JPH0789085B2 - Radiation temperature measuring device - Google Patents

Radiation temperature measuring device

Info

Publication number
JPH0789085B2
JPH0789085B2 JP62020134A JP2013487A JPH0789085B2 JP H0789085 B2 JPH0789085 B2 JP H0789085B2 JP 62020134 A JP62020134 A JP 62020134A JP 2013487 A JP2013487 A JP 2013487A JP H0789085 B2 JPH0789085 B2 JP H0789085B2
Authority
JP
Japan
Prior art keywords
temperature
radiation
radiant heat
radiation temperature
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62020134A
Other languages
Japanese (ja)
Other versions
JPS63187128A (en
Inventor
正博 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP62020134A priority Critical patent/JPH0789085B2/en
Publication of JPS63187128A publication Critical patent/JPS63187128A/en
Publication of JPH0789085B2 publication Critical patent/JPH0789085B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、空気調和装置における室内ユニットなどに設
けられ、壁などの輻射温度を非接触で検出する輻射温度
測定装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a radiation temperature measuring device that is provided in an indoor unit or the like of an air conditioner and that detects the radiation temperature of a wall or the like in a non-contact manner.

(従来の技術) 一般に、例えば、空気調和装置において、室内に設けら
れる室内ユニットには、室内の空気温度を検出する空気
温度検出器と共に、壁などの輻射温度を検出する輻射温
度検出器が設けられ、これら両検出信号に基づいて室内
温度を設定温度に調整するようにしている。そして、上
記空気調和装置における輻射温度検出器には、安価に作
製できる簡易型が適用されており、この簡易型輻射温度
検出器には、特開昭61−149751号公報に開示されている
ものがある。
(Prior Art) Generally, for example, in an air conditioner, an indoor unit provided indoors is provided with an air temperature detector that detects an indoor air temperature and a radiation temperature detector that detects a radiation temperature of a wall or the like. Then, the room temperature is adjusted to the set temperature based on both of these detection signals. And, the radiation temperature detector in the air conditioner, a simple type that can be manufactured at low cost is applied, and this simple type radiation temperature detector is disclosed in JP-A-61-149751. There is.

この輻射温度検出器は、前面が開口するケースの収納空
間内に温度を検知する温度検知素子が該収納空間のほぼ
中央部に位置するように支持され、該ケースの前面開口
が透明板で覆われる一方、ケースの背面が断熱材で覆わ
れて形成されている。従って、壁などの輻射熱は、透明
板を透過した後、収納空間を伝って温度検知素子に至
り、該温度検知素子が輻射温度を検出している。
In this radiation temperature detector, a temperature detecting element for detecting a temperature is supported in a housing space of the case having an opening on the front surface so as to be located at substantially the center of the housing space, and the front opening of the case is covered with a transparent plate. Meanwhile, the back surface of the case is formed so as to be covered with a heat insulating material. Therefore, the radiant heat of the wall or the like is transmitted through the transparent plate, then propagates through the storage space to reach the temperature detecting element, and the temperature detecting element detects the radiant temperature.

(発明が解決しようとする課題) 上述した輻射温度検出器において、輻射温度を検出して
いるものの真の輻射温度を検出しているとは言えないと
いう問題があった。つまり、収納空間の空気層の厚さを
制限することなどによって対流熱伝達や伝導伝熱が抑制
するようにしているが、完全に対流熱移動や伝導熱移動
を防止することができなかった。従って、上記輻射温度
検出器が検出した輻射温度をそのまま利用して空調制御
を行っていたのでは、精度が悪く、快適な居住空間を達
成することができないという問題があった。
(Problems to be Solved by the Invention) In the above-mentioned radiation temperature detector, there is a problem in that the radiation temperature is detected but the true radiation temperature is not detected. That is, convective heat transfer and conductive heat transfer are suppressed by limiting the thickness of the air layer in the storage space, but convective heat transfer and conductive heat transfer cannot be completely prevented. Therefore, if the air-conditioning control is performed using the radiation temperature detected by the radiation temperature detector as it is, the accuracy is poor and there is a problem that a comfortable living space cannot be achieved.

本発明は、斯かる点に鑑みてなされたもので、測定輻射
温度と測定空気温度と真の輻射温度との間に一定の関係
がある点に着目し、この関係特性より簡易型輻射温度検
出器を利用しても真の輻射温度を検出できるようにする
ことを目的とするものである。
The present invention has been made in view of the above point, focusing on the fact that there is a fixed relationship between the measured radiation temperature, the measured air temperature, and the true radiation temperature, and the simplified radiation temperature detection based on this relationship characteristic. The purpose is to make it possible to detect the true radiant temperature even when using a vessel.

(課題を解決するための手段) 上記目的を達成するために、本発明が講じた手段は、第
1図に示すように、先ず、温度検知素子(2)の前方が
空気層(9)を介して透明体(8)で覆われる一方、上
記温度検知素子(2)の背面が断熱ケース(5)で覆わ
れ、室内の輻射温度を検出する輻射温度検出器(1)が
設けられている。更に、室内の空気温度を検出する空気
温度検出器(11)が設けられている。また、上記輻射温
度検出器(1)が検出する測定輻射温度と上記空気温度
検出器(11)が検出する測定空気温度とに対する真の輻
射温度の関係特性を予め設定記憶している記憶手段(5
1)が設けられている。そして、該記憶手段(51)の関
係特性に基づいて上記輻射温度検出器(1)及び空気温
度検出器(11)で検出した測定輻射温度及び測定空気温
度より真の輻射温度を算出する演算手段(41)が設けら
れている。
(Means for Solving the Problems) In order to achieve the above object, the means taken by the present invention is as follows. First, as shown in FIG. 1, an air layer (9) is provided in front of the temperature detecting element (2). The back surface of the temperature detecting element (2) is covered with a heat insulating case (5) while being covered with a transparent body (8) through which a radiation temperature detector (1) for detecting the radiation temperature in the room is provided. . Furthermore, an air temperature detector (11) for detecting the air temperature in the room is provided. In addition, a storage means for presetting and storing the relationship characteristic of the true radiation temperature with respect to the measurement radiation temperature detected by the radiation temperature detector (1) and the measurement air temperature detected by the air temperature detector (11) ( Five
1) is provided. An arithmetic means for calculating the true radiation temperature from the measured radiation temperature and the measured air temperature detected by the radiation temperature detector (1) and the air temperature detector (11) based on the relational characteristics of the storage means (51). (41) is provided.

一方、上記輻射温度検出器(1)は、前面が開放する収
納室(5c)を有し且つ断熱材よりなる断熱ケース(5)
と、該断熱ケース(5)の収納室(5c)内に背面が断熱
ケース(5)で覆われた状態で張設されて輻射熱を吸収
する輻射熱吸収板(3)と、該輻射熱吸収板(3)の温
度を検知する温度検知素子(2)と、上記断熱ケース
(5)の収納室(5c)前面に上記輻射熱吸収板(3)に
対して自然対流が生じない厚さの空気断熱層(9)を介
して張設され、輻射熱が透過する赤外線透過性材よりな
る輻射熱透過膜(8)とを有している。そして、上記輻
射熱吸収板(3)が、前面に輻射熱を吸収する塗料層
(4)を有し、該塗料層(4)が肌色又はクリーム色の
塗料で形成されて構成されている。
On the other hand, the radiation temperature detector (1) has a heat-insulating case (5) having a storage chamber (5c) whose front surface is open and made of a heat insulating material.
A radiant heat absorbing plate (3) which is stretched in the storage chamber (5c) of the heat insulating case (5) with its back surface covered with the heat insulating case (5) and absorbs radiant heat; and the radiant heat absorbing plate ( 3) a temperature detecting element (2) for detecting the temperature, and an air insulating layer having a thickness such that natural convection does not occur with respect to the radiant heat absorbing plate (3) in front of the storage chamber (5c) of the heat insulating case (5). It has a radiant heat transmission film (8) made of an infrared permeable material which is stretched through (9) and transmits radiant heat. The radiant heat absorbing plate (3) has a paint layer (4) for absorbing radiant heat on the front surface, and the paint layer (4) is formed of a skin color or cream color paint.

(作用) 上記構成により、本発明では、第3図に示すように測定
輻射温度が測定空気温度と真の輻射温度との間に位置す
る点を利用し、3つの温度関係特性(DT2/DT1)を予め
求めて記憶手段(51)が記憶している。そして、輻射温
度検出器(1)及び空気温度検出器(11)が輻射温度及
び空気温度を検出すると、これらの測定温度から演算手
段(41)が上記関係特性(DT2/DT1)に基づいて真の輻
射温度を算出している。従って、この算出した真の輻射
温度に基づいて空調制御等を行うので、快適な居住空間
等を実現することができる。
(Operation) With the above configuration, in the present invention, as shown in FIG. 3, the point where the measured radiation temperature is located between the measured air temperature and the true radiation temperature is utilized, and three temperature-related characteristics (DT 2 / The DT 1 ) is obtained in advance and stored in the storage means (51). Then, when the radiant temperature detector (1) and the air temperature detector (11) detect the radiant temperature and the air temperature, the calculation means (41) based on these measured temperatures, based on the relational characteristic (DT 2 / DT 1 ). To calculate the true radiation temperature. Therefore, air-conditioning control or the like is performed based on the calculated true radiation temperature, so that a comfortable living space or the like can be realized.

(実施例) 以下、本発明の実施例に図面に基づいて説明する。(Example) Hereinafter, the Example of this invention is described based on drawing.

第1図に示すように、(1)は、空気調和装置などにお
ける室内ユニットに設けられ、室内の床に壁などの輻射
温度を検出する輻射温度検出器、(11)は、上記室内ユ
ニットが設けられた室内の空気温度を検出する空気温度
検出器であって、上記各検出器(1,11)の出力信号は、
それぞれ検知回路(21,31)で信号処理された後、演算
手段である演算回路(41)に入力されている。
As shown in FIG. 1, (1) is a radiant temperature detector that is provided in an indoor unit in an air conditioner or the like and detects the radiant temperature of a wall or the like on the floor of the room, and (11) is the indoor unit An air temperature detector for detecting an air temperature in a room provided, wherein the output signals of the respective detectors (1, 11) are:
The signals are processed by the detection circuits (21, 31) and then input to the arithmetic circuit (41) serving as arithmetic means.

そこで先ず、上記輻射温度検出器(1)について説明す
ると、該輻射温度検出器(1)は、第2図に示すよう
に、床や壁などの輻射熱を温度検知素子(2)によって
非接触で検知する簡易型の検出器である。上記温度検知
素子(2)は、温度を検知する熱電対などで構成されて
おり、輻射熱吸収板(3)の中央部に埋設され、温度検
出素子(2)は、前面から背面に亘って輻射熱吸収板
(3)で覆われている。そして、該温度検知素子(2)
は、全面で輻射熱吸収板(3)からの熱(壁等の輻射
熱)を受けるように成っている。該輻射熱吸収板(3)
は、前面に積層形成されて輻射熱を吸収する塗料層
(4)を有し、この前面にて該塗料層(4)が吸収した
輻射熱を受けて上記温度検知素子(2)に伝達するよう
にしている。
Therefore, first, the radiation temperature detector (1) will be described. As shown in FIG. 2, the radiation temperature detector (1) detects radiant heat from a floor or a wall by a temperature detecting element (2) in a non-contact manner. This is a simple detector. The temperature detecting element (2) is composed of a thermocouple or the like for detecting temperature, and is embedded in the center of the radiant heat absorbing plate (3). The temperature detecting element (2) radiates heat from the front to the back. It is covered with an absorbing plate (3). And the temperature detecting element (2)
Is designed to receive heat (radiant heat of a wall or the like) from the radiant heat absorbing plate (3) over the entire surface. The radiant heat absorption plate (3)
Has a paint layer (4) laminated on the front surface to absorb radiant heat, and receives the radiant heat absorbed by the paint layer (4) on the front surface and transfers it to the temperature detecting element (2). ing.

上記塗料層(4)は、人体の皮膚や衣服の分光反射率、
逆に言うなれば分光吸収率に概略合致する分光吸収率が
有する塗料、例えば、四弗化エチレン樹脂(PTFE)等の
弗素樹脂と酸化チタン(TiO2)等の顔料とから形成され
ている。そして、該塗料層(4)の輻射熱伝達率を人体
等の輻射熱伝達率に略合致させて人体に対する噴射温度
を精度良く検知するようにしている。すなわち、皮膚や
衣服の分光反射率は、可視光及び近赤外光領域で高く、
赤外光領域で零に近くなるので、上記塗料層(4)がこ
の分光反射率に対応するようにし、例えば、肌色やクリ
ーム色などとして実際の人体等に近い分光輻射特性を得
るようにしている。
The paint layer (4) is a spectral reflectance of human skin and clothes,
To put it the other way around, it is formed from a coating material having a spectral absorptance that approximately matches the spectral absorptance, for example, a fluororesin such as tetrafluoroethylene resin (PTFE) and a pigment such as titanium oxide (TiO 2 ). Then, the radiant heat transfer coefficient of the paint layer (4) is made to substantially match the radiant heat transfer coefficient of the human body or the like to accurately detect the injection temperature to the human body. That is, the spectral reflectance of skin and clothes is high in the visible light and near-infrared light regions,
Since it becomes close to zero in the infrared light region, the paint layer (4) is made to correspond to this spectral reflectance, and for example, to obtain a spectral radiation characteristic close to that of an actual human body such as skin color or cream color. There is.

上記輻射熱吸収板(3)は、断熱ケース(5)に収納さ
れ、該ケース(5)は、断熱材により所定厚さに形成さ
れており、後壁部(5a)の周囲に側壁部(5b)が連設さ
れて断面U字状に形成され、内部が収納室(5c)に構成
されている。該側壁部(5b)には、上記輻射熱吸収板
(3)が側端にて連接されて張設され、該吸収板(3)
が後壁部(5a)と所定間隔を存して平行支持され、吸収
板(3)と後壁部(5a)との間が後方空気断熱層(6)
に成っている。そして、上記ケース(5)と後方空気断
熱層(6)とにより上記温度検知素子(2)を含む輻射
熱吸収板(3)の側方及び後方が外部熱より遮断されて
いる。尚、(7)は、輻射熱吸収板(3)及びケース
(5)を貫通して導出された温度検知素子(2)のリー
ド線である。
The radiant heat absorbing plate (3) is housed in a heat insulating case (5), and the case (5) is formed of a heat insulating material to have a predetermined thickness, and the side wall (5b) is formed around the rear wall (5a). ) Are connected to each other and are formed in a U-shaped cross section, and the inside is configured as a storage chamber (5c). The radiant heat absorbing plate (3) is connected to the side wall portion (5b) at its side end and stretched, and the absorbing plate (3)
Is supported in parallel with the rear wall portion (5a) at a predetermined interval, and a rear air heat insulating layer (6) is provided between the absorbing plate (3) and the rear wall portion (5a).
Made of The side (5) and the rear of the radiant heat absorbing plate (3) including the temperature detecting element (2) are shielded from external heat by the case (5) and the rear air heat insulating layer (6). Incidentally, (7) is a lead wire of the temperature detecting element (2) led out through the radiant heat absorbing plate (3) and the case (5).

また、上記輻射熱吸収板(3)の前方には、所定間隔を
存して輻射熱透過膜(8)が断熱ケース(5)の収納室
(5c)の前面開口を覆って張設され、該透過膜(8)と
塗料層(4)との間が前方空気断熱層(9)に構成され
ている。上記輻射熱透過膜(8)は、ポリエチレンやポ
リプロピレン等の赤外線透過性の樹脂で薄膜に形成され
ており、輻射熱を確実に透過して上記輻射熱吸収板
(3)に供給する共に、該吸収板(3)と外気とを遮断
して風などの対流による熱が吸収板(3)に伝達されな
いようにしている。上記輻射熱透過膜(8)を、例え
ば、30μmの厚さのポリエチレンで形成すると、その分
光透過率は、波数が4000cm-1から500cm-1の赤外線をほ
ぼ90%透過し、熱線(赤外線)である輻射熱が確実に透
過して輻射熱吸収板(3)に伝わることになる。また、
上記輻射熱透過膜(8)を波長が6〜7μm以上の赤外
線のみを透過するシリコン基板等のカットオンフィルタ
で形成してもよい。
In front of the radiant heat absorbing plate (3), a radiant heat permeable film (8) is stretched over the front opening of the storage chamber (5c) of the heat insulating case (5) at a predetermined interval. A front air insulation layer (9) is formed between the membrane (8) and the paint layer (4). The radiant heat permeable film (8) is formed of a thin film of an infrared permeable resin such as polyethylene or polypropylene and reliably transmits radiant heat to supply it to the radiant heat absorbing plate (3). 3) and the outside air are cut off so that heat due to convection such as wind is not transferred to the absorption plate (3). The radiant heat permeable membrane (8), for example, be formed of polyethylene with a thickness of 30 [mu] m, the spectral transmittance, the wave number is approximately 90% transmission of infrared radiation 500 cm -1 from 4000 cm -1, with heat rays (infrared) Certain radiant heat is surely transmitted and transmitted to the radiant heat absorbing plate (3). Also,
The radiant heat transmission film (8) may be formed of a cut-on filter such as a silicon substrate that transmits only infrared rays having a wavelength of 6 to 7 μm or more.

一方、上記前方空気断熱層(9)は、輻射熱吸収板
(3)の前面と外部とを空気層でもって断熱しており、
その厚さは、自然対流が生じない厚さに設定されてい
る。つまり、本実施例における前方空気断熱層(9)
は、厚さを厚くすると断熱効果は大きくなるものの、大
きくしすぎると、断熱層(9)内で自然対流が生じて輻
射熱以外に対流熱移動が生じるので、5mm〜10mmとして
上記吸収板(3)に伝わる熱のうち多くが上記透過膜
(8)を透過した輻射熱となるように構成されている。
On the other hand, the front air insulating layer (9) insulates the front surface of the radiant heat absorbing plate (3) and the outside with an air layer,
Its thickness is set so that natural convection does not occur. That is, the front air heat insulating layer (9) in the present embodiment.
If the thickness is too large, the heat insulating effect becomes large, but if it is made too large, natural convection occurs in the heat insulating layer (9) and convective heat transfer occurs in addition to the radiant heat. Most of the heat transmitted to () is radiant heat transmitted through the permeable membrane (8).

一方、前記空気温度検出器(11)は、白金などを用いた
抵抗温度計や熱電対を用いた熱電温度計などで構成さ
れ、輻射温度を検出している室内の空気温度を検出して
いる。
On the other hand, the air temperature detector (11) is composed of a resistance thermometer using platinum or the like or a thermoelectric thermometer using a thermocouple, and detects the air temperature in the room detecting the radiation temperature. .

また、前記演算回路(41)は、上記輻射温度検出器
(1)が検出した測定輻射温度Tsと空気温度検出器(1
1)は検出した測定空気温度Taとから次式に基づいて真
の輻射温度Trを算出するように構成されている。
Further, the arithmetic circuit (41) includes a measured radiation temperature Ts detected by the radiation temperature detector (1) and an air temperature detector (1
1) is configured to calculate the true radiation temperature Tr from the detected measured air temperature Ta and the following equation.

Tr=Ta+(1/cs)(Ts−Ta) …… この式において、csは、輻射定数であって記憶手段
(51)に予め記憶され、該記憶手段(51)が演算回路
(41)に定数信号を出力している。この記憶手段(51)
の輻射定数csは、測定輻射温度Tsと測定空気温度Taに対
する真の輻射温度Trの関係特性を示しており、次式で表
わされる。
Tr = Ta + (1 / cs) (Ts-Ta) In this equation, cs is a radiation constant and is stored in the storage means (51) in advance, and the storage means (51) is stored in the arithmetic circuit (41). Outputs a constant signal. This storage means (51)
The radiation constant cs of indicates the relational characteristic of the true radiation temperature Tr with respect to the measured radiation temperature Ts and the measured air temperature Ta, and is represented by the following equation.

cs=DT2/DT1=(Ta−Ts)/(Ta−Tr) …… この式を変形したのが上記式であり、この輻射定数
csは、外部条件、すなわち輻射温度検出器(1)の構造
や風速などで変化するが、これらの条件が設定されると
一定値となるので、実験的に求めて記憶手段(51)に記
憶されている。つまり、測定輻射温度Ts、測定空気温度
Ta及び真の輻射温度Trの関係は、第3図に示すように、
測定輻射温度Taが測定空気温度Taとの輻射温度Trとの間
に位置する関係となるので、この第3図におけるDT1とD
T2の比を輻射定数csとして予め設定している。
cs = DT 2 / DT 1 = (Ta-Ts) / (Ta-Tr) ...... had by modifying this equation is the equation, the radiation constant
Although cs changes depending on the external conditions, that is, the structure of the radiation temperature detector (1), the wind speed, etc., it becomes a constant value when these conditions are set, so it is experimentally obtained and stored in the storage means (51). Has been done. That is, measured radiation temperature Ts, measured air temperature
The relationship between Ta and true radiation temperature Tr is as shown in FIG.
Since the measured radiation temperature Ta is located between the measured air temperature Ta and the radiation temperature Tr, DT 1 and D in FIG.
The ratio of T 2 is preset as the radiation constant cs.

そこで、この輻射定数csの具体的な実験結果を第4図に
示している。この第4図において、縦軸に輻射定数csを
とり、横軸には、a,b,c,dの4つの異なる輻射温度検出
器(1)をとり、aは、輻射熱透過膜(8)を設けない
もの、bは、前方空気断熱層(9)を2mmとしたもの、
cは、前方空気断熱層(9)を5mmとしたもの、dは、
断熱ケース(5)を2倍の厚さにしたものである。そし
て、図中の○印は、風速が0.1m/s、□印は、風速が1.5m
/sの場合である。この実験結果より噴射温度検出器
(1)の条件に対応して輻射定数csが設定される。
Then, the concrete experimental result of this radiation constant cs is shown in FIG. In FIG. 4, the vertical axis shows the radiation constant cs, and the horizontal axis shows four different radiation temperature detectors (a), (b), (c), and (d), where a is the radiation heat permeable film (8). Without b, b has a front air insulation layer (9) of 2 mm,
c is a front air insulation layer (9) with a thickness of 5 mm, d is
The heat insulation case (5) has a double thickness. The circles in the figure indicate a wind speed of 0.1 m / s, and the squares indicate a wind speed of 1.5 m.
This is the case of / s. From this experimental result, the radiation constant cs is set according to the conditions of the injection temperature detector (1).

尚、輻射温度検出器(1)は、第4図から明らかなよう
に周囲の風速で輻射定数csが変化するので、風速変化の
少ない箇所に設けることが好ましい。
It should be noted that the radiation temperature detector (1) is preferably provided at a location where the wind speed changes little, because the radiation constant cs changes with the surrounding wind speed as is clear from FIG.

そして、前記演算回路(41)が算出した真の輻射温度信
号は、出力回路(61)に入力され、室内ユニットの制御
信号として利用される。
The true radiation temperature signal calculated by the arithmetic circuit (41) is input to the output circuit (61) and used as a control signal for the indoor unit.

次に、真の輻射温度Trの検出動作について説明する。Next, the operation of detecting the true radiation temperature Tr will be described.

先ず、輻射温度検出器(1)は、室内ユニットに収納さ
れており、壁などより出た輻射熱は、噴射熱透過膜
(8)を透過し、前方空気断熱層(9)を通って塗料層
(4)に伝わり、輻射熱吸収板(3)に吸収される。そ
して、温度検知素子(2)は、上記輻射熱吸収板(3)
を伝わった輻射熱を受けて輻射温度を検出する。
First, the radiant temperature detector (1) is housed in an indoor unit, and the radiant heat emitted from a wall or the like passes through the jet heat permeable film (8) and passes through the front air heat insulating layer (9) to form a paint layer. It is transmitted to (4) and absorbed by the radiant heat absorbing plate (3). Then, the temperature detecting element (2) includes the radiant heat absorbing plate (3).
The radiant temperature is detected by receiving the radiant heat transmitted through.

一方、空気温度検出器(11)は、室内空気の温度を検出
しており、この空気温度及び輻射温度の信号は、検知回
路(21,31)で信号処理されて演算回路(41)に入力さ
れる。そして、該演算回路(41)には、記憶手段(51)
より輻射定数csが入力されているので、演算回路(41)
は、式に基づいて測定輻射温度Tsと測定空気温度Taと
から真の輻射温度Trを算出する。この真の輻射温度Tr
は、出力回路(61)に出力され、室内ユニットが制御さ
れる。従って、上記真の輻射温度Trで空調制御されるの
で、快適な居住空間が達成されることになる。
On the other hand, the air temperature detector (11) detects the temperature of the indoor air, and the signals of the air temperature and the radiation temperature are processed by the detection circuit (21, 31) and input to the arithmetic circuit (41). To be done. Then, the arithmetic circuit (41) includes a storage means (51).
Since the radiation constant cs is input, the calculation circuit (41)
Calculates the true radiation temperature Tr from the measurement radiation temperature Ts and the measurement air temperature Ta based on the equation. This true radiation temperature Tr
Is output to the output circuit (61) to control the indoor unit. Therefore, since the air conditioning is controlled by the true radiation temperature Tr, a comfortable living space can be achieved.

上記実施例は、真の輻射温度Trを算出するようにした
が、他の実施例として人体の作用温度(体感温度)を算
出するようにてもよい。
Although the true radiation temperature Tr is calculated in the above embodiment, the working temperature (sensible temperature) of the human body may be calculated as another embodiment.

すなわち、上記体感温度OTは、次式で表わされ、 OT=(hc・Ta+hr・Tr)/(hc+hr) …… hc:人体の対流熱伝達率 hr:人体の輻射熱伝達率 この式を変形すると、 OT=Ta+cm(Tr−Ta) …… となる。このcmは、熱伝達定数で次式となる。That is, the sensible temperature OT is expressed by the following equation: OT = (hc · Ta + hr · Tr) / (hc + hr) ...... , OT = Ta + cm (Tr-Ta) .... This cm is a heat transfer constant and is given by the following equation.

cm=hr/(hc+hr) …… ここで、人体の対流熱伝達率hcは、次式で表わされる
(参考:空気調和・衛生工学会論文集No.15,1981年2月
号,持田徹著“着衣時の対流およびふく射熱伝達
率”)。
cm = hr / (hc + hr) ...... Here, the convective heat transfer coefficient hc of the human body is expressed by the following formula (reference: Air Conditioning and Sanitary Engineering Proceedings No.15, February 1981, Toru Mochida). "Convection and radiant heat transfer coefficient during clothing").

また、人体の輻射熱伝達率hrは、通常4(kcal/m2h℃)
であるので、熱伝達定数cmと風速vとの関係に、第5図
に破線Aに示す通りとなる。更にまた、湿性放熱まで考
慮して修正した熱伝達定数cmは、実線Bで示す通りとな
る。
The radiant heat transfer rate hr of the human body is usually 4 (kcal / m 2 h ℃)
Therefore, the relationship between the heat transfer constant cm and the wind speed v is as shown by the broken line A in FIG. Furthermore, the heat transfer constant cm modified in consideration of wet heat radiation is as shown by the solid line B.

そこで、この第5図に基づいて居住域である室内の風速
を仮定し、熱伝達定数cmを予め設定する。そして、前記
記憶手段(51)には、前記輻射定数csの他に上記熱伝達
定数cmが設定記憶されている。一方、前記演算回路(4
1)は、この輻射定数csと熱伝達定数cmとを適用し、上
記式及び式から導出される次式から体感温度OTを算
出し、出力回路(61)に出力している。
Therefore, based on FIG. 5, the wind speed in the room, which is the living area, is assumed and the heat transfer constant cm is set in advance. In addition to the radiation constant cs, the heat transfer constant cm is set and stored in the storage means (51). On the other hand, the arithmetic circuit (4
In 1), the radiation constant cs and the heat transfer constant cm are applied, the sensible temperature OT is calculated from the above equation and the following equation derived from the equation, and is output to the output circuit (61).

OT=Ta+(cm/cs)(Ts−Ta) …… 従って、この実施例においては、輻射温度検出器(1)
が検出した測定輻射温度Tsと、空気温度検出器(11)が
検出した測定空気温度Taとより、演算回路(41)が直接
体感温度OTを式に基づいて算出している。この体感温
度OTの信号が出力回路(61)より出力されて室内ユニッ
トが制御されることになる。
OT = Ta + (cm / cs) (Ts-Ta) Therefore, in this embodiment, the radiation temperature detector (1)
The operating temperature (OT) is directly calculated by the arithmetic circuit (41) based on the equation from the measured radiation temperature Ts detected by the air temperature detector and the measured air temperature Ta detected by the air temperature detector (11). The signal of the sensible temperature OT is output from the output circuit (61) to control the indoor unit.

尚、この体感温度OTを算出する実施例において、輻射定
数csが熱伝達定数cmと等しくなるように(cs=cm)輻射
温度検出器(1)の構造等を設定してもよく、その際、
上記式における(cm/cs=1)となるので、輻射温度
検出器(1)が検出した測定輻射温度Tsがそのまま体感
温度OTとなり(Ts=OT)、体感温度OTを簡易に検出する
ことができる。
In the embodiment for calculating the sensible temperature OT, the structure of the radiation temperature detector (1) may be set so that the radiation constant cs becomes equal to the heat transfer constant cm (cs = cm). ,
Since (cm / cs = 1) in the above formula, the measured radiant temperature Ts detected by the radiant temperature detector (1) becomes the sensible temperature OT (Ts = OT), and the sensible temperature OT can be easily detected. it can.

つまり、例えば、居住域の風速vが0.4m/sと仮定する
と、熱伝達定数cmは、第5図の実線Bより0.4となる。
そこで、第4図に示すように、輻射温度検出器(1)の
前方空気断熱層(9)等を変えると輻射定数csが変化す
るので、この輻射定数csが0.4となるように空気断熱層
(9)等を設定することになる。これにより、測定輻射
温度Tsがそのまま体感温度OTとなる。
That is, for example, assuming that the wind speed v in the residential area is 0.4 m / s, the heat transfer constant cm is 0.4 from the solid line B in FIG.
Therefore, as shown in FIG. 4, when the front air insulation layer (9) of the radiation temperature detector (1) is changed, the radiation constant cs changes, so that the radiation insulation layer cs becomes 0.4. (9) will be set. As a result, the measured radiation temperature Ts becomes the sensible temperature OT as it is.

また、各実施例における記憶手段(51)の輻射定数cs及
び熱伝達定数cmは、風速vを仮定して一定値としたが、
室内ユニットに風速計を設け、風速vに対応して輻射定
数cs及び熱伝達定数cmを変更するようにしてもよい。
Further, the radiation constant cs and the heat transfer constant cm of the storage means (51) in each example are constant values assuming the wind speed v.
The indoor unit may be provided with an anemometer, and the radiation constant cs and the heat transfer constant cm may be changed according to the wind speed v.

更にまた、輻射温度検出器(1)の前方空気断熱層
(9)は、透過膜(8)を2枚並設して二重に形成して
もよい。また、輻射温度検出器(1)は、実施例のもの
に限られず、従来例に示す特開昭61−149751号公報に示
すものでもよく、その際、この検出器に対応した輻射定
数cs等を定めればよい。
Furthermore, the front air heat insulation layer (9) of the radiation temperature detector (1) may be doubled by arranging two permeable membranes (8) in parallel. Further, the radiation temperature detector (1) is not limited to that of the embodiment, but may be the one shown in JP-A-61-149751, which is a conventional example, in which case the radiation constant cs or the like corresponding to this detector. Should be set.

(発明の効果) 以上のように、本発明の輻射温度測定装置によれば、測
定輻射温度と測定空気温度とに対する真の輻射温度の関
係特性を予め設定記憶させ、検出した輻射温度と空気温
度とから真の輻射温度を算出するようにしたため、この
真の輻射温度により空調制御等を行うことができるの
で、簡易な輻射温度検出器を用いても快適な空調を行う
ことができ、有価に精度の良い制御を行うことができ
る。
(Effects of the Invention) As described above, according to the radiation temperature measuring device of the present invention, the relational characteristics of the true radiation temperature with respect to the measured radiation temperature and the measured air temperature are preset and stored, and the detected radiation temperature and air temperature are stored. Since the true radiation temperature is calculated from the above, air conditioning control etc. can be performed by this true radiation temperature, so comfortable air conditioning can be performed even with a simple radiation temperature detector, and it is valuable. It is possible to perform accurate control.

また、噴射温度検出器を噴射熱吸収板がその前面にて噴
射熱を受けて温度検知素子が輻射温度を検知するので、
輻射熱の受熱面積が広くなり、受熱量が多く、正確な輻
射温度を検出することができる。
Further, since the injection heat detector receives the injection heat at the front surface of the injection temperature detector and the temperature detection element detects the radiation temperature,
The area for receiving the radiant heat is wide, the amount of heat received is large, and the radiant temperature can be accurately detected.

また、輻射温度検出器の輻射熱透過膜が赤外線透過性材
で形成するので、輻射熱が確実に透過して吸収板に伝わ
り、更に、空気断熱層を所定厚さに形成するので、自然
対流が生じることがなく、対流による熱移動を少なくす
ることができ、輻射温度の精度を向上させることができ
る。
Further, since the radiant heat permeable film of the radiant temperature detector is made of an infrared permeable material, radiant heat is surely transmitted and transmitted to the absorbing plate, and further, the air heat insulating layer is formed to a predetermined thickness, so natural convection occurs. The heat transfer due to convection can be reduced, and the accuracy of the radiation temperature can be improved.

更に、輻射温度検出器における輻射熱吸収板の塗料層を
肌色又はクリーム色の塗料で形成したために、輻射熱伝
達率を人体の輻射熱伝達率に略合致させることができる
ことから、人体に対する輻射温度を精度良く検知するこ
とができる。
Furthermore, since the paint layer of the radiant heat absorption plate in the radiant temperature detector is made of skin-colored or cream-colored paint, the radiant heat transfer coefficient can be made to approximately match the radiant heat transfer coefficient of the human body, so the radiant temperature to the human body can be accurately measured. Can be detected.

【図面の簡単な説明】[Brief description of drawings]

図面は、本発明の実施例を示し、第1図は、噴射温度測
定装置のブロック図、第2図は、輻射温度検出器の縦断
面図である。第3図は、測定輻射温度と測定空気温度と
真の輻射温度との関係を示す図、第4図は、輻射定数cs
の実験結果を示す図、第5図は、風速による熱伝達定数
cmの変化を示す図である。 (1)……輻射温度検出器、(2)……温度検知素子、
(3)……噴射熱吸収板、(4)……塗料装置、(5)
……断熱ケース、(5c)……収納室、(8)……輻射熱
透過膜、(9)……前方空気断熱層、(11)……空気温
度検出器、(41)……演算回路、(51)……記憶手段。
The drawings show an embodiment of the present invention, FIG. 1 is a block diagram of an injection temperature measuring device, and FIG. 2 is a vertical sectional view of a radiation temperature detector. Fig. 3 shows the relationship between measured radiation temperature, measured air temperature, and true radiation temperature. Fig. 4 shows radiation constant cs.
Fig. 5 shows the experimental results of Fig. 5, and Fig. 5 shows the heat transfer constant depending on the wind speed.
It is a figure which shows the change of cm. (1) …… Radiation temperature detector, (2) …… Temperature detecting element,
(3) …… Injection heat absorption plate, (4) …… Paint device, (5)
…… Insulation case, (5c) …… Storage room, (8) …… Radiation heat permeable film, (9) …… Front air insulation layer, (11) …… Air temperature detector, (41) …… Computation circuit, (51) …… Means of storage.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】室内の輻射温度を検出する輻射温度検出器
(1)と、 室内の空気温度を検出する空気温度検出器(11)と、 上記輻射温度検出器(1)が検出する測定輻射温度及び
上記空気温度検出器(11)が検出する測定空気温度に対
する真の輻射温度の関係特性を予め設定記憶している記
憶手段(51)と、 該記憶手段(51)の関係特性に基づき上記輻射温度検出
器(1)及び空気温度検出器(11)で検出した測定輻射
温度及び測定空気温度より真の輻射温度を算出する演算
手段(41)とを備える一方、 上記輻射温度検出器(1)は、 前面が開放する収納室(5c)を有し且つ断熱材よりなる
断熱ケース(5)と、 該断熱ケース(5)の収納室(5c)内に背面が断熱ケー
ス(5)で覆われた状態で張設されて輻射熱を吸収する
輻射熱吸収板(3)と、 該輻射熱吸収板(3)の温度を検知する温度検知素子
(2)と、 上記断熱ケース(5)の収納室(5c)前面に上記輻射熱
吸収板(3)に対して自然対流が生じない厚さの空気断
熱層(9)を介して張設され、輻射熱が透過する赤外線
透過性材よりなる輻射熱透過膜(8)とを備え、 上記輻射熱吸収板(3)が、前面に輻射熱を吸収する塗
料層(4)を有し、該塗料層(4)が肌色又はクリーム
色の塗料で形成されて構成されていることを特徴とする
輻射温度測定装置。
1. A radiation temperature detector (1) for detecting a radiation temperature in a room, an air temperature detector (11) for detecting an air temperature in a room, and a measurement radiation detected by the radiation temperature detector (1). Based on the relational characteristics of the storage means (51) in which the relational characteristics of the true radiation temperature with respect to the temperature and the measured air temperature detected by the air temperature detector (11) are preset and stored, The radiation temperature detector (1) and the air temperature detector (11) are provided with a calculation means (41) for calculating a true radiation temperature from the measured radiation temperature and the measured air temperature. ) Is a heat insulating case (5) having a storage chamber (5c) whose front surface is open and made of a heat insulating material, and a back surface of the storage chamber (5c) of the heat insulating case (5) covered with the heat insulating case (5). A radiant heat absorbing plate (3) that is stretched in a closed state to absorb radiant heat , A temperature detecting element (2) for detecting the temperature of the radiant heat absorbing plate (3), and no natural convection to the radiant heat absorbing plate (3) in front of the storage chamber (5c) of the heat insulating case (5). A radiant heat transmitting film (8) made of an infrared permeable material that is permeable to radiant heat and is stretched through an air heat insulating layer (9) having a thickness, and the radiant heat absorbing plate (3) absorbs radiant heat on the front surface. A radiation temperature measuring device, comprising a coating layer (4) for forming a coating layer, the coating layer (4) being formed of a flesh-colored or cream-colored coating material.
JP62020134A 1987-01-30 1987-01-30 Radiation temperature measuring device Expired - Lifetime JPH0789085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62020134A JPH0789085B2 (en) 1987-01-30 1987-01-30 Radiation temperature measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62020134A JPH0789085B2 (en) 1987-01-30 1987-01-30 Radiation temperature measuring device

Publications (2)

Publication Number Publication Date
JPS63187128A JPS63187128A (en) 1988-08-02
JPH0789085B2 true JPH0789085B2 (en) 1995-09-27

Family

ID=12018664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62020134A Expired - Lifetime JPH0789085B2 (en) 1987-01-30 1987-01-30 Radiation temperature measuring device

Country Status (1)

Country Link
JP (1) JPH0789085B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281578A (en) * 2009-06-02 2010-12-16 Mitsubishi Materials Corp Temperature sensor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03237321A (en) * 1990-02-13 1991-10-23 Tokai Carbon Co Ltd Emissivity measuring instrument
JP2853369B2 (en) * 1991-06-03 1999-02-03 松下電器産業株式会社 Hot air heater
JPH04369336A (en) * 1991-06-14 1992-12-22 Daikin Ind Ltd Controlling device for operating air conditioningapparatus
EP0566156B1 (en) * 1992-04-17 1997-08-27 Terumo Kabushiki Kaisha Infrared sensor and method for production thereof
JPH0674821A (en) * 1992-07-10 1994-03-18 Ishizuka Denshi Kk Infrared detector
JP2929851B2 (en) * 1992-08-06 1999-08-03 松下電器産業株式会社 heater
JPH10176860A (en) * 1996-12-17 1998-06-30 Takenaka Komuten Co Ltd Mean radiation temperature sensing device
JP6091243B2 (en) * 2013-02-18 2017-03-08 三菱電機株式会社 Air conditioner
WO2019053759A1 (en) * 2017-09-12 2019-03-21 株式会社芝浦電子 Infrared temperature sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149751A (en) * 1984-12-24 1986-07-08 Toshiba Corp Air conditioner
JPS61123946U (en) * 1985-01-22 1986-08-04

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
昭和61年11月3日発行「電波新聞」第7頁、左上欄

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281578A (en) * 2009-06-02 2010-12-16 Mitsubishi Materials Corp Temperature sensor

Also Published As

Publication number Publication date
JPS63187128A (en) 1988-08-02

Similar Documents

Publication Publication Date Title
EP0991926B1 (en) Ambient and perfusion normalized temperature detector
Berliner et al. Evaluation of the infrared thermometer as a crop stress detector
JPH0789085B2 (en) Radiation temperature measuring device
US8569701B2 (en) Absolute cavity pyrgeometer
US4171382A (en) Method of cooking meats in a microwave oven
CN112595420A (en) Infrared body temperature screening instrument and correction method
US4863279A (en) Operative temperature sensing system
JP3939487B2 (en) Thermophysical property measurement system
KR920006072B1 (en) Heat inspection device
JPH05187931A (en) Instrument and method for measuring heat flow at opening
JP3813057B2 (en) Temperature detector and air conditioner using the same
JP2615599B2 (en) Air conditioner
JPH0778458B2 (en) Radiation temperature detector
JPH052255B2 (en)
JPH0478132B2 (en)
JPH0454860B2 (en)
JPS60169727A (en) Simple emissivity meter
JP7430956B1 (en) Radiant heat measuring device and its radiant heat measuring method
US4134015A (en) System for measuring the reflectance or emittance of an arbitrarily curved surface
Cena Environmental heat loss
JPH0694521A (en) Pyroelectric sensor and air-conditioning controlling method using the same
JPH0142046Y2 (en)
Berglund Radiation Measurement for Thermal Comfort Assessment in the Built Environment
JPS5922501Y2 (en) radiation thermometer
JPH0449556Y2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term