JPS60100492A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS60100492A
JPS60100492A JP20742083A JP20742083A JPS60100492A JP S60100492 A JPS60100492 A JP S60100492A JP 20742083 A JP20742083 A JP 20742083A JP 20742083 A JP20742083 A JP 20742083A JP S60100492 A JPS60100492 A JP S60100492A
Authority
JP
Japan
Prior art keywords
face
output
dielectric film
semiconductor laser
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20742083A
Other languages
Japanese (ja)
Inventor
Yoshimitsu Sasaki
佐々木 義光
Takashi Kajimura
梶村 俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20742083A priority Critical patent/JPS60100492A/en
Publication of JPS60100492A publication Critical patent/JPS60100492A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers

Abstract

PURPOSE:To improve the electrical and optical characteristics, to improve the lifetime at the high output operation time and to enable to produce a monitoring light by setting a high reflectivity at one side of a light emitting output end face having a dielectric film and a low reflectivity at the other side and the output ratio to a specific range. CONSTITUTION:The reflectivities of the both end faces are regulated so that the ratio P2/P1 of the light output P1 from one side end face of a semiconductor laser device 11 having dielectric films 1-3 on the both end faces for producing the light output and the light output P2 from the other end face falls within a range of 0.05-0.200. A semiconductor laser element 11 is set in a sputtering unit, SiO2 is used as a target, and the first dielectric film SiO2 (having refractive index n1=1.45) 1 is coated in a thickness of lambda/6n1 on one side end face. Then, the second dielectric film SiO2 (having refractive index n2=1.45) 2 is coated in a thickness of lambda/4n2 on the other end face. Then, the target is switched to Si, the aqueous film containing amorphous Si (having refractive index n3=3.3) 3 of the third dielectric film is coated in a thickness of lambda/4n3, thereby obtaining P2/P1=0.1.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体レーザ装置に関するものである。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a semiconductor laser device.

特に発光出力面の構成にするものである。In particular, the structure of the light emitting output surface is used.

〔発明の背景〕[Background of the invention]

従来、半導体レーザ装置の発光出力端面コーティングは
主として、端面劣化防止全目的としていた。また最近片
側に多層膜を用いて反射率を上げた例、あるいは片側の
反射率上下けた例はあるがここでは単に微分効率が向上
する、取り出せる光出力の限界が上昇するという効果の
みである。本発明はさらにキンクレベルの上昇、高出力
動作時の寿命改善の効果が顕著であり、電流−光出力特
性と寿命の両方を改善させ半導体レーザの高出力化を具
現するものであり、さらに裏面端面からモニター光が*
p出させるという特徴を有している。
Conventionally, the coating of the light emitting output end face of a semiconductor laser device has mainly been used for the sole purpose of preventing the end face from deteriorating. In addition, there have been recent examples of increasing the reflectance by using a multilayer film on one side, or lowering or lowering the reflectance on one side, but in this case the only effect is that the differential efficiency is improved or the limit of the light output that can be extracted is increased. Furthermore, the present invention has remarkable effects of increasing the kink level and improving the lifespan during high-output operation, and improves both the current-light output characteristics and the lifespan, realizing a high-output semiconductor laser. Monitor light is emitted from the end surface*
It has the feature of causing p to be emitted.

〔発明の目的〕[Purpose of the invention]

本発明は′#−導体レーザ装置の電気的、光学的特性の
改善、および高出力動作時の寿命改善を目指した端面コ
ーティングの方法を与えるものであり、さらにモニター
光の取9出しが可能な半導体レーザ素子全提供するもの
である。
The present invention provides an end face coating method aimed at improving the electrical and optical characteristics of a conductive laser device and improving its lifespan during high-output operation, and furthermore enables the extraction of monitor light. We provide all semiconductor laser devices.

〔発明の概要〕[Summary of the invention]

半導体レーザ装置の発光出カ端面のコーティングにおい
てその片側を高反射、もう一方を大略低反射し且その出
力比全所定範囲に設定することによシレーザ行性の大幅
な改善が得られることが分かった。また信頼性テストで
も良い結果が得られた。さらにモニター光を取り出せる
よう両端面の反射率を調整した。
By coating the light emitting end face of a semiconductor laser device with high reflection on one side and approximately low reflection on the other side, and setting the output ratio within a predetermined range, a significant improvement in laser performance can be obtained. Do you get it. Good results were also obtained in reliability tests. Furthermore, the reflectance of both end faces was adjusted to allow for the extraction of monitor light.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例を用いて具体的に説明する。半導
体レーザはGa1−x AtxA8 (x = 0.0
5 。
Hereinafter, the present invention will be specifically explained using examples. The semiconductor laser is Ga1-x AtxA8 (x = 0.0
5.

発振波長として830nm)のいわゆるC8P型レーザ
素子の例について説明する。第1図は半導体レーザ装置
のレーザ光の進行方向に平行な面での断面である。1は
第1の誘電体膜、2は第2の誘電体膜、3は第3の誘電
体膜、11はGaA7As系レーザ素子部分である。な
お7.8は放出されるレーザ光で各々低反射率側、高反
射率側からの光を示している。
An example of a so-called C8P type laser element with an oscillation wavelength of 830 nm will be described. FIG. 1 is a cross section of a semiconductor laser device taken in a plane parallel to the direction in which laser light travels. 1 is a first dielectric film, 2 is a second dielectric film, 3 is a third dielectric film, and 11 is a GaA7As laser element portion. Note that 7.8 indicates the laser light emitted from the low reflectance side and the high reflectance side, respectively.

誘電体膜の被着法としてはスパッタリング法について、
また第1.第2の誘電体膜として5j02、第3の誘電
体膜として水素含有非晶質Siを被着する例についてま
た両端面の光出力比P2/PI(ここでPl :片側端
面からの光出力、R2:もう一方の端面からの光出力)
0.1の場合について説明する。
Regarding the sputtering method as a method for depositing dielectric film,
Also number 1. Regarding the example in which 5j02 is deposited as the second dielectric film and hydrogen-containing amorphous Si is deposited as the third dielectric film, the optical output ratio of both end faces P2/PI (where Pl: optical output from one end face, R2: Light output from the other end surface)
The case of 0.1 will be explained.

まず半導体レーザ素子をスパッタ装置内にセリトン、タ
ーゲットとして5i02を用いてArガスの放電により
、片側端面に第1の誘電体膜5jOz(屈折率n、:1
.45)全膜厚λ/6n1.丁なわち93nm被着する
。但し、λはレーザの発振波長である。つぎにもう一方
の端面に同様の方法により第2の誘電体膜5jOz(屈
折率nz、:1.45)を膜厚λ/4 n、 、すなわ
ち140nm被着する。ここでターゲットをSiK切換
え、Arカス中にH2ガスを分圧比で約30%混入した
状態で放電てせ第3の誘電体膜、水素含有非晶質Si(
屈折率n3 二3,3)を膜厚λ/4nshすなわち6
0nm被着する。
First, a first dielectric film 5jOz (refractive index n,: 1
.. 45) Total film thickness λ/6n1. A thickness of 93 nm is deposited. However, λ is the oscillation wavelength of the laser. Next, a second dielectric film 5jOz (refractive index nz: 1.45) is deposited on the other end face in a similar manner to a film thickness λ/4n, that is, 140 nm. Here, the target was changed to SiK, and a third dielectric film, hydrogen-containing amorphous Si (
refractive index n3 23,3) and film thickness λ/4nsh, i.e. 6
0 nm deposited.

以上の工程で低反射膜(第1の誘電体膜)の反射率は1
0%、高反射膜(第2.第3の誘電体膜のそ扛は75%
になる。低反射側からの光出力Pi と高反射側からの
光出力P2の比P2/PIは次式 からめられる。ここで几1 :低反射膜側の端面反射率
、R2:高反射膜側の端面反射率、前述のR1=0.1
 、 R2= 0.75を(1)式に代入してP2/P
r=0.1が得られる。
In the above steps, the reflectance of the low reflection film (first dielectric film) is 1.
0%, high reflective film (the thickness of the second and third dielectric films is 75%)
become. The ratio P2/PI between the optical output Pi from the low reflection side and the optical output P2 from the high reflection side can be calculated from the following equation. Here, 几1: end face reflectance on the low reflective film side, R2: end face reflectance on the high reflective film side, R1 = 0.1 as described above.
, Substitute R2=0.75 into equation (1) and get P2/P
r=0.1 is obtained.

第2図にこの方法により作成したレーザ素子の電流−光
出力特性の1例を示す。実線21はコーティング前の特
性、点線22は低反射膜側から光を取り出した時の特性
1点線20は高反射膜側から光を取り出した時の特性で
ある。これから分かるようにレーザ素子の片側端面を大
略低反射に、もう一方を高反射にし、低反射側から光出
力を取り出す構造にすることにより、光の内部エネルギ
ーが同じでも低反射側から光出力を多く取り出す効果に
より、微分効率、キンクレベルは1.5〜2.5倍に、
しきい値電流は0.85〜1.1倍になる。
FIG. 2 shows an example of the current-light output characteristics of a laser device produced by this method. The solid line 21 is the characteristic before coating, the dotted line 22 is the characteristic when light is extracted from the low reflection film side, and the dotted line 20 is the characteristic when light is extracted from the high reflection film side. As you can see, by creating a structure in which one end face of the laser element has approximately low reflection and the other end face has high reflection, and the optical output is extracted from the low reflection side, even if the internal energy of the light is the same, the optical output is output from the low reflection side. Due to the effect of extracting more , the differential efficiency and kink level are increased by 1.5 to 2.5 times.
The threshold current becomes 0.85 to 1.1 times.

本発明の構造が第1の誘電体膜の反射率が低い領域でし
きい値電流の若干の増加という弱点をもつが、微分効率
、キンクレベルの大幅な向上により、シきい値の若干の
増加を補って余iる効果である。さらにレーザ素子全実
際のシステムで使用する場合、例えば光デスク、ビデオ
デスク、光通信等ではレーザ光出力の安定化のために、
レーザ素子の後方の元金モニターし、自動光出力制御回
路によってレーザ光出力の安定化することは必袂不可欠
であることは良く知られていることである。
Although the structure of the present invention has the disadvantage that the threshold current slightly increases in the region where the reflectance of the first dielectric film is low, the threshold value slightly increases due to the significant improvement in the differential efficiency and kink level. This effect more than compensates for the Furthermore, when the laser element is used in all actual systems, such as optical desks, video desks, optical communications, etc., in order to stabilize the laser light output,
It is well known that it is essential to monitor the source material behind the laser element and to stabilize the laser light output using an automatic light output control circuit.

本発明のレーザ素子が両端面の反射率を調整して、前面
光出力P1と後面光出力P2の比を一定の範囲内、すな
わちP2/PI =0.05〜0.20の間にとること
により、常にモニター元として十分な光出力を維持して
おり、前述のシステムへの適合性と、レーザ特性改善の
効果全件せ備えている。
The laser element of the present invention adjusts the reflectance of both end faces so that the ratio between the front optical output P1 and the rear optical output P2 is within a certain range, that is, P2/PI = 0.05 to 0.20. As a result, sufficient optical output is always maintained as a monitoring source, and it is compatible with the aforementioned system and has all the effects of improving laser characteristics.

第3図に本発明品の70’Q、30mW動作の寿命試験
特性の結果の1例を示す。実線は本発明品点線は従来構
造のもので、従来品はキンクレベルの上で動作はせてい
るため大幅に動作電流が増大しておシ寿命特性は良くな
い。−力木発明品は電流−光出力特性の直線の領域で使
用していること、および微亦゛効率が高いため動作電流
が少ないという利点から寿命特性の優れたものが得られ
た。
FIG. 3 shows an example of the life test characteristics of the product of the present invention at 70'Q and 30 mW operation. The solid line indicates the inventive product.The dotted line indicates the conventional structure.Since the conventional product operates above the kink level, the operating current increases significantly and the life characteristics are not good. - The product invented by Rikiki has excellent life characteristics because it is used in the linear region of current-light output characteristics and has the advantage that operating current is small due to high microefficiency.

また半導体レーザ装置として(J as −x ALx
 A 5(x=0.05)C8P型レーザについて説明
したが光共振器として反射面を有するものであれば結晶
材料は何ら制限全党けない。さらにレーザ素子そのもの
の構成はC8P型以外のBH型レーザその他の諸々の半
導体レーザ素子等例れでも本方法が適用可能であること
は明らかである。
Also, as a semiconductor laser device (J as -x ALx
A 5 (x=0.05) C8P type laser has been described, but there are no restrictions on the crystal material as long as it has a reflective surface as an optical resonator. Furthermore, it is clear that the present method can be applied to any structure of the laser element itself, such as a BH type laser other than the C8P type and various other semiconductor laser elements.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来有効に使われていなかった半導体
レーザ後面の光出力を抑制し、その分前面の光出力を増
大させることによシ、光の内部エネルギーが同じでも外
部に取り出す光出力を大きくできる効果が必p、レーザ
特性、すなわちキンクレベル、微分効率全1.5〜2.
5倍(従来品に比較して)向上訟せることが分力)つた
。また70030mWの筒出力動作時の動作’dtLN
、を200mA(従来品)から150mAに低減でき寿
命特性も大幅に改善することができた。
According to the present invention, by suppressing the optical output from the rear surface of a semiconductor laser, which has not been used effectively in the past, and increasing the optical output from the front surface by that amount, even if the internal energy of the light is the same, the optical output can be extracted to the outside. It is necessary to have the effect of increasing the laser characteristics, that is, the kink level, and the differential efficiency of 1.5 to 2.
Its strength is that it is 5 times more efficient (compared to conventional products). Also, the operation when cylinder output is 70030mW 'dtLN
, was able to be reduced from 200mA (conventional product) to 150mA, and the life characteristics were also significantly improved.

さらに、レーザ素子両端面の反射率を調整して、後面か
らのモニター出力を光分散シ出せるようになっており、
システムへの適合性の優れたものとなった。
Furthermore, by adjusting the reflectance of both end faces of the laser element, the monitor output from the rear face can be optically dispersed.
This resulted in excellent compatibility with the system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すレーザ装置の断面図、第
2図はレーザ装置の電気、光学特性の1例を示す図、第
3図はレーザ装置6の寿命特性の1例を示す図である。 1・・・第1の誘電体膜、2・・・第2の誘電体膜、3
・・・第 1 図 第 2 図 1乞〉hミ (りt、4ノー 第 3 反 デXム剪・ul (ん〕 −
FIG. 1 is a cross-sectional view of a laser device showing an embodiment of the present invention, FIG. 2 is a diagram showing an example of the electrical and optical characteristics of the laser device, and FIG. 3 is a diagram showing an example of the life characteristics of the laser device 6. It is a diagram. 1... First dielectric film, 2... Second dielectric film, 3
・・・Fig.

Claims (1)

【特許請求の範囲】[Claims] 1、光出力を取シ出す両端面に少なくとも誘電体膜全有
する半導体レーザ装置において、片端面から光出力PI
 ともう一方の端面から光出力P2との比(P2/PI
)が0.05〜0.20の範囲に入るよう両端面の反射
率を調整したことを特徴とした、半導体レーザ装置。
1. In a semiconductor laser device having at least all dielectric films on both end faces from which optical output is extracted, the optical output PI from one end face is
and the optical output P2 from the other end face (P2/PI
) is in the range of 0.05 to 0.20, the reflectance of both end faces is adjusted.
JP20742083A 1983-11-07 1983-11-07 Semiconductor laser device Pending JPS60100492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20742083A JPS60100492A (en) 1983-11-07 1983-11-07 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20742083A JPS60100492A (en) 1983-11-07 1983-11-07 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS60100492A true JPS60100492A (en) 1985-06-04

Family

ID=16539454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20742083A Pending JPS60100492A (en) 1983-11-07 1983-11-07 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS60100492A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02191389A (en) * 1988-10-28 1990-07-27 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPH0311780A (en) * 1989-06-09 1991-01-21 Matsushita Electric Ind Co Ltd Semiconductor laser device
EP0579437A2 (en) * 1992-07-17 1994-01-19 AT&T Corp. Coated DFB semiconductor laser for use in analog optical fiber communication system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02191389A (en) * 1988-10-28 1990-07-27 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPH0311780A (en) * 1989-06-09 1991-01-21 Matsushita Electric Ind Co Ltd Semiconductor laser device
EP0579437A2 (en) * 1992-07-17 1994-01-19 AT&T Corp. Coated DFB semiconductor laser for use in analog optical fiber communication system
EP0579437A3 (en) * 1992-07-17 1994-02-09 AT&T Corp. Coated DFB semiconductor laser for use in analog optical fiber communication system

Similar Documents

Publication Publication Date Title
JPS59145588A (en) Semiconductor laser device
JPS61207091A (en) Semiconductor laser element
JPS60242689A (en) Semiconductor laser element
CN100559672C (en) Multiwavelength laser diode
US4852112A (en) Semiconductor laser with facet protection film of selected reflectivity
WO2000052795A1 (en) Semiconductor light-emitting device
JPS60100492A (en) Semiconductor laser device
JPH02137287A (en) Semiconductor laser device
JP3290531B2 (en) Manufacturing method of semiconductor laser
JPH10300959A (en) Semiconductor optical waveguide functional element
EP1039598A2 (en) Distributed feedback semiconductor laser
KR100754956B1 (en) Semiconductor laser device and laser system
JP3080312B2 (en) Manufacturing method of semiconductor laser
JP3710077B2 (en) External cavity semiconductor laser
JP2757913B2 (en) Semiconductor laser
JPS60107882A (en) Semiconductor laser
JP2572868B2 (en) Semiconductor laser
JP2666086B2 (en) Semiconductor laser device
JPH0750814B2 (en) Multi-point emission type semiconductor laser device
EP1218989A1 (en) High yield dfb laser with effective reject selection
JPH10242580A (en) Semiconductor pulsed light source device
JPH07202319A (en) Quantum well semiconductor laser element
US20030189962A1 (en) Stabile mode broad stripe semiconductor diode laser
JP2001111163A (en) Semiconductor laser element
JP3553909B2 (en) Semiconductor laser and manufacturing method thereof