JPS60100706A - Method and device for measuring shape of conductive material - Google Patents

Method and device for measuring shape of conductive material

Info

Publication number
JPS60100706A
JPS60100706A JP20856083A JP20856083A JPS60100706A JP S60100706 A JPS60100706 A JP S60100706A JP 20856083 A JP20856083 A JP 20856083A JP 20856083 A JP20856083 A JP 20856083A JP S60100706 A JPS60100706 A JP S60100706A
Authority
JP
Japan
Prior art keywords
magnetic field
phase
detection coil
coil
field detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20856083A
Other languages
Japanese (ja)
Inventor
Yukio Nakamori
中森 幸雄
Toshiki Washitani
鷲谷 年己
Shinichi Kamimura
真一 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20856083A priority Critical patent/JPS60100706A/en
Publication of JPS60100706A publication Critical patent/JPS60100706A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To measure the shape and thickness of a body to be detected with high precision regardless of the temperature of the object of measurement by generating an alternating magnetic field near the body to be detected by an exciting coil, and utilizing the intensity of the magnetic field near the exciting coil or the height or phase of the density of leak magnetic flux from the body to be detected. CONSTITUTION:Voltages detected by detection coils 2 and 3 are amplified by amplifiers 5 and 6, whose outputs V1 and V2 are inputted to a gain phase gauge 7, which outputs the gain G1 and phase difference psi1 of the V1 and V2 to a computing element 9. Signals G2 and psi2 relating to the thickness are linearized and processed to output a voltage V01 proportional to the thickness. Further, the G2 and psi2 are processed similarly to output a voltage V02 proportional to the gap between the detection coil 2 and a pipe. Plural detection coils 2 and 3 are arranged circumferentially to measure the position and thickness of the pipe at an installation point, thereby knowing the outward appearance and the shape of the thickness.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、たとえば熱間での鋼管の外径と肉厚等、導
電性材料の形状を測定する方法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method and apparatus for measuring the shape of a conductive material, such as the outer diameter and wall thickness of a hot steel pipe.

(従来技術) 鋼管の外径を測定するための手段として、たとえば技術
文献「センサーの働らきと最適利用」 (昭和56年3
月10日、技術評論社発行)に開示されているようなイ
メージセンサやレーザ応用による計測手段がある。しか
し、これらの技術は、測定対象が常温下にあるときのた
めのものであり、測定対象が高温である場合には、水や
水蒸気等を除去する装置や、センサを冷却する装置が必
要となり設備が複雑、高価となる欠点がある。
(Prior art) As a means for measuring the outer diameter of steel pipes, for example, the technical document "Working and Optimal Utilization of Sensors" (March 1982)
There are measurement means using image sensors and lasers, such as the one disclosed in Gijutsu Hyoronsha (published on August 10th). However, these technologies are for when the object to be measured is at room temperature; if the object to be measured is at a high temperature, a device to remove water or water vapor, or a device to cool the sensor is required. The disadvantage is that the equipment is complicated and expensive.

他方、たとえば鋼管の肉厚を測定するための手段として
、超音波を利用するものや放射線を利用するものが実用
されている。しかしながら超音波を利用する厚さ測定手
段は、被検体とセンサの間を音響的に結合すべく、水、
油の如き音響結合媒質を存在せしめる必要があり測定対
象が高温である場合には適用できない。また放射線を利
用する厚さ測定手段は、非常に高価であるという欠点が
ある。
On the other hand, as means for measuring the wall thickness of steel pipes, for example, methods using ultrasonic waves and methods using radiation are in practical use. However, thickness measuring means using ultrasonic waves uses water,
It requires the presence of an acoustic coupling medium such as oil and cannot be applied when the object to be measured is at a high temperature. Also, thickness measuring means that utilize radiation have the disadvantage of being very expensive.

(発明の目的) この発明は、簡単な構造で、測定対象の温度の如何を問
わず、被検体の形状、厚さを高精度に測定する方法およ
び装置を得ることを目的としてなされた。
(Objective of the Invention) The purpose of the present invention is to provide a method and apparatus that have a simple structure and can measure the shape and thickness of an object with high precision regardless of the temperature of the object to be measured.

(発明の構成) 本発明の導電性材料の形状測定方法は、励振コイルによ
って、被検体近傍に交番磁界を発生せしめるとともに、
第一の磁界検出コイルによって、前記励振コイル近傍に
おける磁界の強さ或は位相を検出し、さらに、前記第一
の磁界検出コイルに離隔して設けられた第二の磁界検出
コイルによって被検体からの漏洩磁束密度の高さ或は位
相を検出し、前記励振コイルによって発生される磁界の
強さ或は位相と第一の磁界検出コイルによって検出され
る磁界の強さ或は位相との差から励振コイルと被検体間
の距離を測定するとともに、前記第一の磁界検出コイル
によって検出される磁界の強さ或は位相と第二の磁界検
出コイルによって検出される被検体からの漏洩磁束密度
の高さ或は位相との差或はそれと等価な信号から被検体
の厚さを測定するようにしたことを特徴とするものであ
り、また該形状を測定する装置は、被検体近傍に交番磁
界を発生せしめる励振コイルと、該励振コイルに交番電
流を供給する交流発振器と、前記励振コイルの近傍に、
磁界を検出するための第一の磁界検出コイルを設けると
ともに該第−の磁界検出コイルに離隔して被検体からの
漏洩磁束を検出する第二の磁界検出コイルを設け、さら
に前記交流発振器および第一の磁界検出コイルの何れが
一方からの信号および第二の磁界検出コイルからの信号
を入力されこれら信号間の利得および位相差を出力する
利得位相計ならびに前記交流発振器および第一の磁界検
出コイルからの信号を入力されこれら信号間の利得およ
び位相差を出方する利得位相計と、前記それぞれの利得
位相計がらの信号を入力され、それに基づいて、励振コ
イルと被検体間の距離および被検体の厚さを演算算出す
る演算器とを有してなることを特徴とするものである。
(Structure of the Invention) The method for measuring the shape of a conductive material according to the present invention generates an alternating magnetic field near a subject using an excitation coil, and
A first magnetic field detection coil detects the strength or phase of the magnetic field near the excitation coil, and a second magnetic field detection coil provided apart from the first magnetic field detection coil detects the intensity or phase of the magnetic field from the subject. detecting the height or phase of the leakage magnetic flux density of the excitation coil, and detecting the difference between the strength or phase of the magnetic field generated by the excitation coil and the strength or phase of the magnetic field detected by the first magnetic field detection coil. In addition to measuring the distance between the excitation coil and the subject, the strength or phase of the magnetic field detected by the first magnetic field detection coil and the leakage magnetic flux density from the subject detected by the second magnetic field detection coil are measured. The device is characterized in that the thickness of the object is measured from the difference in height or phase, or a signal equivalent thereto, and the device for measuring the shape has an alternating magnetic field in the vicinity of the object. an excitation coil that generates an alternating current; an AC oscillator that supplies an alternating current to the excitation coil;
A first magnetic field detection coil for detecting a magnetic field is provided, and a second magnetic field detection coil is provided separated from the second magnetic field detection coil for detecting leakage magnetic flux from the subject, and further includes a second magnetic field detection coil for detecting leakage magnetic flux from the subject. Which of the first magnetic field detection coils receives a signal from one side and a signal from the second magnetic field detection coil and outputs the gain and phase difference between these signals, and the AC oscillator and the first magnetic field detection coil. and a gain phase meter that receives signals from the excitation coil and outputs the gain and phase difference between these signals, and a gain phase meter that receives signals from each of the gain phase meters and calculates the distance between the excitation coil and the object and the distance between the excitation coil and the object. The present invention is characterized in that it includes a calculation unit that calculates the thickness of the specimen.

以下に、この発明の詳細な説明する。The present invention will be explained in detail below.

(発明の実施例) 先ず本発明の測定原理について述べる、第1図に示すよ
うに磁界の強さをHo(Z方向はHz)、透磁率をμ(
大気はμ0、鋼材ばμ)、鋼材の導声率をKとすれば、
鋼材内の磁界は次式で与えられる。
(Embodiments of the Invention) First, the measurement principle of the present invention will be described. As shown in FIG. 1, the strength of the magnetic field is Ho (Hz in the Z direction), and the magnetic permeability is μ (
If the atmosphere is μ0 and the steel is μ), and the conductivity of the steel is K, then
The magnetic field within the steel material is given by the following equation:

鋼材の中に磁界が進行するとその大きさは指数的に減衰
し、その深さに対応した位相遅れが生じる。
When a magnetic field advances into a steel material, its magnitude attenuates exponentially, and a phase delay occurs that corresponds to its depth.

第2図に示すように交番磁界を発生させる円筒コイルl
内に例えば非磁性体のバイブ13がNfIしているとす
れば、磁界分布は図に示すようになる(但し、−例のみ
示す)。
Cylindrical coil l that generates an alternating magnetic field as shown in Figure 2
If, for example, a non-magnetic vibrator 13 is in NfI, the magnetic field distribution will be as shown in the figure (however, only a - example is shown).

第2図のA点における磁界強さと位相はコイル1とバイ
ブの間隔βによってほぼ決まり、またB点、0点におけ
る磁界強さと位相は間隔βとバイブ内の磁界の経路即ち
バイブの肉厚によって決まる。そこでA点と、B点また
は0点との磁界強さの差や比、位相差をめれば、肉厚の
みに関する信号が抽出できる。第3図に、第2図に示す
励振コイルエにおける位相とA点“における磁界の位相
との間の差(位相差)ψ2、および励振コイル1と被検
体であるパイプ13との間の距離lの関係を示す。
The magnetic field strength and phase at point A in Figure 2 are approximately determined by the distance β between coil 1 and the vibrator, and the magnetic field strength and phase at points B and 0 are determined by the distance β and the path of the magnetic field within the vibrator, that is, the wall thickness of the vibrator. It is decided. Therefore, by calculating the difference, ratio, and phase difference in magnetic field strength between point A and point B or point 0, a signal related only to the wall thickness can be extracted. FIG. 3 shows the difference (phase difference) ψ2 between the phase in the excitation coil shown in FIG. 2 and the phase of the magnetic field at point A, and the distance l between the excitation coil 1 and the pipe 13 that is the subject shows the relationship between

また、第4図に第2図に示すA点における磁界の位相と
、B点或は0点における磁界の位相との差(位相差ψ1
)および被検体であるパイプの肉厚の関係を示す。
In addition, FIG. 4 shows the difference (phase difference ψ1) between the phase of the magnetic field at point A shown in FIG. 2 and the phase of the magnetic field at point B or point 0.
) and the wall thickness of the pipe being tested.

具体的な測定装置を第5図に示す。A specific measuring device is shown in FIG.

励振コイル1は円筒形であり、交流発振器4が接続され
、励振コイル1にて交流磁界を作っている。検出コイル
2は励振コイル1のすぐ横に設けられ、検出コイル3は
検出コイル2から距離りだけ隔てて設置されている。検
出コイル2,3は励振コイル1およびパイプからの漏洩
磁束を検出するためのものであり、非常に小さいコイル
である。
The excitation coil 1 has a cylindrical shape and is connected to an AC oscillator 4, so that the excitation coil 1 generates an AC magnetic field. The detection coil 2 is installed immediately beside the excitation coil 1, and the detection coil 3 is installed at a distance from the detection coil 2. The detection coils 2 and 3 are for detecting leakage magnetic flux from the excitation coil 1 and the pipe, and are very small coils.

検出コイル2.3で検出される電圧は小さいので、増幅
器5.6で電圧増幅される。それらの電圧出力Vl、V
2は利得位相計7に入力され、vlと■2の利得G1と
位相差ψ1を出力し演算器9に入力される。利得位相計
8には増幅器5の出力V1と交流発振器4が入力され、
その出力である利1MG2と位相差ψ2も演算器9に入
力される。
Since the voltage detected by the detection coil 2.3 is small, it is amplified by the amplifier 5.6. Their voltage output Vl, V
2 is input to a gain phase meter 7, which outputs a gain G1 and a phase difference ψ1 of vl and 2, which are input to an arithmetic unit 9. The output V1 of the amplifier 5 and the AC oscillator 4 are input to the gain phase meter 8,
The outputs thereof, the gain 1MG2 and the phase difference ψ2, are also input to the calculator 9.

演算器9では、それぞれ目的に比例した電圧を出力する
。演算器9は、肉厚に関係する信号G + 。
The computing unit 9 outputs a voltage proportional to each purpose. The arithmetic unit 9 receives a signal G + related to wall thickness.

ψ1をリニアライズして演算することにより、肉厚に比
例した電圧VOIを出力する。またG2゜ψ2も同様な
処理を行い検出コイル2とパイプ間の間隔lに比例した
電圧VO2を出力している。
By linearizing and calculating ψ1, a voltage VOI proportional to the wall thickness is output. Further, G2゜ψ2 performs similar processing and outputs a voltage VO2 proportional to the distance l between the detection coil 2 and the pipe.

検出コイル2.3を円周方向に数ケ所配置すれば設置点
のパイプの位置と肉厚を測定することになり、これを演
算処理することによって外形や肉厚の形状を知ることが
できる。
By arranging the detection coils 2.3 at several locations in the circumferential direction, the position and wall thickness of the pipe at the installation point can be measured, and by arithmetic processing of this, the external shape and wall thickness can be determined.

熱間パイプ測定の場合、コイルの耐熱性が必要であり、
第6図に示すようにセラミック10にコイルを巻き冷却
水11にて冷却している。セラミック10の内側にはパ
イプのスケールが落下するのでエヤーパージ12にてス
ケールを吹飛ばしている。
For hot pipe measurements, heat resistance of the coil is required.
As shown in FIG. 6, a coil is wound around a ceramic 10 and cooled with cooling water 11. Since the scale of the pipe falls inside the ceramic 10, the scale is blown away by the air purge 12.

測定方法としては第8図の方式でもよい。第8図は第5
図に示した測定方式を変更したものである。第8図に示
す利得位相計8の出力(G2.ψ2)は第5図に示した
内容と同じである。利得位相計7は励振用コイル1と検
出コイル3との関係を出力(G3.ψ3)している。演
算器14ではノくイブ肉厚に関係する利得位相差(ΔG
、Δψ)を算出している。算出式は次式になる。
As a measuring method, the method shown in FIG. 8 may be used. Figure 8 is the 5th
This is a modification of the measurement method shown in the figure. The output (G2.ψ2) of the gain phase meter 8 shown in FIG. 8 is the same as that shown in FIG. The gain phase meter 7 outputs the relationship between the excitation coil 1 and the detection coil 3 (G3.ψ3). The arithmetic unit 14 calculates the gain phase difference (ΔG
, Δψ). The calculation formula is as follows.

ΔG = 02 G 3゜ Δψ=92−93 ΔG、Δψは第5図のG+、ψ1に相当することになり
、演算器14では更にパイプの位置と肉厚に比例した演
算処理を行いVOI、VO2を出力している。次に本発
明の実施結果を示す。
ΔG = 02 G 3゜Δψ=92-93 ΔG and Δψ correspond to G+ and ψ1 in FIG. is outputting. Next, the results of implementing the present invention will be shown.

実施結果: 励振周波数 IKHz 励振コイル 内径70φ 巻き幅50 600T検出コ
イル27φ 150T 検出コイル38φ 200T 検出コイル1.2の間隔 L−151 測定対象 SUSパイプ 肉厚 2〜8龍温度 600
°C前後 以上の仕様で測定した結果を第7図に示す。極めて高精
度に被検体の厚さを測定できることがわかる。
Implementation results: Excitation frequency IKHz Excitation coil Inner diameter 70φ Winding width 50 600T Detection coil 27φ 150T Detection coil 38φ 200T Detection coil 1.2 spacing L-151 Measurement object SUS pipe Wall thickness 2 to 8 dragon temperature 600
Figure 7 shows the results measured under specifications of around °C or higher. It can be seen that the thickness of the object can be measured with extremely high accuracy.

(発明の効果) 以上述べたように、本発明は漏洩磁束を検出することに
よりパイプの位置と肉厚を測定するものであるが、次の
特徴がある。
(Effects of the Invention) As described above, the present invention measures the position and wall thickness of a pipe by detecting leakage magnetic flux, and has the following features.

■)冷間から熱間まで測定可能であり、特に熱間(非磁
性体)に有効で精度が良い。
■) Capable of measuring from cold to hot conditions, particularly effective and accurate for hot conditions (non-magnetic materials).

2)パイプの場合、パイプの外形と肉厚の形状を同時に
測定できる。
2) In the case of pipes, the external shape and wall thickness of the pipe can be measured at the same time.

3)厚板や形鋼等の測定にも適用できる。3) Can also be applied to measurements of thick plates, shaped steel, etc.

4)他の方式(超音波、放射線等)よりも安価でありメ
ンテナンスも簡単である。
4) It is cheaper and easier to maintain than other methods (ultrasound, radiation, etc.).

5)測定周波数を変更することにより肉厚の測定範囲を
選択できる。
5) The wall thickness measurement range can be selected by changing the measurement frequency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鋼材内磁界の説明図、第2図はパイプの磁界分
布と本発明の測定原理を示す図、第3図。 第4図は本発明の測定方法の根拠を示すグラフ、第5図
は本発明の実施例を示すブロック図、第6図は本発明の
変形例である熱間用のコイルの断面図を示す図、第7図
は熱間での測定結果を示すグラフ、第8図は本発明の他
の実施例を示すブロック図である。 1:励振用コイル、2:検出コイル、3:検出コイル、
4:交流発振器、5:増幅器、6:増幅器、7:利得位
相針、8:利得位相計、9:演算器、10:セラミンク
、11:冷却水、12:エヤーパージ、13:パイプ。 出 願 人 新日本製鐵株式会社 代理人弁理士 青 柳 稔 第1図 第2図 区へ1 第3図 第4図 肉厚 □
FIG. 1 is an explanatory diagram of the magnetic field within the steel material, FIG. 2 is a diagram showing the magnetic field distribution of the pipe and the measurement principle of the present invention, and FIG. 3 is a diagram illustrating the magnetic field within the steel material. Fig. 4 is a graph showing the basis of the measurement method of the present invention, Fig. 5 is a block diagram showing an embodiment of the invention, and Fig. 6 is a sectional view of a hot coil which is a modification of the invention. FIG. 7 is a graph showing hot measurement results, and FIG. 8 is a block diagram showing another embodiment of the present invention. 1: Excitation coil, 2: Detection coil, 3: Detection coil,
4: AC oscillator, 5: amplifier, 6: amplifier, 7: gain phase needle, 8: gain phase meter, 9: arithmetic unit, 10: ceramics, 11: cooling water, 12: air purge, 13: pipe. Applicant Nippon Steel Corporation Patent Attorney Minoru Aoyagi Figure 1 Figure 2 Section 1 Figure 3 Figure 4 Thickness □

Claims (2)

【特許請求の範囲】[Claims] (1)励振コイルによって、被検体近傍に交番磁界を発
生せしめるとともに、第一の磁界検出コイルによって、
前記励振コイル近傍における磁界の強さ或は位相を検出
し、さらに、前記第一の磁界検出コイルに離隔して設け
られた第二の磁界検出コイルによって被検体からの漏洩
磁束密度の高さ或は位相を検出し、前記励振コイルによ
って発生される磁界の強さ或は位相と第一の磁界検出コ
イルによって検出される磁界の強さ或は位相との差から
励振コイルと被検体間の距離を測定するとともに、前記
第一の磁界検出コイルによって検出される磁界の強さ或
は位相と第二の磁界検出コイルによって検出される被検
体からの漏洩磁束密度の高さ或は位相との差或はそれと
等価な信号から被検体の厚さを測定するようにしたこと
を特徴とする導電性材料の形状測定方法。
(1) An excitation coil generates an alternating magnetic field near the subject, and a first magnetic field detection coil generates an alternating magnetic field near the subject.
The intensity or phase of the magnetic field in the vicinity of the excitation coil is detected, and a second magnetic field detection coil provided apart from the first magnetic field detection coil is used to detect the height or the leakage magnetic flux density from the subject. detects the phase, and determines the distance between the excitation coil and the subject from the difference between the strength or phase of the magnetic field generated by the excitation coil and the strength or phase of the magnetic field detected by the first magnetic field detection coil. and the difference between the strength or phase of the magnetic field detected by the first magnetic field detection coil and the height or phase of the leakage magnetic flux density from the subject detected by the second magnetic field detection coil. A method for measuring the shape of a conductive material, characterized in that the thickness of a subject is measured from a signal equivalent thereto.
(2)被検体近傍に交番磁界を発生せしめる励振コイル
と、該励振コイルに交番電流を供給する交流発振器と、
前記励振コイルの近傍に、磁界を検出するだめの第一の
磁界検出コイルを設けるとともに該第−の磁界検出コイ
ルに離隔して被検体からの漏洩磁束を検出する第二の磁
界検出コイルを設け、さらに前記交流発振器および第一
の磁界検出コイルからの信号を入力されこれら信号間の
利得および位相差を出力する利得位相計ならびに前記交
流発振器および第一の磁界検出コイルの何れか一方から
の信号および第二の磁界検出コイルからの信号を入力さ
れこれら信号間の利得および位相差を出力する利得位相
計と、前記それぞれの利得位相計からの信号を入力され
、それに基づいて、励振コイルと被検体間の距離および
被検体の厚さを演算算出する演算器とを有してなる導電
性材料の形状測定装置。
(2) an excitation coil that generates an alternating magnetic field near the subject; and an alternating current oscillator that supplies an alternating current to the excitation coil;
A first magnetic field detection coil for detecting a magnetic field is provided in the vicinity of the excitation coil, and a second magnetic field detection coil for detecting leakage magnetic flux from the subject is provided at a distance from the second magnetic field detection coil. and a gain phase meter that receives signals from the AC oscillator and the first magnetic field detection coil and outputs the gain and phase difference between these signals, and a signal from either the AC oscillator or the first magnetic field detection coil. and a gain phase meter that receives the signals from the second magnetic field detection coil and outputs the gain and phase difference between these signals; An apparatus for measuring the shape of a conductive material, comprising a computing unit that calculates the distance between specimens and the thickness of the specimen.
JP20856083A 1983-11-07 1983-11-07 Method and device for measuring shape of conductive material Pending JPS60100706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20856083A JPS60100706A (en) 1983-11-07 1983-11-07 Method and device for measuring shape of conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20856083A JPS60100706A (en) 1983-11-07 1983-11-07 Method and device for measuring shape of conductive material

Publications (1)

Publication Number Publication Date
JPS60100706A true JPS60100706A (en) 1985-06-04

Family

ID=16558203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20856083A Pending JPS60100706A (en) 1983-11-07 1983-11-07 Method and device for measuring shape of conductive material

Country Status (1)

Country Link
JP (1) JPS60100706A (en)

Similar Documents

Publication Publication Date Title
KR100853110B1 (en) Measurement of stress in a ferromagnetic material
US4771238A (en) Device for measuring, without contact, the thickness of metallic materials at temperatures above the Curie temperature
JP4756409B1 (en) Nondestructive inspection apparatus and nondestructive inspection method using alternating magnetic field
US3366873A (en) Linear responsive molten metal level detector
GB2142729A (en) Method and apparatus for non-contact measurement of solidified shell of a metal casting having unsolidifed inner part
RU2176082C1 (en) Intrapipe magnetic flaw detector
US7215117B2 (en) Measurement with a magnetic field
KR20110087477A (en) Apparatus and method for detecting the wall thinning of pipeline using pulse magnetic field
KR102021563B1 (en) Nondestructive testing apparatus
US10578584B2 (en) Calibration device for non-destructive inspection/measurement system and non-destructive inspection/measurement method
Zhao et al. A surface crack assessment method unaffected by lift-off based on ACFM
JPS60100706A (en) Method and device for measuring shape of conductive material
Ďuran et al. Measurements of magnetic field fluctuations using an array of Hall detectors on the TEXTOR tokamak
JP2006300854A (en) Piping plate thickness measuring device
JP5013363B2 (en) Nondestructive inspection equipment
JP2016008931A (en) Nondestructive inspection system and nondestructive inspection method
JPS6340850A (en) Eddy current inspecting device
JP2522732Y2 (en) Iron loss value measuring device
JPS63145902A (en) Eddy current type eccentricity measuring apparatus
JPH08211085A (en) Flow velocity measuring device
JPH07229955A (en) Increment magnetic permeability measuring apparatus for magnetic steel plate
Lee et al. Comparison of Scanning-Type Magnetic Cameras for Heat Exchanger Tube Inspection and their Applications
JPS6021445A (en) Eddy current detecting apparatus
US20190353617A1 (en) Barkhausen Noise Sensor Comprising a Transceiver Coil
JP6743130B2 (en) Device and method for thermometrically measuring the size of metal profiles during rolling