JPH10242580A - Semiconductor pulsed light source device - Google Patents

Semiconductor pulsed light source device

Info

Publication number
JPH10242580A
JPH10242580A JP4391997A JP4391997A JPH10242580A JP H10242580 A JPH10242580 A JP H10242580A JP 4391997 A JP4391997 A JP 4391997A JP 4391997 A JP4391997 A JP 4391997A JP H10242580 A JPH10242580 A JP H10242580A
Authority
JP
Japan
Prior art keywords
semiconductor
optical
source device
light source
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4391997A
Other languages
Japanese (ja)
Other versions
JP3565394B2 (en
Inventor
Norifumi Sato
佐藤  憲史
Hiroyuki Ishii
啓之 石井
Isamu Odaka
勇 小高
Yasuhiro Kondo
康洋 近藤
Mitsuo Yamamoto
▲みつ▼夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP04391997A priority Critical patent/JP3565394B2/en
Publication of JPH10242580A publication Critical patent/JPH10242580A/en
Application granted granted Critical
Publication of JP3565394B2 publication Critical patent/JP3565394B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor pulsed light source device wherein the repeated frequency of its generated optical pulse is created with a good reproducibility according to its design, and its optical pulse width is varied slightly to the variation of its modulation frequency in a high repeated frequency not lower than 10GHz to make possible the generations of pulses with widths not lower than 10ps. SOLUTION: A semiconductor gain control portion 1, a semiconductor modulator 2, and an optical filter 3 with a grating are integrated into an optical resonator. Further, a distributed Bragg reflector(DBR) is integrated into a chirped grating. The resonance frequency of the optical resonator which is determined by its optical resonator length is varied by the integrated DBR to make possible the generations of pulses in such a wide high-frequency range as to be conventionally impossible.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は半導体パルス光源装
置に関し、特にチャープドグレーティングを有する半導
体パルス光源装置に適用して有用なものである。 【0002】 【従来の技術】図4(a)は従来の半導体パルス光源装
置の構成を説明するための図であり、01は光変調器、
02は利得部、03は回折格子よりなる分布ブラッグ反
射器(DBR)である。従来はDBRには均一な回折格
子が用いられている。図2(b)は他の従来の半導体パ
ルス光源装置を説明するための図であり、04は光利得
部、05はチャープドグレーティング06が形成された
ファイバーである。 【0003】 【発明が解決しようとする課題】ところで、半導体パル
ス光源装置では、発生したパルスの繰り返し周波数は共
振器を光パルスが往復するのに要する時間の逆数で与え
られる共振周波数に一致するため、各素子ごとに固定さ
れてしまう。必要な繰り返し周波数を得るためには、共
振器長を精度よく作製する事が必要であるが、劈開時の
共振器長のばらつきや共振周波数を決める群屈折率のば
らつきにより、再現性良く作製することが困難であっ
た。また、能動モード同期レーザにおいて変調周波数を
上記共振周波数からわずかでもずらすとパルス幅が増大
し、パルスのパワーが低下し、ノイズが増大するという
問題があった。 【0004】図4(b)に示す半導体パルス光源装置
は、チャープドグレーティング06を形成したファイバ
ー05と光利得部04を結合させたものであり、この装
置ではチャープドグレーティング06により繰り返し周
波数が広い範囲で変えられることが報告されている
(P.A.Morton,et.al.,“Mode−
locked soliton pulse sour
ce with fibercavity and i
ntegrated chirped Braggre
flector,”OFC/IOOC '93 Tech
nical Digest,pp.57−58)。 【0005】ところが、上記半導体パルス光源装置で
は、ファイバー05と光利得部04とを外部で結合させ
ているため共振器長が長くなり、10GHZ 以上の高い繰
り返し周波数は困難であった。また、チャープドグレー
ティング06を形成したファイバー05ではグレーティ
ング部分が1ミリメートル以上と長くしないと反射率が
確保できないため、波長帯域が狭くなり時間幅の小さい
パルスを発生することは困難であった。 【0006】本願発明は、上記従来技術に鑑み、発生す
る光パルスの繰り返し周波数を設計に対して再現性良く
作成し、また10GHZ 以上の高い繰り返し周波数におい
て、変調周波数の変化に対して光パルス幅の変動が少な
く、10ps以下の光パルスの発生を可能にする半導体パ
ルス光源装置を提供することを目的とする。 【0007】 【課題を解決するための手段】上記目的を達成する本発
明の構成は次の点を特徴とする。 【0008】1) ある波長域に対して利得を有する半
導体利得部と、電圧あるいは電流を加えることにより前
記波長域に対する光吸収係数あるいは光利得係数が変化
する半導体変調器部と、回折格子を有する光フィルター
部とを一組とする光半導体パルス発生素子が、同一半導
体基板上に形成された半導体パルス光源装置において、
上記光フィルター部が周期性を有する回折格子より構成
されるとともに回折格子の周期が光出射方向にある一定
の割合で減少し、かつフィルター部の長さが200ミク
ロン以下であること。 【0009】2) ある波長域に対して利得を有する半
導体利得部と、電圧あるいは電流を加えることにより前
記波長域に対する光吸収係数あるいは光利得係数が変化
する半導体変調器部と、回折格子を有する光フィルター
部とを一組とする光半導体パルス発生素子が、同一半導
体基板上に形成された半導体パルス光源装置において、
上記光フィルター部が周期性を有する回折格子より構成
され一定の負の位相シフトが多数挿入されるとともに挿
入間隔が光出射方向に行くに伴い減少するように構成し
たチャープドグレーティングを有し、かつフィルター部
の長さが200ミクロン以下であること。 【0010】3) ある波長域に対して利得を有する半
導体利得部と、電圧あるいは電流を加えることにより前
記波長域に対する光吸収係数あるいは光利得係数が変化
する半導体変調器部と、回折格子を有する光フィルター
部とを一組とする光半導体パルス発生素子が、同一半導
体基板上に形成された半導体パルス光源装置において、
上記光フィルター部が周期性を有する回折格子より構成
され一定の正の位相シフトが多数挿入されるとともに挿
入間隔が光出射方向に行くに伴い増大するように構成し
たチャープドグレーティングを有し、かつフィルター部
の長さが200ミクロン以下であること。 【0011】4) 1)〜3)の半導体パルス光源装置
において、出射端面に少なくとも1%以下の反射率を有
する無反射膜がコーティングされていること。 【0012】 【発明の実施の形態】以下本発明の実施の形態を図面に
基づき詳細に説明する。図1は本形態の基本構成を示す
構造図である。同図に示すように、本形態に係る半導体
パルス光源装置は、ある波長域に対して利得を有する半
導体利得部1と、電圧を加えることにより前記波長域に
対する光吸収係数が増大する半導体変調器部2と、回折
格子を有する光フィルター部3とを同一の半導体基板
8、11上に形成したものである。このとき光フィルタ
ー部3は、その回折格子の周期が光出射方向にある一定
の割合で減少するとともにその長さが200ミクロン以
下になるように構成してある。 【0013】なお、図中4は利得部電極、5は変調器部
電極、6はDBR電極、7は下部電極、9は変調器用多
重量子井戸、10は利得部用多重量子井戸、12はDB
R、13は高反射膜、14は無反射膜である。 【0014】また、上記光フィルター部3は周期性を有
する回折格子より構成され、一定の負の位相シフトが多
数挿入されるとともに挿入間隔が光出射方向に行くに伴
い減少するように構成したチャープドグレーティングを
有するか、若しくは一定の正の位相シフトが多数挿入さ
れるとともに挿入間隔が光出射方向に行くに伴い増大す
るように構成したチャープドグレーティングを有するも
のであっても良い。 【0015】図2は光フィルター部3の反射率と有効長
の波長依存性に関する計算結果である。前記半導体変調
器部2に正弦波電圧を加えることにより吸収係数が変化
しロスの時間変化が与えられる。この時の繰り返し周波
数は共振器を光パルスが往復するのに要する時間の逆数
で与えられる共振周波数に一致させる必要がある。光フ
ィルター部3を構成する分布ブラッグ反射器(DBR)
内の有効長は、回折格子の周期が光射出方向にある一定
の割合で減少するため、図2に示すように波長に依存し
て変化する。変調周波数を変化させると発振波長が変化
してDBR内で光パルスが往復するのに要する時間の逆
数で与えられる共振周波数に一致するように、有効長を
自動的に変化させるため、10GHZ 以上の繰り返し周波
数で安定なパルス発生が得られる。 【0016】一方、図4(a)に示す従来の構造では有
効長の波長依存性が小さく上記の効果はほとんどない。
図4(b)に示す従来の構造では、チャープドグレーテ
ィング06を形成したファイバー05と光利得部04を
結合させたものであり、チャープドグレーティング06
により繰り返し周波数が広い範囲で変えられることが報
告されているが、光利得部04との外部での結合構造で
あるため、共振器長が長くなり、10GHz 以上の高い繰
り返し周波数は困難である。また、チャープドグレーテ
ィング06を形成したファイバー05ではグレーティン
グ部分が1ミリメートル以上と長くしないと反射率が確
保できないため、幅の小さいパルスを発生することは困
難である。 【0017】 【実施例】次に本発明のさらに詳言な実施例を説明す
る。半導体利得部1、電界吸収型の半導体変調器部2及
び光フィルター部3は、n型InP よりなる同一半導体基
板8及びp型InP よりなる同一半導体基板11上に集積
されており、これらで光共振器を形成している。半導体
利得部1は井戸層がInGaAsまたはInGaAsP 、障壁層がIn
GaAsP の利得部用多重量子井戸9よりなり、そのホトル
ミネッセンス波長は1.55ミクロン近傍である。半導
体変調器部2は井戸層がInGaAsまたはInGaAsP、障壁層
がInGaAsP の半導体多重量子井戸10よりなり、そのホ
トルミネッセンス波長は1.49ミクロン近傍である。
半導体利得部1の長さは1800ミクロン、半導体変調
器部2の長さは100ミクロンである。半導体利得部1
と半導体変調器部2は相互の電極4、5が50ミクロン
の長さにわたり分離されており、共振器長は約2200
ミクロンである。 【0018】チャープドグレーティングを形成したDB
Rは150ミクロンである。チャープレイトは7250
Å/cmである。チャープドグレイティングは図3に示す
多重位相シフトパタンを用いた。これらのパタンは電子
ビーム露光装置を用いて実現した。ここで「位相シフ
ト」とは、周期性を有する回折格子の位相を光出射方向
に対し反対方向に所定量ずらす(これを負の位相シフト
といい、図3はこの負の位相シフトの場合を示してい
る)こと、若しくは周期性を有する回折格子の位相を光
出射方向に所定量ずらす(これを正の位相シフトとい
う)ことをいう。また、「多重位相シフト」とは、「位
相シフト」を複数個(図3では4個)設けることをい
う。図3(a)には回折格子の周期、同図(b)には位
相シフト、同図(c)にはこのとき形成される回折格子
を概念的に示している。 【0019】図3に示す場合においてチャープレイトr
c は rc =4neq(△Λ/Λ)/m2 で与えられる。ここで、neqは光導波路の等価屈折率、
△Λは位相シフト量、Λは回折格子の周期、mは最初に
位相シフトが挿入される位置の周期の数である。図3に
示すように、位相シフトが負の場合には出射端面に対し
て反対側(図3の左側)から、位相シフトの番号iに対
して 番号i の平方根にmを乗じた値となる位置に位相
シフトが挿入される。この位相シフトの挿入位置を図3
(a)中に下向きの矢印で示す。この結果形成される回
折格子は、図3(c)に示すように、負の位相シフト△
Λが4個挿入され、かつその挿入間隔T1 〜T4 が光出
射方向にいくにしたがい減少するものとなる。すなわち
1 >T2 >T3 >T4 となっている。 【0020】位相シフトが正の場合は、出射端面側から
位相シフトの番号iに対して番号iの平方根にmを乗じ
た値となる位置に位相シフトを挿入し、かつその挿入間
隔が光出射方向にいくにしたがい増大するように、すな
わちT1 <T2 <T3 <T4となるように挿入すれば良
い。 【0021】DBR側の端面の無反射膜14はSiO2とTi
O2からなる多層膜の無反射コーティングにより形成さ
れ、反射率は0.2%以下になっている。 【0022】 【発明の効果】以上実施の形態とともに詳細に説明した
通り、本発明によればパルスの繰り返し周波数がDBR
内での有効長の自己整合化で可変できるために、広い範
囲での周波数のパルス発生が容易になり、また小型に集
積化されているため20GHZ 以上の高い周波数を得るこ
とが可能になる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor pulse light source device, and is particularly useful when applied to a semiconductor pulse light source device having a chirped grating. 2. Description of the Related Art FIG. 4A is a diagram for explaining a configuration of a conventional semiconductor pulse light source device, where 01 is an optical modulator,
02 is a gain part, and 03 is a distributed Bragg reflector (DBR) made of a diffraction grating. Conventionally, a uniform diffraction grating is used for the DBR. FIG. 2B is a diagram for explaining another conventional semiconductor pulse light source device, wherein reference numeral 04 denotes an optical gain unit, and reference numeral 05 denotes a fiber on which a chirped grating 06 is formed. In the semiconductor pulse light source device, the repetition frequency of the generated pulse is equal to the resonance frequency given by the reciprocal of the time required for the light pulse to reciprocate through the resonator. Is fixed for each element. In order to obtain the required repetition frequency, it is necessary to accurately manufacture the resonator length. However, due to variations in the resonator length at the time of cleavage and variations in the group refractive index that determines the resonance frequency, the resonator is manufactured with high reproducibility. It was difficult. Further, in the active mode-locked laser, if the modulation frequency is slightly shifted from the resonance frequency, there is a problem that the pulse width increases, the power of the pulse decreases, and the noise increases. The semiconductor pulse light source device shown in FIG. 4B combines a fiber 05 having a chirped grating 06 and an optical gain unit 04. In this device, the repetition frequency is wide due to the chirped grating 06. It has been reported that it can be varied over a range (PA Morton, et. Al., "Mode-
locked solute pulse sour
ce with fibercavity and i
integrated chipped Bragre
factor, "OFC / IOOC '93 Tech
medical Digest, pp. 57-58). [0005] However, the semiconductor pulse light source device, the fiber 05 and the optical gain section 04 is coupled with the external cavity length is increased for that, 10GH Z over high repetition frequency has been difficult. Further, in the fiber 05 having the chirped grating 06, the reflectance cannot be ensured unless the grating portion is made longer than 1 mm, so that the wavelength band becomes narrow and it is difficult to generate a pulse having a small time width. [0006] The present invention, the view of the prior art, to create good reproducibility with respect to designing the repetition frequency of the generated light pulses, also in the above high repetition frequency 10GH Z, the optical pulse with respect to the change of the modulation frequency It is an object of the present invention to provide a semiconductor pulse light source device capable of generating a light pulse of 10 ps or less with a small variation in width. [0007] The structure of the present invention that achieves the above object has the following features. 1) A semiconductor gain section having a gain in a certain wavelength range, a semiconductor modulator section in which a light absorption coefficient or an optical gain coefficient changes in the wavelength range by applying a voltage or a current, and a diffraction grating. In a semiconductor pulse light source device in which an optical semiconductor pulse generating element and an optical filter unit are formed as a set is formed on the same semiconductor substrate,
The optical filter section is composed of a diffraction grating having periodicity, the period of the diffraction grating is reduced at a certain rate in the light emitting direction, and the length of the filter section is 200 microns or less. 2) A semiconductor gain section having a gain in a certain wavelength range, a semiconductor modulator section in which a light absorption coefficient or an optical gain coefficient changes in the wavelength range by applying a voltage or a current, and a diffraction grating. In a semiconductor pulse light source device in which an optical semiconductor pulse generating element and an optical filter unit are formed as a set is formed on the same semiconductor substrate,
The optical filter section includes a chirped grating configured by a diffraction grating having periodicity and configured such that a large number of constant negative phase shifts are inserted and the insertion interval decreases as going in the light emitting direction, and The length of the filter section is 200 microns or less. 3) a semiconductor gain section having a gain for a certain wavelength range, a semiconductor modulator section for changing a light absorption coefficient or an optical gain coefficient for the wavelength range by applying a voltage or a current, and a diffraction grating. In a semiconductor pulse light source device in which an optical semiconductor pulse generating element and an optical filter unit are formed as a set is formed on the same semiconductor substrate,
The optical filter section includes a chirped grating configured to include a diffraction grating having periodicity, and a large number of fixed positive phase shifts are inserted, and the insertion interval is increased with an increase in a light emitting direction, and The length of the filter section is 200 microns or less. [0011] 4) In the semiconductor pulse light source device of 1) to 3), a non-reflection film having a reflectance of at least 1% or less is coated on an emission end face. Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a structural diagram showing a basic configuration of the present embodiment. As shown in the figure, a semiconductor pulse light source device according to the present embodiment includes a semiconductor gain unit 1 having a gain in a certain wavelength range, and a semiconductor modulator in which a voltage is applied to increase a light absorption coefficient in the wavelength range. The unit 2 and the optical filter unit 3 having a diffraction grating are formed on the same semiconductor substrates 8 and 11. At this time, the optical filter unit 3 is configured such that the period of the diffraction grating is reduced at a certain rate in the light emitting direction and the length is 200 microns or less. In the drawings, reference numeral 4 denotes a gain portion electrode, 5 denotes a modulator portion electrode, 6 denotes a DBR electrode, 7 denotes a lower electrode, 9 denotes a modulator multiple quantum well, 10 denotes a gain portion multiple quantum well, and 12 denotes a DB.
R and 13 are high reflection films, and 14 is a non-reflection film. The optical filter section 3 is composed of a diffraction grating having a periodicity, and a chirp configured such that a large number of fixed negative phase shifts are inserted and the insertion interval decreases as going in the light emitting direction. It may have a doping grating, or may have a chirped grating configured such that a large number of fixed positive phase shifts are inserted and the insertion interval increases in the light emitting direction. FIG. 2 shows a calculation result regarding the wavelength dependence of the reflectance and effective length of the optical filter unit 3. When a sine wave voltage is applied to the semiconductor modulator section 2, the absorption coefficient changes, and the loss changes with time. The repetition frequency at this time needs to match the resonance frequency given by the reciprocal of the time required for the optical pulse to reciprocate in the resonator. Distributed Bragg reflector (DBR) constituting optical filter unit 3
The effective length in the range changes depending on the wavelength as shown in FIG. 2 because the period of the diffraction grating decreases at a certain rate in the light emission direction. As the optical pulse oscillating wavelength with changing the modulation frequency is changed within a DBR matches the resonance frequency given by the inverse of the time required for reciprocation, to vary the effective length automatically, 10GH Z or And a stable pulse is obtained at the repetition frequency. On the other hand, in the conventional structure shown in FIG. 4A, the wavelength dependence of the effective length is small, and the above-mentioned effect is hardly obtained.
In the conventional structure shown in FIG. 4B, a fiber 05 on which a chirped grating 06 is formed and an optical gain section 04 are coupled, and the chirped grating 06 is formed.
Although the repetition frequency is reported to be varied over a wide range, since a bond structure at the outside of the optical gain section 04, the resonator length becomes longer, high repetition frequencies above 10GH z is difficult by . Further, in the fiber 05 having the chirped grating 06, it is difficult to generate a pulse having a small width because the reflectance cannot be ensured unless the grating portion is as long as 1 mm or more. Next, a more detailed embodiment of the present invention will be described. The semiconductor gain section 1, the electroabsorption type semiconductor modulator section 2 and the optical filter section 3 are integrated on the same semiconductor substrate 8 made of n-type InP and the same semiconductor substrate 11 made of p-type InP. A resonator is formed. In the semiconductor gain section 1, the well layer is made of InGaAs or InGaAsP, and the barrier layer is made of InGaAs.
It consists of a GaAsP multiple quantum well 9 for the gain section, and its photoluminescence wavelength is around 1.55 microns. The semiconductor modulator section 2 is composed of a semiconductor multiple quantum well 10 having a well layer of InGaAs or InGaAsP and a barrier layer of InGaAsP, and has a photoluminescence wavelength of about 1.49 microns.
The length of the semiconductor gain section 1 is 1800 microns, and the length of the semiconductor modulator section 2 is 100 microns. Semiconductor gain unit 1
And the semiconductor modulator section 2 are separated from each other by electrodes 50 over a length of 50 microns, and the resonator length is about 2200.
Micron. DB having a chirped grating
R is 150 microns. Char plate is 7250
Å / cm. The chirped grating used the multiple phase shift pattern shown in FIG. These patterns were realized using an electron beam exposure apparatus. Here, “phase shift” means that the phase of a diffraction grating having periodicity is shifted by a predetermined amount in a direction opposite to the light emission direction (this is called a negative phase shift, and FIG. 3 shows the case of this negative phase shift). Or a phase shift of the diffraction grating having a periodicity in the light emitting direction by a predetermined amount (this is referred to as a positive phase shift). Further, “multiple phase shifts” refers to providing a plurality (four in FIG. 3) of “phase shifts”. 3A schematically shows the period of the diffraction grating, FIG. 3B schematically shows the phase shift, and FIG. 3C conceptually shows the diffraction grating formed at this time. In the case shown in FIG.
c is given by r c = 4n eq (△ Λ / Λ) / m 2 . Here, n eq is the equivalent refractive index of the optical waveguide,
ΔΛ is the amount of phase shift, Δ is the period of the diffraction grating, and m is the number of periods at the position where the phase shift is first inserted. As shown in FIG. 3, when the phase shift is negative, the value is obtained by multiplying the square root of the number i by m with respect to the number i of the phase shift from the opposite side (left side in FIG. 3) with respect to the emission end face. A phase shift is inserted at the position. The insertion position of this phase shift is shown in FIG.
This is indicated by a downward arrow in (a). The resulting diffraction grating has a negative phase shift △, as shown in FIG.
Λ are inserted, and the insertion intervals T 1 to T 4 decrease in the light emitting direction. That is, a T 1> T 2> T 3 > T 4. If the phase shift is positive, a phase shift is inserted from the emission end face to a position where the value is obtained by multiplying the square root of the number i by m with respect to the number i of the phase shift, and the insertion interval is equal to the light emission interval. The insertion may be performed so as to increase in the direction, that is, T 1 <T 2 <T 3 <T 4 . The antireflection film 14 on the end face on the DBR side is made of SiO 2 and Ti.
It is formed by a multilayer anti-reflection coating made of O 2 and has a reflectance of 0.2% or less. As described in detail with the above embodiments, according to the present invention, the pulse repetition frequency is
In order to be variable in effective length self-alignment of at the inner, it facilitates the pulse generation frequency in a wide range and it is possible to obtain a 20GH Z frequency higher than for being integrated into small .

【図面の簡単な説明】 【図1】本発明の実施の形態にかかる半導体パルス光源
装置す構成図である。 【図2】光フィルター部3の反射率と有効長の波長依存
性に関する計算結果に基づく特性を示す特性図である。 【図3】本発明の実施の形態にかかる装置の光フィルタ
ー部における位相シフトを説明するための説明図。 【図4】従来技術に係る半導体パルス光源装置を示す構
造図。 【符号の説明】 1 半導体利得部 2 半導体変調部 3 光フィルター部
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration diagram of a semiconductor pulse light source device according to an embodiment of the present invention. FIG. 2 is a characteristic diagram showing characteristics based on a calculation result regarding the wavelength dependence of the reflectance and effective length of the optical filter unit 3. FIG. 3 is an explanatory diagram for explaining a phase shift in an optical filter unit of the device according to the embodiment of the present invention. FIG. 4 is a structural view showing a conventional semiconductor pulse light source device. [Description of Signs] 1 Semiconductor gain unit 2 Semiconductor modulation unit 3 Optical filter unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 康洋 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 (72)発明者 山本 ▲みつ▼夫 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Yasuhiro Kondo             3-19-2 Nishi Shinjuku, Shinjuku-ku, Tokyo Japan             Telegraph and Telephone Corporation (72) Inventor Yamamoto ▲ Mitsu ▼ Husband             3-19-2 Nishi Shinjuku, Shinjuku-ku, Tokyo Japan             Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】 【請求項1】 ある波長域に対して利得を有する半導体
利得部と、電圧あるいは電流を加えることにより前記波
長域に対する光吸収係数あるいは光利得係数が変化する
半導体変調器部と、回折格子を有する光フィルター部と
を一組とする光半導体パルス発生素子が、同一半導体基
板上に形成された半導体パルス光源装置において、 上記光フィルター部が周期性を有する回折格子より構成
されるとともに回折格子の周期が光出射方向にある一定
の割合で減少し、かつフィルター部の長さが200ミク
ロン以下であることを特徴とする半導体パルス光源装
置。 【請求項2】 ある波長域に対して利得を有する半導体
利得部と、電圧あるいは電流を加えることにより前記波
長域に対する光吸収係数あるいは光利得係数が変化する
半導体変調器部と、回折格子を有する光フィルター部と
を一組とする光半導体パルス発生素子が、同一半導体基
板上に形成された半導体パルス光源装置において、 上記光フィルター部が周期性を有する回折格子より構成
され一定の負の位相シフトが多数挿入されるとともに挿
入間隔が光出射方向に行くに伴い減少するように構成し
たチャープドグレーティングを有し、かつフィルター部
の長さが200ミクロン以下であることを特徴とする半
導体パルス光源装置。 【請求項3】 ある波長域に対して利得を有する半導体
利得部と、電圧あるいは電流を加えることにより前記波
長域に対する光吸収係数あるいは光利得係数が変化する
半導体変調器部と、回折格子を有する光フィルター部と
を一組とする光半導体パルス発生素子が、同一半導体基
板上に形成された半導体パルス光源装置において、 上記光フィルター部が周期性を有する回折格子より構成
され一定の正の位相シフトが多数挿入されるとともに挿
入間隔が光出射方向に行くに伴い増大するように構成し
たチャープドグレーティングを有し、かつフィルター部
の長さが200ミクロン以下であることを特徴とする半
導体パルス光源装置。 【請求項4】 〔請求項1〕〜〔請求項3〕の半導体パ
ルス光源装置において、 出射端面に少なくとも1%以下の反射率を有する無反射
膜がコーティングされていることを特徴とする半導体パ
ルス光源装置。
1. A semiconductor gain section having a gain in a certain wavelength range, and a semiconductor modulator section changing a light absorption coefficient or an optical gain coefficient in the wavelength range by applying a voltage or a current. And an optical semiconductor pulse generating element having a pair of an optical filter unit having a diffraction grating, in a semiconductor pulse light source device formed on the same semiconductor substrate, wherein the optical filter unit is composed of a diffraction grating having periodicity. And a period of the diffraction grating is reduced at a certain rate in the light emitting direction, and a length of the filter portion is not more than 200 microns. 2. A semiconductor gain section having a gain for a certain wavelength range, a semiconductor modulator section for changing a light absorption coefficient or an optical gain coefficient for the wavelength range by applying a voltage or a current, and a diffraction grating. In a semiconductor pulse light source device in which an optical semiconductor pulse generating element as one set of an optical filter unit is formed on the same semiconductor substrate, the optical filter unit is constituted by a diffraction grating having periodicity, and has a constant negative phase shift. A semiconductor pulsed light source device having a chirped grating configured so that a large number of holes are inserted and the insertion interval decreases in the light emitting direction, and the length of the filter portion is 200 μm or less. . 3. A semiconductor gain section having a gain for a certain wavelength range, a semiconductor modulator section for changing a light absorption coefficient or an optical gain coefficient for the wavelength range by applying a voltage or a current, and a diffraction grating. In a semiconductor pulse light source device in which an optical semiconductor pulse generating element as a pair with an optical filter section is formed on the same semiconductor substrate, the optical filter section is constituted by a diffraction grating having a periodicity, and has a constant positive phase shift. A semiconductor pulsed light source device having a chirped grating configured so that a large number of holes are inserted and the insertion interval increases in the light emitting direction, and the length of the filter portion is 200 μm or less. . 4. The semiconductor pulse light source device according to any one of claims 1 to 3, wherein the light-emitting end face is coated with a non-reflection film having a reflectance of at least 1% or less. Light source device.
JP04391997A 1997-02-27 1997-02-27 Semiconductor pulse light source device Expired - Lifetime JP3565394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04391997A JP3565394B2 (en) 1997-02-27 1997-02-27 Semiconductor pulse light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04391997A JP3565394B2 (en) 1997-02-27 1997-02-27 Semiconductor pulse light source device

Publications (2)

Publication Number Publication Date
JPH10242580A true JPH10242580A (en) 1998-09-11
JP3565394B2 JP3565394B2 (en) 2004-09-15

Family

ID=12677133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04391997A Expired - Lifetime JP3565394B2 (en) 1997-02-27 1997-02-27 Semiconductor pulse light source device

Country Status (1)

Country Link
JP (1) JP3565394B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003224328A (en) * 2002-01-30 2003-08-08 Nippon Telegr & Teleph Corp <Ntt> Semiconductor pulse light source device
KR100420950B1 (en) * 2001-12-12 2004-03-02 한국전자통신연구원 Tunable wavelength laser light source
JP2008035265A (en) * 2006-07-28 2008-02-14 Oki Electric Ind Co Ltd Multi-wavelength carrier-suppressed optical pulse signal generator
JP2010251609A (en) * 2009-04-17 2010-11-04 Fujitsu Ltd Semiconductor laser

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100420950B1 (en) * 2001-12-12 2004-03-02 한국전자통신연구원 Tunable wavelength laser light source
JP2003224328A (en) * 2002-01-30 2003-08-08 Nippon Telegr & Teleph Corp <Ntt> Semiconductor pulse light source device
JP2008035265A (en) * 2006-07-28 2008-02-14 Oki Electric Ind Co Ltd Multi-wavelength carrier-suppressed optical pulse signal generator
JP2010251609A (en) * 2009-04-17 2010-11-04 Fujitsu Ltd Semiconductor laser
US8705583B2 (en) 2009-04-17 2014-04-22 Fujitsu Limited Semiconductor laser

Also Published As

Publication number Publication date
JP3565394B2 (en) 2004-09-15

Similar Documents

Publication Publication Date Title
US5325392A (en) Distributed reflector and wavelength-tunable semiconductor laser
JP2813067B2 (en) Optical filter
JP3611593B2 (en) Method for fabricating semiconductor optical device
JP2768940B2 (en) Single wavelength oscillation semiconductor laser device
US6577660B1 (en) Distributed feedback type semiconductor laser device having gradually-changed coupling coefficient
JP2587628B2 (en) Semiconductor integrated light emitting device
US20040086012A1 (en) Coherent light source and method for driving the same
JPH07202334A (en) Manufacture of semiconductor optical integrated circuit
Ishii et al. Narrow spectral linewidth under wavelength tuning in thermally tunable super-structure-grating (SSG) DBR lasers
US20020037024A1 (en) Distributed feedback semiconductor laser
JPH10242580A (en) Semiconductor pulsed light source device
JP2713256B2 (en) Tunable semiconductor laser used for optical communication etc.
JP3264369B2 (en) Optical modulator integrated semiconductor laser and method of manufacturing the same
US6825505B2 (en) Phase-shifted distributed feedback type semiconductor laser diode capable of improving wavelength chirping and external reflection return light characteristics
JP3354106B2 (en) Semiconductor laser device and method of manufacturing the same
JP2002111127A (en) Optical device with expanded spectrum width
JP2917950B2 (en) Tunable semiconductor laser and method of manufacturing the same
KR100809412B1 (en) Electro-absorption Modulator integrated laser and method of manufacturing the same
JPH07176822A (en) Semiconductor light source and its manufacture
KR19980024154A (en) Optical semiconductor device and light source
JPH10223976A (en) Semiconductor laser
JP2690840B2 (en) Distributed light reflector and wavelength tunable semiconductor laser using the same
JP4203947B2 (en) Wavelength tunable semiconductor pulse light source device
JP2947702B2 (en) Tunable laser device and manufacturing method thereof
JPH05136521A (en) Semiconductor laser

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20040603

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040603

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term