JPS6010161A - Apparatus for measuring heat retaining property - Google Patents

Apparatus for measuring heat retaining property

Info

Publication number
JPS6010161A
JPS6010161A JP11701083A JP11701083A JPS6010161A JP S6010161 A JPS6010161 A JP S6010161A JP 11701083 A JP11701083 A JP 11701083A JP 11701083 A JP11701083 A JP 11701083A JP S6010161 A JPS6010161 A JP S6010161A
Authority
JP
Japan
Prior art keywords
heat
source
sample
retaining property
generating source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11701083A
Other languages
Japanese (ja)
Inventor
Yuji Yoshida
裕司 吉田
Akira Kataoka
章 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP11701083A priority Critical patent/JPS6010161A/en
Publication of JPS6010161A publication Critical patent/JPS6010161A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To reduce a measuring error and to enable the control of radiant heat, by constituting a heat source from a heat ray generating source and a heat source for controlling the atmospheric temp. of said generating source. CONSTITUTION:The temp. in the outside of a specimen received in a heat retaining property measuring apparatus is controlled so as to be made constant in the same way as the interior of a box having a heat ray generating source A1. For example, this heat retaining property measuring apparatus is introduced into a thermostatic apparatus or a cover is formed so as to cover the specimen and air with a constant temp. is blown into said cover from a pipe 5. In this heat retaining property measuring apparatus, heat rays radiated from the heat ray generating source A1 can be measured by providing the heat ray generating source A1 and heat conductivity and reflection of radiant heat can be separately measured while a mesuring error is reduced and the control of radiant heat is enabled.

Description

【発明の詳細な説明】 本発明は保温性+7114定装置に関するものである。[Detailed description of the invention] The present invention relates to a heat retention +7114 constant device.

試料の保温性を測定する方法として、熱貫流率を利用し
て測定する方法があるが、従来の方法では、試料を介し
た両側の雰囲気温度制御が困難で測定誤差が太きかった
。例えば矛2図の様に装置内に熱源を設置した際には熱
源のON 、 OFFで装置内の温度が大きく上下し、
一定温度にならない為に熱貫流率も太ぎく上下し、測定
誤差が太きかった。また、輻射熱の制御も全(出来ない
One way to measure the heat retention of a sample is to use heat transfer coefficient, but with conventional methods, it is difficult to control the ambient temperature on both sides of the sample, resulting in large measurement errors. For example, when a heat source is installed inside the device as shown in Figure 2, the temperature inside the device will greatly increase or decrease when the heat source is turned on and off.
Since the temperature was not constant, the heat transfer coefficient fluctuated considerably, leading to large measurement errors. Also, it is not possible to fully control radiant heat.

不発明省らはこれらの点について検討した結果、熱源が
熱線発生源A1と、該発生源の雰囲気温度を制御する熱
源B2で構成されてなる保温性測定装置を使用し、且つ
試料を介した熱線発生源A1とは反対側の雰囲気温度も
一定温度に制御しておけば精度の高い数値が得られる事
を見ヒし本発明を完成するに至った。
As a result of considering these points, the Ministry of Invention and others used a heat retention measurement device whose heat source was composed of a heat ray generation source A1 and a heat source B2 that controlled the ambient temperature of the generation source, and The present invention was completed based on the fact that highly accurate numerical values can be obtained by controlling the ambient temperature on the opposite side of the heat ray source A1 to a constant temperature.

すなわち、本発明の要旨は熱源と熱流計との間に試料を
介在させて試料の熱貫流率を測定する装置において、熱
源が熱線発生源と、該発生源の雰囲気温度を制御する熱
源とから構成されてなる保温性測定装置にある。
That is, the gist of the present invention is to provide an apparatus for measuring the thermal transmission coefficient of a sample by interposing the sample between a heat source and a heat flow meter, in which the heat source is a heat ray generation source and a heat source that controls the ambient temperature of the generation source. There is a heat retention measuring device comprising:

本発明の保温性測定装置の一例を矛2図及び矛3図に示
す。、1−2図は分離型、矛3図は一体型である。
An example of the heat retention measuring device of the present invention is shown in Figures 2 and 3. , Figures 1-2 are of the separated type, and Figure 3 is of the integrated type.

本発明において、熱線発生源Aはそこから熱線を放射し
、試料を通過する熱量を測定する事で各種試料の熱線反
射率の違いによる差が通過熱量の差となって現われる。
In the present invention, the heat ray generation source A emits heat rays from there, and by measuring the amount of heat passing through the sample, the difference due to the difference in heat ray reflectance of various samples appears as a difference in the amount of heat passing.

この時、熱線発生源への種類や温度及び試料との距離を
変える事により、輻射率や熱線の波長等を変える事が可
能である。
At this time, it is possible to change the emissivity, the wavelength of the heat rays, etc. by changing the type and temperature of the heat ray source and the distance from the sample.

熱源Bは、熱線発生源へのボックス内雰四気温度を制御
する為、熱源Bの雰囲気温度を生み出すのに使用し、熱
線発生源Aとは仕切られた別のボックス内に設置する。
The heat source B is used to generate the ambient temperature of the heat source B in order to control the temperature of the atmosphere inside the box to the heat ray generation source, and is installed in a separate box from the heat ray generation source A.

このボックス内の温度をサーモスタットで一定温に保ち
、熱線発生源へのボックス側へパイプ等を通じ送風する
。送風方法としては、】・2図に示す様な分離型ではフ
ァンを使用し、矛3図に示す様な一体型では孔6を開け
てお(のみとするか、ファンを使用するのが好ましく・
。この方法により、熱線発生源へのボックス内雰囲気温
度は一定に保たれ、従来法のような温度の上下はな(な
る。また、この時ファン等により熱源Bで一定温に制御
された温風を、熱線発生源へのボックス側へ送風する際
には、測定する試料に風が当たり熱流量が乱れない様、
送風の風量を少な(する等の注意がいる。更に、熱源B
側から熱線発生源A側へ送風するのみでは、通気性のあ
る試料の熱貫流率を測定する際は不適であるので、送風
した風量とほぼ同量の排気を行なうのが好ましい。なお
、熱効率から考えて、排気された温風は熱源B側へ戻ず
のが良い。
The temperature inside this box is maintained at a constant temperature using a thermostat, and air is blown through a pipe or the like to the box side facing the source of the heat rays. As for the air blowing method, use a fan for the separate type shown in Figure 2, or use a fan with the integrated type shown in Figure 3.・
. With this method, the temperature of the atmosphere inside the box towards the heat ray generation source is kept constant, and there is no rise or fall in temperature as in the conventional method.In addition, at this time, hot air controlled at a constant temperature from heat source B by a fan etc. When blowing air to the box side facing the heat ray source, make sure that the air does not hit the sample to be measured and disturb the heat flow.
Care should be taken to reduce the amount of air being blown.Furthermore, heat source B
Merely blowing air from the side to the heat ray generation source A side is not suitable for measuring the heat transmission coefficient of a breathable sample. Therefore, it is preferable to exhaust the air at approximately the same amount as the blown air volume. Note that, in consideration of thermal efficiency, it is preferable that the exhausted hot air not return to the heat source B side.

本発明の保温性測定装置におい℃、試料は熱線発生源A
のボックスに孔を開け、試料をセットする様にするが、
熱線発生源への熱線の影響な見たい時は、熱線発生源A
の真上に孔を開けるようにすれば良い。この様にして、
試料を通過する熱流量を測定する。
In the heat retention measurement device of the present invention, the temperature of the sample is ℃, the heat ray generation source A
Make a hole in the box and set the sample,
If you want to see the effect of heat rays on the heat ray source, select heat ray source A.
All you have to do is make a hole right above it. In this way,
Measure the heat flow through the sample.

本発明による保温性測定装置の試料の外側の温度は、熱
線発生源Aのボックス内と同様に、温度制御が必要で、
温度が一定となる様にする。
The temperature outside the sample of the heat retention measuring device according to the present invention needs to be controlled in the same way as inside the box of the heat ray source A.
Make sure the temperature remains constant.

例えば、温度が一定である装置内へ、本発明の保温性測
定装置を入れてしまうか、あるいは試料を覆う様にカバ
ーを作り、パイプ等により一定温の風を送風する等であ
る。この際の一定温度は、本発明による熱源Bのボック
ス内と同様の方法で、雰囲気温を別のボックス内で設定
し、一定温度の空気を送風するのが良い。また、送風時
には、風が試料に当たらない様にし、更に送風量とほぼ
同量の排気をするのが好ましいのは、本発明による保温
性測定装置の熱線発生源へのボックス内と同じである。
For example, the heat retention measuring device of the present invention may be placed in an apparatus where the temperature is constant, or a cover may be made to cover the sample, and air at a constant temperature may be blown through a pipe or the like. The constant temperature at this time is preferably set by setting the ambient temperature in another box in the same manner as in the box of heat source B according to the present invention, and blowing air at a constant temperature. Furthermore, when blowing air, it is preferable to prevent the air from hitting the sample and to emit air in an amount that is approximately the same as the amount of air being blown, which is the same as in the box to the heat ray generation source of the heat retention measuring device according to the present invention. .

本発明による保温性測定装置において、熱線発生源Aを
設けた事により、熱線発生源から輻射される熱線を、試
料がどれだけこの熱線を通過させるか熱量として測定可
能となる事が特徴であり、また、熱線発生源Aを使用し
ないで、雰囲気温度だけを制御して試料の熱貫流率を測
定した場合、主に試料の持つ熱伝導率の差のみとなって
測定出来る。この様に、熱伝導と、輻射熱の反射とが、
別個にfilj定可能である。
The heat retention measuring device according to the present invention is characterized in that by providing the heat ray generation source A, it is possible to measure the amount of heat rays radiated from the heat ray generation source as the amount of heat that the sample passes through. In addition, when the thermal conductivity of the sample is measured by controlling only the ambient temperature without using the heat ray generation source A, it is possible to measure only the difference in thermal conductivity of the samples. In this way, heat conduction and reflection of radiant heat
filj can be determined separately.

本発明において、熱線発生源A及び熱源Bの種類は特に
限定されず使用可能で1例えば赤外線ヒーター、電球、
湯、熱した鉄や銅、アルミ板などである。
In the present invention, the types of the heat ray generating source A and the heat source B are not particularly limited and can be used. For example, infrared heaters, light bulbs,
These include hot water, heated iron, copper, and aluminum plates.

次に、本発明の詳細な説明する。Next, the present invention will be explained in detail.

実施例 牙2図に示ず様な保温性測定装置を設けた。熱線発生源
Aには電熱ヒーターを使用し、温度を35℃に制御し、
雰囲気温度は30℃に設定し、このため熱源Bのボック
ス内で温ためられた温風をパイプを通じ、ファンで熱線
発生源へのボックス側へ送風して雰囲気温度を制御した
。この時、ファンの風量をQ、 2m/ S e Cと
し、更に、熱線発生源へのボックス内より外側へ0.2
m/seeで排気を行った。熱源Bは赤外線ヒーターを
使用し、サーモスタットで±1℃に雰囲気温度に制御さ
れた温風を生み出している。また、熱線発生源Aと、試
料との距離を10crILに設定し、試料の上に昭和電
工(株ン製の電流計センサーを取り付け、試料を通過し
て(る熱量を測定する。更に、この装置全体を10℃の
雰囲気温を持つ恒温装置内へ入れ、無風の状態にして各
種の試料の熱貫流率を測定した、その結果を牙1表に示
す。なお比較例として、矛1図に示す様な装置を設けた
。熱源には電熱ヒーターを使用し、ボックス内雰囲気温
度を30℃に設定した。試料と熱源との距離は30CT
JLとし、試料の上に熱流計センサーを取り付け、装置
全体を10℃の恒温装置内へ入れ、無風の状態にして各
種試料の熱貫流率を測定した。
Example 2 A heat retention measuring device as shown in Figure 2 was provided. An electric heater is used for the heat ray generation source A, and the temperature is controlled at 35°C.
The ambient temperature was set at 30° C., and the ambient temperature was controlled by blowing hot air heated in the box of heat source B through a pipe to the box side facing the heat ray generation source using a fan. At this time, the air volume of the fan is set to Q, 2m/S e C, and further, the airflow from the inside of the box to the heat ray generation source is 0.2m/S e C.
Evacuation was performed at m/see. Heat source B uses an infrared heater and generates hot air whose ambient temperature is controlled to ±1°C by a thermostat. In addition, the distance between the heat ray generation source A and the sample is set to 10 crIL, and an ammeter sensor manufactured by Showa Denko (Co., Ltd.) is attached above the sample to measure the amount of heat passing through the sample. The entire device was placed in a thermostat with an ambient temperature of 10°C, and the heat transfer coefficients of various samples were measured in a no-air condition.The results are shown in Table 1.As a comparative example, Figure 1 shows the results. A device as shown was installed. An electric heater was used as the heat source, and the ambient temperature inside the box was set at 30°C. The distance between the sample and the heat source was 30 CT.
JL, a heat flow meter sensor was attached on top of the sample, the entire device was placed in a constant temperature device at 10° C., and the heat transfer coefficients of various samples were measured in a windless state.

なお、試料1は目付1zol/−の防水コーティング素
材、試料2は目付12 o i/m”の防水コーティン
グ素材の樹脂コーテイング面にアルミニウムを真を蒸着
したもので試料の1,2とも、繊維基劇側を装置の外側
にして測定した。
In addition, sample 1 is a waterproof coating material with a basis weight of 1 zol/-, and sample 2 is a waterproof coating material with a basis weight of 12 o i/m", with aluminum vapor-deposited on the resin coating surface. Both samples 1 and 2 have a fiber base. Measurements were taken with the play side facing outside the device.

矛1表において、比較例は装置内温度及び熱貫流率とも
にバラツキが太きいが、本発明の保温性測定装置は安定
した数値が得られる。
In Table 1, the comparison example has large variations in both the internal temperature and heat transmission coefficient, but the heat retention measuring device of the present invention can obtain stable values.

矛1表spear 1 table

【図面の簡単な説明】[Brief explanation of the drawing]

矛1図は従来の保温性測定装置の一例を示す。 オ・2図、ツ・3図は本発明の保温性測定装置を示し、
ツ・2図は分離型、213図は一体型である。
Figure 1 shows an example of a conventional heat retention measuring device. Figures E-2 and T-3 show the heat retention measuring device of the present invention,
Figures 2 and 2 show a separate type, and Figure 213 shows an integrated type.

Claims (1)

【特許請求の範囲】[Claims] 熱源と熱流形との間に試料を介在させて試料の熱貫流率
を測定する装置において、熱源が熱線発生源と、該発生
源の雰囲気温度を制御する熱源とから構成されてなる保
温性測定装置
Heat retention measurement in a device that measures the thermal transmission coefficient of a sample by interposing the sample between a heat source and a heat flow type, in which the heat source is composed of a heat ray generation source and a heat source that controls the ambient temperature of the generation source. Device
JP11701083A 1983-06-30 1983-06-30 Apparatus for measuring heat retaining property Pending JPS6010161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11701083A JPS6010161A (en) 1983-06-30 1983-06-30 Apparatus for measuring heat retaining property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11701083A JPS6010161A (en) 1983-06-30 1983-06-30 Apparatus for measuring heat retaining property

Publications (1)

Publication Number Publication Date
JPS6010161A true JPS6010161A (en) 1985-01-19

Family

ID=14701218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11701083A Pending JPS6010161A (en) 1983-06-30 1983-06-30 Apparatus for measuring heat retaining property

Country Status (1)

Country Link
JP (1) JPS6010161A (en)

Similar Documents

Publication Publication Date Title
Parkinson A simple method for determining the boundary layer resistance in leaf cuvettes
CN100397055C (en) Calibrating temperature sensors of weathering devices by means of contactless temperature measurement
US1855774A (en) Humidity measuring
CA1187575A (en) Operative temperature sensing system
JPS6010161A (en) Apparatus for measuring heat retaining property
Lee et al. Development of upper air simulator for the calibration of solar radiation effects on radiosonde temperature sensors
JPH0789085B2 (en) Radiation temperature measuring device
JPH0318916Y2 (en)
JP2004151038A (en) Stoving type infrared moisture meter
US3529473A (en) Non-contact temperature measuring device
SU648929A1 (en) Method of producing steam-air mixture with predetermined humidity
SU928291A2 (en) Salt type humid air generator
CN101191745A (en) Infrared ear temperature thermometer
CN212364157U (en) Testing device for thermal resistance of heat reflection heat insulation material
Alfano Measurement Of The Climatic Parameters: Techniques, instruments, accuracy,…
JPH0476060B2 (en)
US4134015A (en) System for measuring the reflectance or emittance of an arbitrarily curved surface
JP3212367B2 (en) Solar absorptivity and radiation rate measurement device
JPS6132358Y2 (en)
RU2380006C2 (en) Method of determining scalar energy irradiance of dispersed food materials
JPS6010570B2 (en) heat flow meter
JPS61110042A (en) Humidity measuring apparatus
Thompson et al. The accuracy of thermistors in the measurement of upper air temperatures
SU851124A1 (en) Calorimeter
SU489027A1 (en) Device for calibration of heat meters