JPS60100464A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60100464A
JPS60100464A JP58207425A JP20742583A JPS60100464A JP S60100464 A JPS60100464 A JP S60100464A JP 58207425 A JP58207425 A JP 58207425A JP 20742583 A JP20742583 A JP 20742583A JP S60100464 A JPS60100464 A JP S60100464A
Authority
JP
Japan
Prior art keywords
gate
polycrystalline
refractory metal
barrier layer
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58207425A
Other languages
Japanese (ja)
Inventor
Hideo Sunami
英夫 角南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58207425A priority Critical patent/JPS60100464A/en
Publication of JPS60100464A publication Critical patent/JPS60100464A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4941Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a barrier layer between the silicon and the metal or metal silicide upper layer, e.g. Silicide/TiN/Polysilicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4933Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a silicide layer contacting the silicon layer, e.g. Polycide gate

Abstract

PURPOSE:To obtain an MOS transistor which has high reliability corresponding to that of a polycrystalline Si gate and a gate including the low resistivity of refractory metal gate by constructing a polycrystaline Si gate on a thin gate oxide film, and forming a refractory metal layer through a barrier layer on the top of the gate. CONSTITUTION:A field oxide film 2 having 0.5-1mum of thickness is formed on an Si substrate 1. A gate oxide film 3 is formed in a thickness of 2-100nm on part of a portion on which the film 2 is not formed. Then, a polycrystalline Si 4 to which phosphorus and As are added is coated, a barrier layer 5 made of silicide of Pt or Pd or TiN or TiB, TaB is coated, a refractory metal 6 such as W, Mo or Ta is further coated, the gate of this three layers is simultaneously etched in the same pattern to form a gate of an MOS transistor. Thus, since refractory metal 6 is not reacted nor mixed with the Si 4, the high reliability of the Si and the low resistivity of the refractory metal can be both provided.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はMO8−LSIに係シ、特に低抵抗で、かつ長
期信頼性に優れたゲートを持つMO8−LSIに関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an MO8-LSI, and particularly to an MO8-LSI having a gate with low resistance and excellent long-term reliability.

〔発明の背景〕[Background of the invention]

従来広く用いられている多結晶SiやMOシリサイド等
は、その抵抗が十分には低くないという゛欠点をもって
いる。たとえば厚さを3QQHmとすると、多結晶Si
とMOシリサイドはそれぞれシート抵抗が20Ω/口、
4Ω/口程度である。
Polycrystalline Si, MO silicide, etc., which have been widely used in the past, have the disadvantage that their resistance is not sufficiently low. For example, if the thickness is 3QQHm, polycrystalline Si
and MO silicide have a sheet resistance of 20Ω/mouth, respectively.
It is about 4Ω/mouth.

素子の機側化に伴なってWやMO等のリフラクトリ金属
を用いるとシート抵抗は1Ω/口以下にしうるが、MO
Sトランジスタのゲートをこれらの金属で形成するとb
わゆるしきい′電圧VTの変化を引き起すホットエレク
トロン耐性が低下し、長期信頼度に劣るという欠点がめ
った。
When devices are moved to the machine side, the sheet resistance can be reduced to 1 Ω/hole or less by using refractory metals such as W or MO.
When the gate of an S transistor is formed of these metals, b
The drawback is that the resistance to hot electrons that cause changes in the so-called threshold voltage VT is reduced, resulting in poor long-term reliability.

〔発明の目的〕[Purpose of the invention]

本発明の目的は多結晶8iゲート並の高信頼度と、リフ
ラクトリ金属ゲートの低抵抗性をもつゲートをもつMO
Sトランジスタを提供することにある。
The purpose of the present invention is to provide an MO gate with high reliability comparable to that of a polycrystalline 8i gate and low resistance of a refractory metal gate.
An object of the present invention is to provide an S transistor.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、薄いゲート酸化膜上は多結晶Siゲー
トで構成し、この上部にり7ラクトリ金属とStの反応
を阻止するバリヤ層を設け、さらにこの上部にす72ク
トリ金属を形成するものでるる。す7ラクトリ金属と、
バリヤ層、多結晶Siは同一のパターンで一括してバタ
ーニングする。こねによってマスク合せなしに従来と同
寸法でゲートが形成できる。
The gist of the present invention is that a polycrystalline Si gate is formed on a thin gate oxide film, a barrier layer is provided on top of this to prevent the reaction between the 7-tri-metal and St, and a 72-tri-metal is further formed on top of this. It comes out. 7 Lactoli metals and
The barrier layer and polycrystalline Si are patterned all at once in the same pattern. By kneading, a gate can be formed with the same dimensions as before without the need for mask alignment.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施列を第1図により説明する。Sl
基板1上によく知られたLOCO8(LocalQxi
clarion of 5ilicon )法で0.5
〜1μm厚のフィールド酸化膜2を形成する。フィール
ド酸化膜2の形成されない部分の一部にゲート酸化膜3
全2〜iQQHm厚に形成する。この後リンやASを添
刀nした多結晶Si4を被着し、Ptやpdのシリサイ
ドやTiN、9るいは’l’i13. TaB等のパリ
ャノwi5を被着し、さらにW、Mo、あるいはTaな
どのり7ラクトリ金属6を被着しこの三層のゲートを一
括して同一パターンによってエツチングしてMOS )
ランジスタのゲートを形成する。
Hereinafter, one embodiment of the present invention will be explained with reference to FIG. Sl
The well-known LOCO8 (LocalQxi
clarion of 5ilicon) method 0.5
A field oxide film 2 with a thickness of ~1 μm is formed. A gate oxide film 3 is formed on a part of the area where the field oxide film 2 is not formed.
It is formed to a total thickness of 2 to iQQHm. After that, polycrystalline Si4 coated with phosphorus or AS is deposited, Pt or PD silicide, TiN, 9 or 'l'i13. MOS (MOS) is formed by depositing Palyano Wi5 such as TaB, and then depositing glue 7 and lamination metal 6 such as W, Mo, or Ta, and etching these three layers of gates in the same pattern at once.
Forms the transistor gate.

第1図はトランジスタのチャネル幅方向の断面を示すが
、第2図(・よチャネル長方向の断面図を示す。領域7
はトランジスタのソース・ドレインである。本発明では
り7ラクトリ金属6は多結晶Si4と反応して混シ合わ
ないので多結晶Si。
Figure 1 shows a cross-section of the transistor in the channel width direction, while Figure 2 shows a cross-section of the transistor in the channel length direction.
are the source and drain of the transistor. In the present invention, the laminated metal 6 reacts with polycrystalline Si4 and does not mix with polycrystalline Si4.

高信頼性とりフラクトリ金属の低抵抗性を兼ね備えるこ
とができる。
It can combine high reliability with the low resistance of frac-trimetal metals.

第3図に本発明の他のズ施例を示す。第1〜第2図で述
べた実施例は、バリヤ層5が導電層であシ、す7ラクト
リ金楓6はいずれの部分でも多結晶Si4に電気的に接
dされている。第3図に示す実施例は、このバリヤ層5
が、絶縁)摸である場合であシ、部分的にバリヤ層5に
接続孔8を形成し、この接続孔8を通じて多結晶Si4
とす7ラクトリ金属8を′電気的に候+涜する。この場
合、バリヤ層5としては、多結晶3i4自身の熱酸化膜
FIG. 3 shows another embodiment of the invention. In the embodiment described in FIGS. 1 and 2, the barrier layer 5 is a conductive layer, and the transparent gold maple 6 is electrically connected to the polycrystalline Si 4 at any part thereof. The embodiment shown in FIG.
In this case, a contact hole 8 is partially formed in the barrier layer 5, and the polycrystalline Si4
Then, the metal 7 and the metal 8 are electrically depleted. In this case, the barrier layer 5 is a thermal oxide film of the polycrystalline 3i4 itself.

窒化膜、ろるいはCVD法による5i02.PSG(P
hospho 5ilicate Qlass )、5
jsN4膜等を用いることができる。これらの絶縁膜は
siのLSIで広く用いられているもので、安定性。
Nitride film, 5i02. by CVD method. PSG(P
5 ilicate Qlass ), 5
jsN4 film or the like can be used. These insulating films are widely used in Si LSIs and are stable.

信頼性の上で申し分のないものであシ、す7ラクトリ金
属6との反応も極めて少なく安定である。
It is satisfactory in terms of reliability, and is stable with very little reaction with tri-metal 6.

この発明の実施例はり7ラクトリ金属6が直接多結晶8
i4に接しているので、約10001:’以上の長時間
の熱処理では反応して空洞が発生し、電気的な接続が破
壊される場合があるので、第4図に他の実施例を示すよ
うにTiN単層やTi/PLSi2二層等で代表される
接続バリヤ層9を接続孔部8に自己整合等で形成すれば
、1000c以上の熱処理にも耐えることができる。
Embodiment of this invention Beam 7 Lactrimetal 6 is directly polycrystalline 8
Since it is in contact with i4, long-term heat treatment over about 10001:' may react and create cavities, destroying the electrical connection. Therefore, another example is shown in Fig. 4. If a connection barrier layer 9 typified by a TiN single layer or a Ti/PLSi2 double layer is formed in the connection hole 8 by self-alignment, it can withstand heat treatment of 1000C or more.

第5図に本発明の他の実施例を示す。本例は、メモリセ
ルが規則正しくアレー状に配列されているダイナミック
メモリセルアレーの例であシ、厚いフィールド酸化膜の
ない活性領域1oに、ゲートを兼ねたワード線12と、
ソース・ドレイン接続孔11を介してソース・ドレイン
領域に接続されたピント線13がアレー状に形成される
。(本発明の説明には直接関与しないのでキャパシタ電
極たるプレートは図中に示さない。)特にこの例のよう
に、折シ返しビットa型ではワード線12はメモリセル
1つに対し2本分形成されており、一般にワード線12
は単一層で形成されることが多い。本発明では、M1図
に示しfc夾施例を用いることができ、かつ第3図と第
4図に示した実施例を用いることができる。この場合、
接続孔8はメモリセル個々に形成する必決はなく、第5
図に示したようにメモリセルアレーの特定の部分のみに
接続孔8を形成し、最下階の多結晶Si4と上層のリフ
ラフ) IJ輩属6を接続すればよい。第5図の説明で
は接続孔8はワード線12幅よシ小さいが、大きくして
もよい。そうすれば、特に接続孔8とワード線12のマ
スク合せに留意する必要がなく高集積に向いている。
FIG. 5 shows another embodiment of the invention. This example is an example of a dynamic memory cell array in which memory cells are regularly arranged in an array. In an active region 1o without a thick field oxide film, a word line 12 which also serves as a gate is provided.
Pinto lines 13 connected to the source/drain regions via the source/drain connection holes 11 are formed in an array. (The plate serving as the capacitor electrode is not shown in the figure because it is not directly related to the explanation of the present invention.) In particular, in the folded bit a type as in this example, the word line 12 is two for one memory cell. generally word line 12
is often formed in a single layer. In the present invention, the fc-containing embodiment shown in FIG. M1 can be used, and the embodiments shown in FIGS. 3 and 4 can be used. in this case,
It is not necessary to form the connection hole 8 in each memory cell, but in the fifth hole.
As shown in the figure, connection holes 8 are formed only in specific portions of the memory cell array, and the polycrystalline Si 4 on the lowest floor and the riffraff (IJ) layer 6 on the upper layer are connected. In the explanation of FIG. 5, the connection hole 8 is smaller than the width of the word line 12, but it may be made larger. In this case, there is no need to pay particular attention to the mask alignment between the connection hole 8 and the word line 12, and the device is suitable for high integration.

接続孔8の配列ピッチPは第6図に示すように形成する
。すなわちトランジスタ14のゲート部15に対して、
リフラクトリ金属6がら接続部の抵抗17を介して多結
晶si4の抵抗18に接続される。この抵抗18の末端
にトランジスタ14のゲート15が接続されておシ、ワ
ード線たるリフラクトリ金属6に印加する信号に対し許
容しうるだけの時間遅れを見込んでピッチPを定めれば
よい。
The arrangement pitch P of the connection holes 8 is formed as shown in FIG. That is, for the gate portion 15 of the transistor 14,
The refractory metal 6 is connected to a resistor 18 made of polycrystalline silicon 4 via a resistor 17 at a connection portion. The gate 15 of the transistor 14 is connected to the terminal of this resistor 18, and the pitch P may be determined by allowing for an allowable time delay with respect to the signal applied to the refractory metal 6, which is a word line.

この実施例はダイナミックメモリの例で示したが、スタ
チックメモリや、不揮発性メモリ、ゲートアレーなと細
くて長いリフラクトリ金属を必要とするすべてのLSI
に適用することができるのは明白である。
Although this embodiment was shown as an example of a dynamic memory, it can also be applied to static memory, non-volatile memory, gate arrays, and all other LSIs that require thin and long refractory metal.
It is obvious that it can be applied to

〔発明の効果〕〔Effect of the invention〕

本発明によnは実績のある信頼性の高い多結晶Siゲー
トと耐熱性が高くかつ低抵抗す7ラクトリ金属の両者の
長所を合せもつゲートが形成でき、特にこのゲートを細
く長く配線する場合に適する。
According to the present invention, it is possible to form a gate that combines the advantages of both the proven and reliable polycrystalline Si gate and the highly heat-resistant and low-resistance metal, especially when wiring this gate long and thin. suitable for

これによって大きなアレーをもつメモリや、ゲートアレ
ーを高速化することができる。
This makes it possible to speed up memories with large arrays and gate arrays.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明の実施例になる半導体装置の断
面図、第5図は平面図、第6図は模式図である。 1・・・Si基板、2・・・フィールド酸化膜、3・・
・ゲート酸化膜、4・・・多結晶5Ix5・・・バリヤ
層、6・・・す7ラクトリ金属、7・・・ソース・ドレ
イン領域、8・・・接続孔、9・・・接続バリヤ層、1
0・・・活性帆域、11・・・ソース・ドレイン接続孔
、12・・・ワード線、13・・・ビット線、14・・
・トランジスタ、15・・・ゲート部、16・・・リフ
ラクトリ金属抵抗、17・・・接第1図 第2図 第 4− 図 第 5 図
1 to 4 are sectional views of a semiconductor device according to an embodiment of the present invention, FIG. 5 is a plan view, and FIG. 6 is a schematic diagram. 1...Si substrate, 2...field oxide film, 3...
・Gate oxide film, 4... Polycrystalline 5Ix5... Barrier layer, 6... S7 lacquer metal, 7... Source/drain region, 8... Connection hole, 9... Connection barrier layer ,1
0...Active area, 11...Source/drain connection hole, 12...Word line, 13...Bit line, 14...
・Transistor, 15...Gate part, 16...Refractory metal resistor, 17...Connection Fig. 1 Fig. 2 Fig. 4- Fig. 5

Claims (1)

【特許請求の範囲】 1、多結晶Si上に形成したバリヤ、さらにバリヤ層上
に形成したり7ラフトリ金属層の三層からgかつ同一パ
ターンで形成されるゲート電極・配線を設けたことを特
徴とする半導体装置。 2、上記第1項記載の半導体装置において上記バリヤ層
は導電層であることを%徴とする半導体装置。 3、第1項記載の半導体装置において、上記バリヤ層は
絶縁膜であシ、かつ所定の部分で上記多結晶Siと上記
リフラクトリ金属が電気的に接続していることを特徴と
する半導体装置。 4、第3項記載の半導体装置において上記接続部の上記
多結晶Siと上記リフラフ)IJ金属間にバリヤ層を設
けたことを特徴とする半導体装置。
[Claims] 1. A barrier formed on polycrystalline Si, and gate electrodes/wirings formed on the barrier layer and three layers of a rough metal layer and in the same pattern. Characteristic semiconductor devices. 2. The semiconductor device according to item 1 above, wherein the barrier layer is a conductive layer. 3. The semiconductor device according to item 1, wherein the barrier layer is an insulating film, and the polycrystalline Si and the refractory metal are electrically connected at a predetermined portion. 4. The semiconductor device according to item 3, further comprising a barrier layer provided between the polycrystalline Si of the connection portion and the riffraff IJ metal.
JP58207425A 1983-11-07 1983-11-07 Semiconductor device Pending JPS60100464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58207425A JPS60100464A (en) 1983-11-07 1983-11-07 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58207425A JPS60100464A (en) 1983-11-07 1983-11-07 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS60100464A true JPS60100464A (en) 1985-06-04

Family

ID=16539540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58207425A Pending JPS60100464A (en) 1983-11-07 1983-11-07 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS60100464A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888297A (en) * 1982-09-20 1989-12-19 International Business Machines Corporation Process for making a contact structure including polysilicon and metal alloys
US5438023A (en) * 1994-03-11 1995-08-01 Ramtron International Corporation Passivation method and structure for a ferroelectric integrated circuit using hard ceramic materials or the like
US5523595A (en) * 1990-08-21 1996-06-04 Ramtron International Corporation Semiconductor device having a transistor, a ferroelectric capacitor and a hydrogen barrier film
US5902131A (en) * 1997-05-09 1999-05-11 Ramtron International Corporation Dual-level metalization method for integrated circuit ferroelectric devices
JP2007262766A (en) * 2006-03-29 2007-10-11 Shimizu Corp Recharge method and underground water recharge system used for the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888297A (en) * 1982-09-20 1989-12-19 International Business Machines Corporation Process for making a contact structure including polysilicon and metal alloys
US5523595A (en) * 1990-08-21 1996-06-04 Ramtron International Corporation Semiconductor device having a transistor, a ferroelectric capacitor and a hydrogen barrier film
US5438023A (en) * 1994-03-11 1995-08-01 Ramtron International Corporation Passivation method and structure for a ferroelectric integrated circuit using hard ceramic materials or the like
US5578867A (en) * 1994-03-11 1996-11-26 Ramtron International Corporation Passivation method and structure using hard ceramic materials or the like
US5902131A (en) * 1997-05-09 1999-05-11 Ramtron International Corporation Dual-level metalization method for integrated circuit ferroelectric devices
JP2007262766A (en) * 2006-03-29 2007-10-11 Shimizu Corp Recharge method and underground water recharge system used for the same

Similar Documents

Publication Publication Date Title
US5580814A (en) Method for making a ferroelectric memory cell with a ferroelectric capacitor overlying a memory transistor
US4755864A (en) Semiconductor read only memory device with selectively present mask layer
JPS60231357A (en) Semiconductor memory device
JPH0746702B2 (en) Semiconductor memory device
JPH11121705A (en) Ferrodielectric ram device and manufacture thereof
JPH0546984B2 (en)
US4797717A (en) Semiconductor memory device
US4163246A (en) Semiconductor integrated circuit device employing a polycrystalline silicon as a wiring layer
TW544856B (en) Structure for preventing salicide bridging and method thereof
KR980006266A (en) Ferroelectric memory device and manufacturing method thereof
JPS60100464A (en) Semiconductor device
JPS6348182B2 (en)
JPH08125137A (en) Semiconductor memory
JPH0232791B2 (en)
JPH08130263A (en) Semiconductor device
JP3048823B2 (en) Semiconductor integrated circuit device
JP3302989B2 (en) Semiconductor device
JPS5858766A (en) Insulating gate type field-effect semiconductor device and its manufacture
JP3356147B2 (en) Semiconductor integrated circuit device
JPS62291056A (en) Semiconductor device
JP2876716B2 (en) Semiconductor device
JP3013407B2 (en) Semiconductor memory device
JPS62293670A (en) Semiconductor memory device
JPS62205654A (en) Semiconductor memory
JP2876742B2 (en) Semiconductor device