JPS60101184A - Method for controlling fuel in coke oven - Google Patents

Method for controlling fuel in coke oven

Info

Publication number
JPS60101184A
JPS60101184A JP20886983A JP20886983A JPS60101184A JP S60101184 A JPS60101184 A JP S60101184A JP 20886983 A JP20886983 A JP 20886983A JP 20886983 A JP20886983 A JP 20886983A JP S60101184 A JPS60101184 A JP S60101184A
Authority
JP
Japan
Prior art keywords
fuel
concentration
coke
change
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20886983A
Other languages
Japanese (ja)
Other versions
JPH0798937B2 (en
Inventor
Yoshio Yoshino
吉野 良雄
Koji Dobashi
幸二 土橋
Yoshihiro Bizen
尾前 佳宏
Kenzo Tsujikawa
辻川 賢三
Takashi Takaoka
隆司 高岡
Yukio Yamaguchi
由岐夫 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP58208869A priority Critical patent/JPH0798937B2/en
Priority to DE3440501A priority patent/DE3440501C2/en
Priority to GB08428003A priority patent/GB2149421B/en
Priority to US06/668,930 priority patent/US4655878A/en
Publication of JPS60101184A publication Critical patent/JPS60101184A/en
Publication of JPH0798937B2 publication Critical patent/JPH0798937B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coke Industry (AREA)

Abstract

PURPOSE:To enable the quality of coke to be kept constant and to reduce the quantity of heat to be consumped, by changing the feed rate of fuel from a high flow rate in the early stage of dry distillation to a low flow rate according to hydrogen concn. in gas generated from a coking chamber or conducting first change to stop fuel supply. CONSTITUTION:In a coke oven, coke is softened and molten at 350-400 deg.C and then resolidified and thermal conductivity is rapidly increased at a semi-coking temp. of 500-600 deg.C. Until temp. reaches this level, fuel is fed at a high feed rate to effect premature coking. Thereafter, the fuel feed is stopped or the feed rate of fuel is extremely decreased, whereby the quality of coke can be kept constant and at the same time, the quantity of heat to be consumed can be reduced. With regard to change in the concn. of hydrogen in gas generated from a coking chamber, the rate of change of hydrogen concn. temporarily becomes zero when the temp. of coal core reaches 500 deg.C, and then the rate of change is gradually increased. Accordingly, the first change of fuel feed is conducted between the points A and D in the figure.

Description

【発明の詳細な説明】 本発明はコークス炉の燃料制御方法に関するものである
。コークス炉に於ける省エネルギー対策の一つとして、
コークス炉へ供給する燃料の供給量を、乾留の初期を大
流量とし、その後の段階では目的に応じて供給量を袈更
するいわゆるプログラム加熱法が提案されている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling fuel in a coke oven. As one of the energy saving measures in coke ovens,
A so-called program heating method has been proposed in which the amount of fuel supplied to the coke oven is set at a large flow rate at the initial stage of carbonization, and the amount of fuel supplied at subsequent stages is adjusted depending on the purpose.

即ちこの方法は乾留開始後、3〜9時間時間撚料供給量
を均一加熱の場合の/、6〜2.5倍とし、その後は零
状態をも含む小流量の状態に7〜3回程度切り換えるも
のである。
That is, in this method, after the start of carbonization, the amount of twisted material supplied for 3 to 9 hours is increased to 6 to 2.5 times that in the case of uniform heating, and then the flow rate is reduced to a low flow rate including a zero state about 7 to 3 times. It is something that can be switched.

しかしながら、これらのプログラム加熱法は倒れも現在
のコークス炉操業に於いては加熱パターンが複雑になる
ため現実的には制御が困難である、又は、具体的な加熱
パターンの指標が明確でない、あるいは製出コークスの
品質面まで考慮されていないなどの欠点を有している。
However, these programmed heating methods are difficult to control in reality due to complicated heating patterns in current coke oven operations, or indicators of specific heating patterns are not clear, or It has drawbacks such as not considering the quality of the coke produced.

そこで、我々はこれらの問題点を解決すべく検討を重ね
た結果、次のようなプログラム加熱時の加熱制御方法が
消費熱量(Heat Consumption)の低減
及びコークス品質の維持の面から最適である事を見出し
た。
Therefore, as a result of repeated studies to solve these problems, we found that the following heating control method during program heating is optimal in terms of reducing heat consumption and maintaining coke quality. I found out.

即ち、石炭乾留時の熱伝導度の変化に注目した場合、石
炭が35θ〜り00℃付近より軟化溶融し、その後再固
化しセミコークス化するSOO〜600℃付近の温度レ
ベルより、熱伝導度が急激に上昇するのでこの温度レベ
ルまでは燃料の供給量を犬きくして早期にコークス化さ
せ、この時点以降で燃料の供給量を零又は極端に低下さ
せることによって、コークス品質の維持を計シながら同
時に消費熱量の低減も達成できることが判った。
In other words, when paying attention to the change in thermal conductivity during carbonization of coal, the thermal conductivity increases from the temperature level around SOO~600°C, where coal softens and melts from around 35θ to 00°C, and then resolidifies and becomes semi-coke. Since the temperature rises rapidly, the system aims to maintain coke quality by reducing the amount of fuel supplied to this temperature level to cause early coke formation, and from this point onwards, the amount of fuel supplied is zero or extremely reduced. However, it was found that it was also possible to reduce the amount of heat consumed at the same time.

他方、前述した加熱パターンを基にプログラム加熱を実
施した場合1通常加熱時に比較して平均的に軟化溶融温
度域(3SO〜!00′G)での昇温速度が速くなるた
め、乾留時の石炭の軟化溶融性又は流動性が改善され、
結果として製出コークスの基質強度が高まシ、コークス
品!(特に熱間反応後強度)は、向上することになシ、
プログラム加熱に於ける窒出し時のコークス温度の低下
による(即ち、プログラム加熱時の消費熱量の低減は、
このコークス顕熱の削減による)コークス品質の低下は
充分にカバーしうるものである。
On the other hand, when programmed heating is performed based on the heating pattern described above, the temperature rise rate in the softening and melting temperature range (3SO~!00'G) becomes faster on average than during normal heating, so Softening and melting properties or fluidity of coal are improved,
As a result, the substrate strength of the produced coke is increased, making it a coke product! (especially the strength after hot reaction) will not improve.
Due to the reduction in coke temperature during nitrogen extraction during program heating (i.e., the reduction in the amount of heat consumed during program heating)
This decrease in coke quality (due to the reduction in coke sensible heat) can be sufficiently compensated for.

以上の事よシ、燃料の供給量を乾留初期の大容量から零
、又は極端に低下させる時点−が最も重要となるが、こ
の切り換え時期については予め代表的な乾留条件下で、
乾留経過時間と炭中温度との関係をめて経験的に知って
おく方法によっても決定しうるが、この方法では実用的
でなく、また炭中温就についても炭化室のあるひとつの
点で代表させるために精度的に劣るものである。
Considering the above, the most important point is when the fuel supply amount is reduced from the large capacity at the initial stage of carbonization to zero or extremely reduced.
It can also be determined by empirically knowing the relationship between the elapsed carbonization time and the temperature in the charcoal, but this method is not practical, and the temperature in the charcoal is also determined by one point in the carbonization chamber. The accuracy is poor due to the

そこで、我々はこの点について種々検討を重ねた結果、
石炭乾留時に炭化室よシ元生するコークス炉ガス中の水
素濃度の経時変化パターンと乾留進行状況との間にVi
密接な関係があることを見出した。
Therefore, as a result of various studies on this point, we found that
Vi
We found that there is a close relationship.

すなわち1本発明は、炭化室から発生ずるガス中の水素
濃度を測定することに基づいて、燃料供給量の切り換え
を行なうことを目的とするものである。
That is, one object of the present invention is to switch the fuel supply amount based on measuring the hydrogen concentration in the gas generated from the carbonization chamber.

しかして、かかる目的は、コークス炉の石炭乾留過程に
於ける各段階で燃料の供給量を変更するプログラム加熱
法に於いて、該燃料の供給を乾留初期の大流鈑から小流
量へ変更し、もしくは停止する最初の切シ換えを炭化室
から発生するカス中の水素濃度に基づいて行なうことに
よシ達成される。
Therefore, in the programmed heating method, which changes the fuel supply amount at each stage of the coal carbonization process in a coke oven, the fuel supply is changed from a large flow plate at the initial stage of carbonization to a small flow rate. Alternatively, this can be achieved by performing the first switching to stop based on the hydrogen concentration in the scum generated from the carbonization chamber.

ここで、一般的に石炭の乾留過程に於いて、石炭は比較
的初期に石炭中の含酸素官能基が分解され、水分、炭酸
ガス−などを放出する。この温度は、200℃程度であ
るが、さらに温度が高くなると、初めて石炭本質の熱分
解が起こり多おのメタン及び炭化水素ガス、タール等が
放出される。この温度はJ!;0−300℃の温度ゾー
ンで石炭の高次構造は熱分解を受け低分子化し、モビリ
ティ−を増し分子の再配列が行なわれる。200℃付近
で再固化し、200〜り00℃になると熱分解はさらに
進み、主としてメタン、水素及び−酸化炭素を放出して
次第に芳香族構造が大きくなる一方、タールはほとんど
増加しなくなる。? 00 ’Q以上になると、発生ガ
ス組成は、水素に富むようになシ、コークスの結晶化が
さらに拡大される。
Generally, in the carbonization process of coal, the oxygen-containing functional groups in the coal are decomposed relatively early, releasing moisture, carbon dioxide, and the like. This temperature is about 200° C., but when the temperature rises further, thermal decomposition of the coal essence occurs for the first time, and a lot of methane, hydrocarbon gas, tar, etc. are released. This temperature is J! ; In the temperature zone of 0-300°C, the higher-order structure of coal undergoes thermal decomposition and becomes lower molecular weight, increasing its mobility and rearranging its molecules. It re-solidifies at around 200°C, and when the temperature reaches 200-000°C, thermal decomposition progresses further, releasing mainly methane, hydrogen and carbon oxide, and gradually increasing the size of the aromatic structure, while the amount of tar hardly increases. ? When the temperature exceeds 00'Q, the composition of the generated gas becomes rich in hydrogen, and the crystallization of coke is further expanded.

以上のような乾留過程を経て、コークスとなるわけだが
、これがコークス炉に於いては1両側の炭化壁を通じて
加熱が行なわれ、石炭は熱伝導率がきわめて低いので熱
i炭化室の両側壁から中心に向かって徐々に伝熱し上記
のような熱分解が逐灰起こる。従って、装入炭の水分が
少なくかつ燃焼室のフリュ一温度が高いほど乾留の進行
はよシ早くなる。第1図に乾留過程の模式図を示す。こ
の図は、左側から加熱壁レンガ、コークスの収縮によっ
て生じたレンガとコークスとの間隙、コークス層、セミ
ヲークス層、プラスチックゾーン及び未乾留状態の石炭
層をそれぞれ示しており、石炭は、3 k O℃付近よ
シ軟化溶融状態を呈した後、石炭粒字6相互に融着し合
う一方、分解ガスを発生する。このような熱分解の状態
が炭化室の両側から中心に向かって進行する際に主に3
5θ〜!00℃の温度ゾーン(プラスチック智ゾーンと
略す)で発生した炭化水素類及びタール蒸気を主成分と
するガスは、そのざθ〜9oチが炉壁側の加熱コークス
の気孔及び収縮によって生じた亀裂等を通って、この赤
熱コークスのゾーンでユ次分解を受け、コークス中にデ
ポジットカーボンヲ残してより軽質なガスとなって炉外
に放出される。
After the carbonization process described above, coke is produced. In the coke oven, this is heated through the carbonization walls on both sides. Since coal has extremely low thermal conductivity, it is heated from both sides of the carbonization chamber. Heat is gradually transferred toward the center, and the above-mentioned thermal decomposition occurs. Therefore, the lower the water content of the charged coal and the higher the temperature of the flue in the combustion chamber, the faster the carbonization will proceed. Figure 1 shows a schematic diagram of the carbonization process. This figure shows, from the left, a heated wall brick, a gap between the brick and coke caused by coke contraction, a coke layer, a semi-works layer, a plastic zone, and an uncarbonized coal seam. After exhibiting a softened and molten state at around 0.degree. C., the coal grains 6 fuse together and generate cracked gas. When this state of thermal decomposition progresses from both sides of the carbonization chamber toward the center, three
5θ~! The gas mainly composed of hydrocarbons and tar vapor generated in the 00°C temperature zone (abbreviated as plastic zone) is caused by cracks caused by the pores and shrinkage of the heated coke on the furnace wall side. The red-hot coke undergoes secondary decomposition in this red-hot coke zone, leaving deposit carbon behind in the coke and becoming a lighter gas that is discharged outside the furnace.

ここで炭化水素類のl成分として水素に注目し、水素の
コークス層での熱分解を考えた場合水素濃度の経時変化
は、コークス化速度(プラスチック・ゾーンの進行速度
又はコークス層による熱分解ゾーンの拡大速度として捉
えられる)を反映しているものと推察されたので、種々
検討を重ねた結果、乾留中期に於ける水素濃度の経時変
化と炭芯部温度との間に密接な関連のあることを確認し
た。即ち、第2図は本炉に於ける発生ガス中の水素濃度
と炭芯部温度との測定結果を示す典型的な一例を示すも
のであシ、横軸に乾留経過時間(hr)、縦軸に水素濃
度、炉温、燃料ガス供給量及び炭芯部温度をとったもの
である。第一図から明らかなように炭芯部温度が200
℃付近に達した時点と水素濃度の変化率が急激に大きく
なる時点が、よく一致していることが判明した。
Here, we focus on hydrogen as the l component of hydrocarbons, and consider the thermal decomposition of hydrogen in the coke layer. As a result of various studies, we found that there is a close relationship between the change in hydrogen concentration over time during the middle stage of carbonization and the coal core temperature. It was confirmed. That is, Figure 2 shows a typical example of the measurement results of the hydrogen concentration in the generated gas and the coal core temperature in this furnace. The axis shows hydrogen concentration, furnace temperature, fuel gas supply amount, and coal core temperature. As is clear from Figure 1, the temperature of the coal core is 200.
It was found that the point at which the temperature reached around ℃ and the point at which the rate of change in hydrogen concentration suddenly increased coincided well.

次に、以上の検討結果を基に、プログラム加熱時に於け
る燃料供給量の切シ換え時期の決定を乾留時に発生する
水素濃度変化によって行なう方法について具体的に説明
するとμ下の通シとなる。
Next, based on the above study results, we will specifically explain how to determine when to switch the fuel supply amount during program heating based on changes in hydrogen concentration that occur during carbonization. .

即ち、乾留の進行にしたがって炭化室から発生するガス
組成を分析して、乾留経過時間に対する水素濃度の変化
データを取得し、乾留の中抜半期に於いて、水素濃度が
濃度の変化率が一旦零になった第7の時点の濃度から、
同変化率が減少し、再び零にな91次いで増加し、水素
濃度が第1の時点の濃度に等しくなった第一の時点迄の
範囲内に燃料供給量の切り換えを実施すれはよい。第一
図よシ明らかな通り、水素濃度の変化は、乾留の初期か
ら中期にかけて増加した後増加率が零になる(第一図の
AA)。その後水素濃度は減少率し、減少率が苓になる
(第2図のB点り。そして水素濃度は再ひ増加する(第
2図00領域)。
That is, by analyzing the gas composition generated from the carbonization chamber as carbonization progresses, data on changes in hydrogen concentration with respect to the elapsed time of carbonization is obtained. From the concentration at the seventh point when it became zero,
The rate of change decreases, reaches zero again91, then increases, and the fuel supply amount may be switched within a range up to a first point in time when the hydrogen concentration becomes equal to the concentration at the first point in time. As is clear from Figure 1, the change in hydrogen concentration increases from the beginning to the middle of carbonization, and then the rate of increase becomes zero (AA in Figure 1). Thereafter, the hydrogen concentration decreases at a decreasing rate (point B in FIG. 2), and the hydrogen concentration increases again (region 00 in FIG. 2).

本発明に於いては、第2図のA点(第lの時点りから第
2図の01i¥域に於して水素0度がA点と等しい濃度
となるD点(第一の時点ン迄の範囲内に於いて、燃料供
給の最初の切シ換えを行なうことが重要である。経験的
には水素濃度の変化率が一旦零になった時点から4時間
以内に、好ましくは1時間以内に燃料供給の最初の切り
換えが行なわれる。もちろん上記水素濃度の変化率の代
シに水素濃度変化を統計的に処理したある統計量を燃料
供給量の切シ換え時期の指標として用いることもできる
In the present invention, from point A (point l in Figure 2) to point D (first point It is important to change the fuel supply for the first time within the range of The first switching of the fuel supply will take place within a few days.Of course, instead of the above rate of change in hydrogen concentration, a statistical value obtained by statistically processing the change in hydrogen concentration may be used as an indicator of when to switch the fuel supply amount. can.

また、焼成サイクル、初期炉温、炉体条件等の操業条件
、装入炭性状として水分、揮発分、粒度及び装入炭量に
基づいてエチレン濃度あるいはタール濃度変化の基準パ
ターンを設定し、その後は現実に炭化室から発生するガ
ス中のエチレン濃度あるいはタール濃度を分析して、こ
の測定値が基準パターンにのるように燃料ガス供給量等
を調整しながら、最初の切シ換えを水素濃度に基づいて
行なってもよい。
In addition, a standard pattern for changes in ethylene concentration or tar concentration is set based on operating conditions such as the firing cycle, initial furnace temperature, and furnace body conditions, as well as the properties of the charged coal such as moisture, volatile matter, particle size, and amount of charged coal. Actually, the ethylene concentration or tar concentration in the gas generated from the carbonization chamber is analyzed, and while adjusting the fuel gas supply amount etc. so that the measured value follows the standard pattern, the first change is made to the hydrogen concentration. It may be done based on.

ここでエチレン諸度あるいはタール濃度の基準パターン
の作成に関しては、数多くの実嗣デ−夕から統計的に解
析した結果に基づいて決定される。統計的な解析は、実
績データを分類し、込くつかの群〃・らなる標準的条件
に近似させることによって行なうことができる。あるい
はまた電n機を用いてシミュレーションヲ行すい、その
結果に基づいて決定することもできる。これら各物質の
濃度の測定方法は水素、エチレンについては、ガスクロ
マトグラフィー、質量分析計等の通常使用される方法に
よシ、ま、たクールについてはタール抽集器による重り
差を利用した方法によって行なわれる。
The standard patterns for ethylene content or tar concentration are determined based on the results of statistical analysis of a large number of actual data. Statistical analysis can be performed by classifying performance data and approximating it to standard conditions consisting of several groups. Alternatively, it is also possible to perform a simulation using an electric machine and make a determination based on the result. The concentration of each of these substances can be measured by the commonly used methods such as gas chromatography and mass spectrometry for hydrogen and ethylene, and by using the difference in weight using a tar extractor for cool. It is carried out by

ここで本発明における供給量の切り換えとは、大流量か
ら小流量への変更あるいは供給の停止等の大幅な供給量
の変更(通常均一加熱の場合の供給−″の0.3倍かμ
下)を示すものであシ、エチレン濃度による供給量の制
御とは各濃度の基準パターンにのるように小幅に供給量
を変更するものである。
Here, switching the supply amount in the present invention means a significant change in the supply amount such as changing from a large flow rate to a small flow rate or stopping the supply (usually 0.3 times the supply -'' in the case of uniform heating)
Control of the supply amount based on the ethylene concentration involves changing the supply amount slightly so as to follow the reference pattern for each concentration.

次に本発明を実施例により更に具体的に説明するが、本
発明は、その要旨をこえない限シ以下の実施例に限定さ
れるものではない。なお、寿雄側に於ける物性値は、以
下の方法によって測定した値である。
Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist of the invention is exceeded. Note that the physical property values on the Hisao side are values measured by the following method.

なお、本発明で用いている稼働率とは次式で定義される
ものである。
Note that the operating rate used in the present invention is defined by the following equation.

コークス炉の稼働率=(2ダ/総乾留時間(hr月×1
00(1)装入炭性状 灰分(Ash) : 、718Mざg/コ揮発分(VM
):718Mざ112 ギ一セラー流動度(F工): 118Mgざ0/平均反
射率(烏):518Mgざ/6 全硫黄分(Suυ :JIS M l:!;/3トータ
ルイナーH妓CTI): JIS M ltgI&(2
)熱間反応後強度(O8R) 試料粒度: 、20mrk Itt+m試料重蓋: 、
2ootiy回 ガス組成: 00. (100%) ガス流量=jNl/分 反応温度: 1too℃ 反応時間:l−0分 強 度 : 1型ドラムで6θQ回転後(コOrpm×
30分)の1OyspJli上のwt%(3) 冷間ド
ラム強度(D工を雪) JIS K コl!l 実施例1 幅000關、長さlコ、J’ rrL s高さ41.j
7ILの炭化室に第1表に示す性状の配合炭を装入し、
燃料としてコークス炉ガスを用いて乾留を行なった。
Coke oven operating rate = (2 da/total carbonization time (hr month x 1
00(1) Charging coal properties Ash content (Ash): , 718M g/kg Volatile matter (VM
): 718 Mg 112 Gisseler fluidity (F): 118 Mg 0/Average reflectance (R): 518 Mg/6 Total sulfur content (Suυ: JIS M l:!;/3 Total Inner H 妓CTI) : JIS M ltgI&(2
) Strength after hot reaction (O8R) Sample particle size: , 20 mrk Itt+m sample heavy lid: ,
2ootiy times gas composition: 00. (100%) Gas flow rate = jNl/min Reaction temperature: 1toooC Reaction time: 1-0 min Intensity: After 6θQ rotation with type 1 drum (Orpm x
30 minutes) wt% on 1OyspJli (3) Cold drum strength (D snow) JIS K Col! l Example 1 Width 000mm, length l, J'rrLs height 41. j
Charge the blended coal with the properties shown in Table 1 into the carbonization chamber of 7IL,
Carbonization was carried out using coke oven gas as fuel.

燃料供給量の切シ換え時点(供給量を零とした時点)に
於ける水素濃度及びその変化率等は第3図(稼働率/k
kチ、火落時間:/3時間λ7分)、第1図(稼働率l
JS係、火落時間ニア6時間/J分)に示した:iai
 ’)である。そして%第3図に於いては乾留開始後9
.コhrで水素濃度の変化率が零となったので、約0.
Zhr後に燃料供給量の切り換えを行なった。また、第
ダ図に於いては乾留開始後//、41hrで水素濃度の
変化率が零となったので約0.k hr後に燃料供給量
の切り換えを行なった。
The hydrogen concentration and its rate of change at the time of switching the fuel supply amount (when the supply amount is zero) are shown in Figure 3 (operation rate/k
kchi, fire fall time: /3 hours λ7 minutes), Figure 1 (operation rate l
JS staff, fire fall time near 6 hours/J minutes):iai
'). And in % Figure 3, 9 after the start of carbonization.
.. Since the rate of change in hydrogen concentration became zero at 1 hour, the rate of change in hydrogen concentration was approximately 0.
After Zhr, the fuel supply amount was changed. In addition, in Figure D, the rate of change in hydrogen concentration reached zero at 41 hours after the start of carbonization, so it was approximately 0. After k hr, the fuel supply amount was switched.

このような方法で乾留を行ない、火落後、約一時間後に
コークスの押出しを行なった。得られたコークスの平均
粒径、冷間ドラム強度及び熱間反応後強度を測定し、そ
の結果を第2表に示す。
Carbonization was carried out in this manner, and coke was extruded approximately one hour after the coke had ignited. The average particle diameter, cold drum strength and strength after hot reaction of the obtained coke were measured, and the results are shown in Table 2.

第2表から明らかなように、燃料削減率、コークス品位
としても十分なものが得られていることによシ、本発明
はプログラム加熱実施時の燃料制御方法として非常に有
効である。
As is clear from Table 2, the present invention is very effective as a fuel control method during programmed heating since sufficient fuel reduction rates and coke quality are obtained.

第1表 装入炭性状 第コ表結 果Table 1 Charging coal properties Table 1 Results

【図面の簡単な説明】[Brief explanation of drawings]

第1図はコークス炉炭化室に於ける乾留過程を示す模式
図、第一図はコークス炉発生ガス中の水素濃度と炭芯部
温度の変化を示す図、第3図及び第q図は、実施例に於
ける水素濃度と燃料ガス供給液の変化を示す図である。 出 願 人 三菱化成工業株式会社 代 理 人 長谷用 − (ほか1名) 手MネflJ 、iJヨ書(6式) 1 事f1の表示 昭和58汀特6′F願第208869号2 発明の名称 コークス炉の燃料制御I法 3 補正をりる者 事ヂ1どの関係 4JIム′[出願人 任 J91 東京都千代田区丸の内二丁目5番2号氏 
名 (59G)三菱化成工業株式会社代表取締役 鈴 
木 精 二 4代理人 〒100 東京都f代田区丸の内二丁目5番2号 三菱化成工業株式会社内 5 補正命令の日刊 昭和59年2月28日(発送日)
6 補正の苅象 図 面 7 補正の内容 別紙の通り 手続補正書(自発) 111+ 昭和が年3月27・tへ− 特許庁長官 若杉和夫殿 1 事件の表示 昭和61’年 特 許 願第20どざ
69号2 発 明 の名称 コークス炉の燃料制御法 3 補正をする者 特許出願人 住 所 東京都千代田区丸の内二丁目6’4Mλ号氏名
 (、t9.g)三菱化成工業株式会社代表取締役 鈴
 木 稍 二 4代理人〒100 (ほか 1 名) (1) 明細書第91頁第19行目の「容量」を「流量
」と補正する。 (2)明細書第!頁第7〜λ行目の「炭中、温度」を「
炭化室に充填されている石炭の中心部の温度(以下、単
に炭芯温度と記す。)」と補正する。 (3)明細書記j貞婦2貸目「炭中温度」を「炭芯渦度
」と補正する。 (4)明細書第1頁さル10行目、第72行目、第11
行目及び第76行目の「炭芯部温度」を「炭芯温度」と
補正する。 (5) 四面1書第?頁第20行目〜第9戸第j行目の 「次に1以上の・・・・・・・・通シとなる。即ち、」
を「 以下1本発明の詳細な説明するに、本発明に適用
するプログラム加熱法に於いて石炭の乾留W期に燃料の
供給を大流j°とするのは、炭化室に充填されている石
炭を急速に外幅するためであシ、均−加熱法に於ける燃
料供給二姪の7.2倍程度以上供給するのが望ましい。 供給量は多い程好ましいが。 耐火煉瓦等コークス炉の栂造物に対して。 高温5局部加熱等による悪影響が生じない範囲に留める
必要がある。具体的には炉の構造や燃焼方式等によって
設定するが1通常均一加熱の場合の7.2〜3倍、好ま
しくけん3〜2.3倍の範囲から選定すればよい。 勿論この流量は一定である必要はなく1例えば燃料ガス
のカロリーが変動した場合等には、流量を変えることに
よって対応がとられる。 燃料の供給量が零状態をも會む小流祉とは、均一加熱の
場合の供給量のOJ倍程度から供給を完全に停止する迄
の範囲を指すものである。 本発明を実施するには」と補止する。 (6) 明細書第9負第/乙行目の「諷少率し」を「減
少し」と補正する。 (力 明細書第1/負第10行目〜第//行目の「ター
ル捕集器による重量差を利用した」を[例えば、乾燥し
たグラスウールを充填し100〜/λO℃の温・度範囲
で一定11m度に保持されたタール捕集器に、炭化室発
生ガスを一定流量で通過させ、該タール捕集器の単位時
間当りの重量変化を測定する」と補正する、(8) 明
細書第1/頁第1/行目に下記の記載を追加する。 「 そして、燃料の供給−:を、大流量から零状態をも
含む小流量に一旦切シ換えた後は。 次の装入の約0.j〜/、j時間前迄そのままの状態を
維持する方法、あるいは大流量と零状態を含む小流量と
の切シ灼えをパルス状に2回又はそれ以上の回数行なう
方法前で実施されるが、そのままの状態で維持する方法
の方が操作が単純となるので、コークス炉の温度制御が
容易となシ好ましい。 このような加熱方法により、後記実施例から明らかなよ
うに5石炭の乾留が急速に進行し、火落ちした後、押出
作業が行なわれるが1次の石炭装入に備えて炭化室の炉
壁温度を上昇させ同じ流量に切シ換えることが好ましい
。切シ換えの時期は次の装入時に所定の温度となる様に
、コークス押出しのθ、j〜八!時へ前とすればよい。 火路時期の判定は炭芯湛度を測定することによっても行
ない得るが、従来から行なわれている炭化室からの発生
ガスの色、発生ガスの上昇管内に於ける温度5組成等に
よって行なわれる。」 (9) 明細書第1/頁第/乙行目の「エチレンd度」
を「エチレン濃度あるいはタール濃度」下記を挿入する
。 [以上詳述したように1本発明はプログラム加熱法にお
ける燃料供給量の最初の切シ換えを、炭化室よシ発生す
るコークス炉ガス中の水素濃度に基づいて行なうので、
切シ換え時期の決定を正確かつ容易に行なうことができ
る。 また後記実施例からも明らかなように燃料削減率が大き
くコークス品位も充分なものが得られる。更に、燃料供
給量の制御を。 エチレン濃度あるいはタール濃度がそれぞれの基準パタ
ーンにのるように行なう場合は、乾留の進行状態のf[
tlJ御が容易であるので1本発明はプログラム加熱法
を実施する場合の燃料制御方法として非常に鳴動である
。」 Ov 明細1:第76員第グ行目の「炭芯部温度」を「
炭芯湛度Jと補正する。 一一函□ 叶 =ヨ=
Figure 1 is a schematic diagram showing the carbonization process in a coke oven carbonization chamber, Figure 1 is a diagram showing changes in hydrogen concentration in coke oven generated gas and coal core temperature, Figures 3 and q are: FIG. 3 is a diagram showing changes in hydrogen concentration and fuel gas supply liquid in an example. Applicant: Mitsubishi Chemical Industries, Ltd. Agent: Yo Hase - (and 1 other person) Hand MneflJ, iJyo (Set 6) 1 Indication of matter f1 1982 Tokutoku 6'F Application No. 208869 2 Invention Name: Coke Oven Fuel Control I Method 3 Persons subject to amendment 1 Relationship 4JImu' [Applicant J91 Mr. 2-5-2 Marunouchi, Chiyoda-ku, Tokyo
Name (59G) Suzu, Representative Director, Mitsubishi Chemical Industries, Ltd.
Sei Ki 24 Agent 5 Mitsubishi Chemical Corporation, 2-5-2 Marunouchi, F Daita-ku, Tokyo 100 Japan Daily publication of amendment order February 28, 1980 (shipment date)
6. Illustration of the amendment Drawing 7 Contents of the amendment Procedural amendment as attached (voluntary) 111+ Showa to March 27, 2015 - Director General of the Japan Patent Office Kazuo Wakasugi 1 Indication of the case 1986 Patent Application No. 20 Doza No. 69 No. 2 Name of the invention Fuel control method for coke ovens 3 Person making the amendment Patent applicant address 2-6'4 Mλ, Marunouchi, Chiyoda-ku, Tokyo Name (, t9.g) Representative Director, Mitsubishi Chemical Industries, Ltd. Ken Suzuki 24 Agents 〒100 (1 other person) (1) "Capacity" on page 91, line 19 of the specification is corrected to "flow rate." (2) Specification number! Change "Temperature in charcoal" from page 7 to line λ to "
The temperature at the center of the coal filled in the carbonization chamber (hereinafter simply referred to as coal core temperature) is corrected. (3) Correct the "temperature in the coal" to the "coal core vorticity". (4) Lines 10, 72, and 11 of page 1 of the specification
The "coal core temperature" on the 76th line and the 76th line are corrected to the "coal core temperature." (5) Book 1 of the 4th page? Page 20th line to 9th door line j, "Next, there will be one or more........namely,"
In the following detailed explanation of the present invention, in the programmed heating method applied to the present invention, fuel is supplied in a large flow during the carbonization W period of coal, which is filled in the carbonization chamber. In order to rapidly increase the width of the coal, it is desirable to supply at least 7.2 times the fuel supply in the uniform heating method.The larger the supply amount, the better. For forged products. High temperature 5. It is necessary to keep the temperature within a range that does not cause any adverse effects due to localized heating.Specifically, it is set depending on the structure of the furnace, combustion method, etc., but 1. Normally, it is 7.2 to 3 for uniform heating. The flow rate may be selected from the range of 3 times to 2.3 times, preferably 3 to 2.3 times.Of course, this flow rate does not need to be constant; The small flow rate, where the amount of fuel supplied is zero, refers to the range from about OJ times the amount supplied in the case of uniform heating to completely stopping the supply. "To do that," he added. (6) In the 9th negative/B line of the specification, "slightly misrepresented" is corrected to "decreased." (For example, if you fill the specification with dry glass wool and fill it with a temperature of 100~/λO℃, The gas generated in the carbonization chamber is passed through a tar collector maintained at a constant temperature of 11 m degrees at a constant flow rate, and the change in weight of the tar collector per unit time is measured.'' (8) Details Add the following statement to the first line of page 1 of the book: "Then, once the fuel supply -: has been switched from a large flow rate to a small flow rate including zero state. A method of maintaining the same state until approximately 0.j to j hours before the start of the flow, or a method of cutting and burning a large flow rate and a small flow rate including a zero state twice or more times in a pulsed manner. However, it is preferable to maintain the coke oven in the same state because the operation is simpler and the temperature of the coke oven can be easily controlled. After the carbonization of the coal proceeds rapidly and the extrusion operation is carried out after the coal has cooled down, it is preferable to raise the furnace wall temperature of the carbonization chamber and switch to the same flow rate in preparation for the first coal charging. The timing of switching should be before θ, j~8! of coke extrusion so that the predetermined temperature is reached during the next charging.The timing of the channel can be determined by measuring the coal core filling degree. (9) Specification No. 1/Page No. B "Ethylene d degree" in the row
Insert "ethylene concentration or tar concentration" below. [As detailed above, the present invention performs the initial switching of the fuel supply amount in the programmed heating method based on the hydrogen concentration in the coke oven gas generated from the carbonization chamber.
The switching timing can be determined accurately and easily. Further, as is clear from the examples described later, a large fuel reduction rate and a sufficient coke quality can be obtained. Furthermore, control the amount of fuel supplied. If the ethylene concentration or tar concentration follows the respective standard patterns, f[
Since tlJ control is easy, the present invention is very useful as a fuel control method when implementing the programmed heating method. ” Ov Details 1: Change the “Coal core temperature” in the 76th member, G line to “
Correct with the coal core saturation J. 11 boxes□ Kano = Yo =

Claims (1)

【特許請求の範囲】 (1) コークス炉の石炭乾留過程に於ける各段階で燃
料の供給量を変更するプログラム加熱法に於いて、該燃
料の供給を乾留初期の大流量から小流量へ変更し、もし
くは停止する最初の切シ換えを、炭化室から発生するガ
ス中の水素1l11度に基づいて行なうことを特徴とす
るコークス炉の燃料制御法。 (2)前記プログラム加熱法に於いて、コークス炉の操
業条件、装入炭の装入諸元に基づいてエチレン濃度ある
いはタール濃度の基準曲線を設定し、炭化室より発生す
るコークス炉ガス中のエチレン濃度あるいはタール濃度
を測定し、該測定値と前記設定値との偏差が小さくなる
ように燃料の供給量を制御しながら前記最初の切シ換え
を水素濃度に基づいて行なうことを特徴とする特許請求
の範囲第1項に記載の方法。 とを特徴とする特許請求の範囲第1項または第1項に記
載の方法。 (4)最初の切り換えを水素濃度が、濃度の変化率が一
旦零になった第1時点の濃度から同変化率が減少し、再
び零にな91次いで増加し、水素濃度゛が第1の時点の
濃度に等しくなった第一の時点迄のS回内で行なうこと
を特徴とする特許請求の範囲第1項または第一項に記載
の方法。
[Claims] (1) In a programmed heating method in which the amount of fuel supplied is changed at each stage of the coal carbonization process in a coke oven, the fuel supply is changed from a large flow rate at the initial stage of carbonization to a small flow rate. A fuel control method for a coke oven, characterized in that the first switching to start or stop is performed based on 1l11 degrees of hydrogen in gas generated from a coking chamber. (2) In the programmed heating method, a reference curve for ethylene concentration or tar concentration is set based on the operating conditions of the coke oven and the charging specifications of the charged coal, and the The first switching is performed based on the hydrogen concentration while measuring the ethylene concentration or the tar concentration and controlling the amount of fuel supplied so that the deviation between the measured value and the set value becomes small. A method according to claim 1. A method according to claim 1 or claim 1, characterized in that: (4) When the hydrogen concentration is first switched, the rate of change in the concentration decreases from the concentration at the first time when it once becomes zero, becomes zero again, and then increases, and the hydrogen concentration ゛ changes to the first point. The method according to claim 1 or 1, characterized in that it is carried out within S times up to the first time point, which is equal to the concentration at the time point.
JP58208869A 1983-11-07 1983-11-07 Fuel Control Method for Coke Oven Expired - Fee Related JPH0798937B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58208869A JPH0798937B2 (en) 1983-11-07 1983-11-07 Fuel Control Method for Coke Oven
DE3440501A DE3440501C2 (en) 1983-11-07 1984-11-06 Method for fuel control for a coke oven
GB08428003A GB2149421B (en) 1983-11-07 1984-11-06 Method of regulating fuel for a coke oven
US06/668,930 US4655878A (en) 1983-11-07 1984-11-07 Method of regulating fuel supply rate for heating a coke oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58208869A JPH0798937B2 (en) 1983-11-07 1983-11-07 Fuel Control Method for Coke Oven

Publications (2)

Publication Number Publication Date
JPS60101184A true JPS60101184A (en) 1985-06-05
JPH0798937B2 JPH0798937B2 (en) 1995-10-25

Family

ID=16563465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58208869A Expired - Fee Related JPH0798937B2 (en) 1983-11-07 1983-11-07 Fuel Control Method for Coke Oven

Country Status (1)

Country Link
JP (1) JPH0798937B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397690A (en) * 1986-10-14 1988-04-28 Kansai Coke & Chem Co Ltd Method for controlling operation of coke oven
JPS6369142U (en) * 1986-05-16 1988-05-10
JP2007145418A (en) * 2005-11-24 2007-06-14 Naoko Kamata Man's shirt collar core storing case
JP2010209212A (en) * 2009-03-10 2010-09-24 Nippon Steel Corp Method for producing fuel charcoal material for sintering

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628285A (en) * 1979-08-17 1981-03-19 Nippon Kokan Kk <Nkk> Control of combustion in coke oven
JPS5672076A (en) * 1979-11-20 1981-06-16 Nippon Steel Corp Control of coke oven dry distillation process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628285A (en) * 1979-08-17 1981-03-19 Nippon Kokan Kk <Nkk> Control of combustion in coke oven
JPS5672076A (en) * 1979-11-20 1981-06-16 Nippon Steel Corp Control of coke oven dry distillation process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6369142U (en) * 1986-05-16 1988-05-10
JPS6397690A (en) * 1986-10-14 1988-04-28 Kansai Coke & Chem Co Ltd Method for controlling operation of coke oven
JP2007145418A (en) * 2005-11-24 2007-06-14 Naoko Kamata Man's shirt collar core storing case
JP2010209212A (en) * 2009-03-10 2010-09-24 Nippon Steel Corp Method for producing fuel charcoal material for sintering

Also Published As

Publication number Publication date
JPH0798937B2 (en) 1995-10-25

Similar Documents

Publication Publication Date Title
JPH11131074A (en) Operation of coke oven
JPS60101184A (en) Method for controlling fuel in coke oven
US4259083A (en) Production of metallurgical coke from oxidized caking coal
US2164933A (en) Process of baking fuel briquettes
US4102750A (en) Process for producing formed coke for metallurgical use
US3969088A (en) Formcoke process
JP7347462B2 (en) Method for producing molded products and method for producing molded coke
JPH08245965A (en) Production of coke for blast furnace
JP4279973B2 (en) Coke oven operation method
JPS60101187A (en) Control of fuel in coke oven
JP2003129064A (en) Method for producing coke having even quality
US4655878A (en) Method of regulating fuel supply rate for heating a coke oven
US4086143A (en) Coking method and arrangement
JPS60101186A (en) Control of fuel in coke oven
JPS60101185A (en) Method for controlling fuel in coke oven
JP3279630B2 (en) Coal carbonization method
JPS60101189A (en) Control of fuel in coke oven
JPH07113087A (en) Low-temperature discharge of coke from oven in coke production
JPH07108978B2 (en) Coke oven carbonization control method
JPH07108977B2 (en) Coke oven carbonization control method
KR20010056210A (en) Method for manufacturing high moisture-raw coal into metallurgical coke
JPS603359B2 (en) Method for manufacturing molded coke for metallurgy
KR20040056067A (en) Method for producing metallurgical coke
JPH07109460A (en) Production of coke
JPH06212164A (en) Method for blending coking coal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees