・・・・アナ
ログディジタル変換器、49・・・・・・ディジタル色
分解データ、50・・・・・・しきい値回路、61・・
自・・メモリ書込信号、62・・・・・・メモリ、67
・・・・・頂点検出機構の受光部、58・・・・・・色
分解機構の受光部、60・・・・・・ハーフミラ−16
2・川・・光センサ、66・・・・・・しきい値回路、
To・・・・・・1次元感光素子、71・・・・・レン
ズ系、72・旧・・光ファイバ、73・・・・・・セル
フォックレンズ、74・・印・しきい値回路、76.7
8・・・・・・シリアル入カパラレル出力ディジタルシ
フトレジスタ、77・・・・・・シフトレジスタ出力、
80・・・・しきい値回路、82.86・・・・・入射
光、83・・・・・・ダイクロイックミラー、86・・
・・・・論理和回路、87・・・・・・フィルタ、88
・・・・・・遅延回路、90・・・・・アナログ色分解
信号、91・・・・・・アナログディジタル変換器、9
2・・・・・・遅延回路、93・・・・・タイミング回
路、96・・・・・・論理積回路、98・・・・・・メ
モリ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 既3図 菓4図 I 第5図 5.# D71)i DJ IJD)Z)、9 姥7図 第10図 LI? 第11図 第 12171 //21 (bシ f) 第13図 4 第14図 第15に′[ 第16図 第18図
Fig. 1 is a plan view showing an example of a reading original used in the present invention, Fig. 2 is a plan view of a conventional manual coordinate reading device (digitizer), and Fig. 3 is a multicolor line figure reading device according to the present invention. Figure 4 is a diagram showing the direction of lines in the reading drawing, Figure 6 is a diagram showing the vertices formed by the intersection of two lines, and Figure 6 is a diagram showing the directions of lines in the reading drawing. FIG. 7 is a conceptual diagram showing an embodiment of the vertex detection mechanism in the present invention; FIG. 8 is a circuit diagram corresponding to one branch of the vertex detection mechanism in the present invention; FIG. 9 is a conceptual diagram showing another embodiment of the vertex detection mechanism in the two-world invention, FIGS. 10 and 11 are diagrams for explaining the operation of the vertex detection mechanism according to the present invention, and FIG. 12 is a one-dimensional diagram. Side view showing an embodiment of the apex detection mechanism using a photosensitive element, 13th
The figure is a circuit diagram of a vertex detection mechanism using a one-dimensional photosensitive element according to the present invention, FIG. 14 is a memory mode diagram of the memory circuit portion in FIG. 13, and FIGS. A circuit diagram of a vertex detection mechanism that also serves as a color separation mechanism using a dimensional photosensitive element, FIG. 17 is a circuit diagram of a color separation mechanism according to the present invention, and FIG. 18 is another implementation of a color separation mechanism that includes a line detection sensor. A circuit diagram showing an example, FIG. 19 is an explanatory diagram of the average value and tolerance range of color separation data in the present invention,
Figure 0 is a diagram explaining the method of tracing lines within a computer, the second figure is
FIG. 1 is a plan view showing another embodiment of the arrangement relationship between the vertex detection mechanism and the color separation mechanism according to the present invention. 1.11...Original drawing, 2...Coordinate reading device, 3...Coordinate reading device head, 12...
...Drum, 13...Optical system, 16...
・Sub-scanning table, 17... Data bus, 18...
-...Computer, 19...Storage device, 20...
...Color display, 21...Tablet, 22...Drum shaft, 23...Angle encoder, 24...Sub-scanning screw,
26...Pulse motor, 28...Photosensitive element prediction, 26...Lens system, 27...
Photosensitive element group of vertex detection mechanism, 29... amplifier,
30, 33... Threshold circuit, 36...
・Imaging plane, 36... Optical fiber, 37...
... Photosensitive element, 41 ... Incident light, 42 ...
... Dichroic mirror, 43 ... Spectrum light, 44 ... Mark optical sensor, 46 ... Color separation signal, 46 ... Amplifier, 48 ... Analog-digital converter, 49...Digital color separation data, 50...Threshold circuit, 61...
Self...Memory write signal, 62...Memory, 67
... Light receiving section of vertex detection mechanism, 58 ... Light receiving section of color separation mechanism, 60 ... Half mirror 16
2. River: Light sensor, 66: Threshold circuit,
To: One-dimensional photosensitive element, 71: Lens system, 72: Old optical fiber, 73: Selfoc lens, 74: Mark: Threshold circuit, 76.7
8... Serial input parallel output digital shift register, 77... Shift register output,
80... Threshold circuit, 82.86... Incident light, 83... Dichroic mirror, 86...
...Order circuit, 87...Filter, 88
... Delay circuit, 90 ... Analog color separation signal, 91 ... Analog-digital converter, 9
2... Delay circuit, 93... Timing circuit, 96... AND circuit, 98... Memory. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 3 Zuka 4 Figure I Figure 5 5. # D71) i DJ IJD) Z), 9 U7 Figure 10 LI? Fig. 11 12171 //21 (b f) Fig. 13 4 Fig. 14 Fig. 15'[ Fig. 16 Fig. 18

Claims (1)

【特許請求の範囲】 (1) 多色線図形の頂点の座標および頂点を構成する
線の方向とを検出する頂点検出機構、線を形成する画素
の色分解データを得る色分解機構とを搭載した走査台と
、多色線図形を走査して読取った情報を格納する記憶装
置と、データ処理を行う計算機とを有し、多色線図形を
計算機中に再構成する多色線図形読取装置。 (功 頂点検出機構は、原図の線の方向に合わせて感光
素子を2次元放射状の枝に配置した特許請求の範囲第1
項記載の多色線(2)形読取装置。 (′4 頂点検出機構は、原図の線の方向に合わせて光
ファイバを2次元放射状の枝(配置し、別に置いた感光
素子へ光を導くように構成した特許請求の範囲第1項記
載の多色線図形読取装置。 (4) 頂点検出機構は、放射状の各枝対応して配され
た感光素子から得られる信号を、各校毎にしきい値回路
に通し、あらかじめ設定しきい値を越えた時に出力信号
を出すようにした特許請求の範囲第1項記載の多色線図
形読取装置。 (時 頂点検出機構は、n素子の1次元感光素子と、n
行×n列の各1ビツトの記憶素子で構成され、感光素子
の信号を端の1行に入力記憶し、主走査が進むに従って
、行のデータを列方向へシフトするとともに、新しいデ
ータを端の1行に入力記憶する2次元に配置された記憶
回路と、記憶回路の出力のうち、原図の線の方向に合わ
せた2次元放射状の枝に相当する部分の出力を通すしき
い値回路とから構成されることを特徴とする特許請求の
範囲第1項記載の多色線図形読取装置。 (→ 頂点検出機構は、異なるスペクトルの光を受光す
る複数のn素子1次元感光素子と、この感光素子の出力
の論理和をとる回路と、論理和回路の出力を記憶するn
行×n列の2次元に配置された記憶回路と、この記憶回
路の出力のうち、原画の線の方向にあわせた2次元放射
状の枝に相当する部分の出力を通すしきい値回路とから
構成されることを特徴とする特許請求の範囲第1項記載
の多色線図形読取装置。 (7) 色分解機構は、色分解信号をしきい値回路に通
し、あらかじめ設定したしきい値を越えた時に処理信号
を出すようにした特許請求の範囲第1項記載の多色線図
形読取装置。 (→ 色分解機構に、線を検出する感光素子を具備した
特許請求の範囲第1項記載の多色線図形読取装置。 (@ 頂点検出機構が複数のn素子1次元感光素子と、
この感光素子の出力の論理和をとる回路と、該感光素子
中の任意の素子の信号を捕えるタイミング回路とからな
り、前記論理和回路とタイミング回路両者の出力が++
 、 ++になった時処理信号を出すようにした特許請
求の範囲第1項記載の多色線図形読取装置。 (10)色分解機構の光検出部を、頂点検出機構より走
査進行方向の先方に配置し、頂点の検出に先立って、頂
点を構成する線の画素の色分解データを取得せしめる特
許請求の範囲第1項記載の多色線図形読取装置。
[Scope of Claims] (1) Equipped with a vertex detection mechanism that detects the coordinates of the vertices of a multicolor line figure and the direction of the lines forming the vertices, and a color separation mechanism that obtains color separation data of pixels forming the lines. A multicolor line figure reading device that has a scanning table that scans a multicolor line figure, a storage device that stores information read by scanning a multicolor line figure, and a computer that performs data processing, and that reconstructs a multicolor line figure in a computer. . (Iku) The apex detection mechanism is provided in claim 1, in which photosensitive elements are arranged on two-dimensional radial branches in accordance with the direction of the line of the original drawing.
Multicolor line (2) type reading device described in Section 2. ('4) The vertex detection mechanism is configured such that the optical fiber is arranged in two-dimensional radial branches (aligned with the direction of the line of the original drawing) and the light is guided to a separately placed photosensitive element. Multicolor line figure reading device. (4) The apex detection mechanism passes the signals obtained from the photosensitive elements arranged corresponding to each radial branch through a threshold circuit for each branch, and detects signals that exceed a preset threshold. The multicolor line figure reading device according to claim 1, which outputs an output signal when the apex detection mechanism includes n one-dimensional photosensitive elements,
It is composed of 1-bit storage elements in rows and n columns, and the signal from the photosensitive element is input and stored in one row at the end.As main scanning progresses, the data in the row is shifted in the column direction, and new data is transferred to the end. a two-dimensionally arranged memory circuit that stores input in one row of the memory circuit, and a threshold circuit that passes the output of a portion of the output of the memory circuit that corresponds to a two-dimensional radial branch aligned with the direction of the line of the original drawing. A multicolor line figure reading device according to claim 1, characterized in that it is comprised of: (→ The apex detection mechanism consists of a plurality of n-element one-dimensional photosensitive elements that receive light of different spectra, a circuit that ORs the outputs of these photosensitive elements, and an n-element one-dimensional photosensitive element that stores the output of the OR circuit.
A memory circuit arranged two-dimensionally in rows and n columns, and a threshold circuit that passes the output of a portion of the output of this memory circuit that corresponds to a two-dimensional radial branch aligned with the direction of the line of the original image. A multicolor line figure reading device according to claim 1, characterized in that it is configured. (7) The multicolor line figure reading system according to claim 1, wherein the color separation mechanism passes the color separation signal through a threshold circuit and outputs a processed signal when the color separation signal exceeds a preset threshold value. Device. (→ The multicolor line figure reading device according to claim 1, wherein the color separation mechanism is equipped with a photosensitive element for detecting lines. (@ The vertex detection mechanism includes a plurality of n-element one-dimensional photosensitive elements,
It consists of a circuit that takes the logical sum of the outputs of the photosensitive elements, and a timing circuit that captures the signal of any element in the photosensitive elements, and the output of both the logical sum circuit and the timing circuit is ++
, ++, the multicolor line figure reading device according to claim 1, is configured to output a processing signal when the values become . (10) A claim in which the light detection section of the color separation mechanism is arranged ahead of the vertex detection mechanism in the scanning direction, and prior to detecting the vertex, it acquires color separation data of pixels of a line that constitutes the vertex. 2. The multicolor line figure reading device according to item 1.
JP58208525A 1983-11-07 1983-11-07 Multicolored line graphic reading device Pending JPS60101677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58208525A JPS60101677A (en) 1983-11-07 1983-11-07 Multicolored line graphic reading device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58208525A JPS60101677A (en) 1983-11-07 1983-11-07 Multicolored line graphic reading device

Publications (1)

Publication Number Publication Date
JPS60101677A true JPS60101677A (en) 1985-06-05

Family

ID=16557622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58208525A Pending JPS60101677A (en) 1983-11-07 1983-11-07 Multicolored line graphic reading device

Country Status (1)

Country Link
JP (1) JPS60101677A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235682A (en) * 1991-01-11 1992-08-24 Nec Corp Wiring state display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5467338A (en) * 1977-11-08 1979-05-30 Nec Corp Eye for detection of direction of line and graph
JPS583059A (en) * 1981-06-30 1983-01-08 Yokogawa Hokushin Electric Corp Picture inputting method of digitizer
JPS5846461A (en) * 1981-09-14 1983-03-17 Mitsubishi Electric Corp Automatic reader for pattern drawing of printed board
JPS58121471A (en) * 1981-12-28 1983-07-19 Fujitsu Ltd Colored graphic input device
JPS58165478A (en) * 1982-03-26 1983-09-30 Fujitsu Ltd Image sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5467338A (en) * 1977-11-08 1979-05-30 Nec Corp Eye for detection of direction of line and graph
JPS583059A (en) * 1981-06-30 1983-01-08 Yokogawa Hokushin Electric Corp Picture inputting method of digitizer
JPS5846461A (en) * 1981-09-14 1983-03-17 Mitsubishi Electric Corp Automatic reader for pattern drawing of printed board
JPS58121471A (en) * 1981-12-28 1983-07-19 Fujitsu Ltd Colored graphic input device
JPS58165478A (en) * 1982-03-26 1983-09-30 Fujitsu Ltd Image sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235682A (en) * 1991-01-11 1992-08-24 Nec Corp Wiring state display device

Similar Documents

Publication Publication Date Title
JPH04115144A (en) Image processor and automatic optical inspection apparatus using same
JPH01180404A (en) Inspecting device for pattern defect
JPS60101677A (en) Multicolored line graphic reading device
JP3303748B2 (en) Registration method of reference one-dimensional data string, image recognition method, registration device, image recognition device, and recording medium
JPS5914782B2 (en) Binary pattern digitization processing method
EP0356463A1 (en) Interconnect verification using serial neighborhood processors
JPS646508B2 (en)
RU2101763C1 (en) Method for generation of data for application pattern
JPS63229579A (en) Image coincidence detector
JPH01156880A (en) Template matching method using template of pixel structure
JP3611225B2 (en) Core and main position detector
JPS63137377A (en) Image processor
JP2787851B2 (en) Pattern feature extraction device
JPS63277958A (en) Automatic outward appearance inspection device
JPS62217376A (en) Image processor
JPS61150083A (en) Image processing method
KR20000056676A (en) A parallel thinning method using weighted value
JPS62119442A (en) Pattern inspecting apparatus
JPH0783848A (en) Printed board pattern inspection device
JPS6319826B2 (en)
JPS59108907A (en) Position detecting device for three dimensional body
JPS60231104A (en) Inclined angle detection apparatus
JPS59139475A (en) Noise removing system in automatic input system of printed circuit board pattern diagram
JPS5914078A (en) Reader of business form
JPS6329889A (en) Image processing method