JPS60100451A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60100451A
JPS60100451A JP20755683A JP20755683A JPS60100451A JP S60100451 A JPS60100451 A JP S60100451A JP 20755683 A JP20755683 A JP 20755683A JP 20755683 A JP20755683 A JP 20755683A JP S60100451 A JPS60100451 A JP S60100451A
Authority
JP
Japan
Prior art keywords
film
wiring
etching
insulating film
unnecessary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20755683A
Other languages
Japanese (ja)
Other versions
JPH0220141B2 (en
Inventor
Takayuki Matsui
孝行 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP20755683A priority Critical patent/JPS60100451A/en
Publication of JPS60100451A publication Critical patent/JPS60100451A/en
Publication of JPH0220141B2 publication Critical patent/JPH0220141B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the disconnection and shortcircuit of wirings by removing by dry etching and flattening the unnecessary first wiring layer on an organic film when forming a multilayer wiring structure, thereby obtaining the flat surface of an insulating film in good reproducibility. CONSTITUTION:A PSG film 32 is formed as an insulating film by a CVD method on a semiconductor substrate 31, and with a photoresist film 33 as a patterned organic film as a mask the film 32 is selectively etched. Then, an aluminum film 34 is formed as a wiring layer having substantially the same thickness as the film 32 is formed on the overall surface. Then, a photoresist film 35 is, for example, spin-coated on the overall surface in such a manner to be thick on a recess and thin on the other portion. Subsequently, the films 35, 34 are etched until the unnecessary film 34 is eliminated. The remaining photoresist film 33' and 35' are removed by O2 plasma etching, a PSG film 36 is then formed by a CVD method on the entire surface, thereby obtaining a flat surface state.

Description

【発明の詳細な説明】 (技術分野) この発明はリフトオフ法における有機絶縁股上の不要な
Al膜をドライエツチングにより除去するようにした半
導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a method for manufacturing a semiconductor device in which an unnecessary Al film on an organic insulating layer is removed by dry etching in a lift-off method.

(従来技術) 半導体装置の高集按化に伴い多層配線構造化することが
必要となってくる。多層配線とは半導体基板上に第1配
線を形成し、その上に絶縁膜を被着させた後、第2配線
を形成していくことであり、配線間の絶縁膜はできるだ
け平坦であることが望ましい。
(Prior Art) As the density of semiconductor devices increases, it becomes necessary to adopt a multilayer wiring structure. Multilayer wiring refers to forming a first wiring on a semiconductor substrate, depositing an insulating film on top of it, and then forming a second wiring, and the insulating film between the wirings must be as flat as possible. is desirable.

第1図は従来の半導体装置の製造方法で形成した多層配
線構造の断面図である。これは半導体基板1上に段差5
000人〜1oooo人の第1A7!配線2を形成し、
絶縁膜3として膜厚が第1AI配線2とほぼ同じ膜厚の
PSG膜を被着させ、その上全面に第2Aノ配線4を形
成したときを示す。
FIG. 1 is a cross-sectional view of a multilayer wiring structure formed by a conventional semiconductor device manufacturing method. This is a step 5 on the semiconductor substrate 1.
1st A7 of 000 to 1oooo people! Form wiring 2,
A PSG film having approximately the same thickness as the first AI wiring 2 is deposited as the insulating film 3, and a second A wiring 4 is formed on the entire surface thereof.

絶縁膜3は特に平坦化しなかった場合、第1AA配線2
のところでかなシ急使な段差(ときKは凹状のへこみ)
がみられる。そのためその上に形成するM2Aj’配線
4も絶縁膜3と同様に急使な段差とガる。この段差部分
5では第2AJ配線4が断線や短絡となるおそれがある
If the insulating film 3 is not particularly planarized, the first AA wiring 2
At that point, there is a courier step (when K is a concave indentation).
can be seen. Therefore, the M2Aj' wiring 4 formed thereon also has a significant step difference, similar to the insulating film 3. In this stepped portion 5, there is a risk that the second AJ wiring 4 may become disconnected or short-circuited.

この問題を解決する方法として、リフトオフ法という平
坦化方法がある。第2図はり7トオフ法の工程図を示す
。まず第2図(a) K示すように半導体基板11上に
第1絶縁膜12として、PSG膜を約5oooA〜to
ooo Aを形成し、その上にパターニングされた感光
性有機物被膜13をマスクとして前記第1絶縁膜12を
選択エツチングしたものである。
As a method to solve this problem, there is a planarization method called lift-off method. FIG. 2 shows a process diagram of the beam 7-toff method. First of all, as shown in FIG.
ooo A is formed, and the first insulating film 12 is selectively etched using the photosensitive organic film 13 patterned thereon as a mask.

次に第2図(b)に示すように、全面Vc第1Al配線
14を形成させた後、感光性有機物被膜13を除し、感
光性有機物被膜上3上の第1AJ配線14を取シ除くこ
とによって第2図(c)のように、平坦な表面が得られ
る。
Next, as shown in FIG. 2(b), after forming the Vc first Al wiring 14 on the entire surface, the photosensitive organic film 13 is removed, and the first AJ wiring 14 on the photosensitive organic film 3 is removed. As a result, a flat surface can be obtained as shown in FIG. 2(c).

したがって、次に形成する第1絶縁膜15は第2図(d
)のように段差のない平坦な膜となる。
Therefore, the first insulating film 15 to be formed next is as shown in FIG.
), resulting in a flat film with no steps.

しかし、この方法は前記感光性有機物被膜13を除去す
ることによって、感光性有機物被膜上の第1AA配線1
4を取9除くため、感光性有機物被膜13の除去液中に
余分な第1Aj’配線14の材料が残る。
However, in this method, by removing the photosensitive organic coating 13, the first AA wiring 1 on the photosensitive organic coating is removed.
In order to remove 4 and 9, excess material of the first Aj' wiring 14 remains in the removal solution for the photosensitive organic film 13.

このため、感光性有機物被膜13のエツチング液が汚染
され、大量処理には不適描であるという欠点がある。
For this reason, the etching solution for the photosensitive organic film 13 is contaminated, resulting in a drawback that the etching is not suitable for mass processing.

また他の従来の平坦化方法として、第3図に示すような
エッチバッグ法による平坦化方法がある。
Further, as another conventional planarization method, there is a planarization method using an etch bag method as shown in FIG.

第3図(a)は半導体基板21上に第1A7配線22を
形成し、全面に第1絶縁膜23としてPSG膜を形成し
た後、凸状部には薄く他の部分には厚く、有機物波[2
4をスピン塗布したものである。
FIG. 3(a) shows that after forming the first A7 wiring 22 on the semiconductor substrate 21 and forming the PSG film as the first insulating film 23 on the entire surface, the organic material is [2
4 was spin-coated.

次に有機物被膜24と、psciとがほぼ同じエツチン
グ速度となる条件でドライエツチングをし、第3図(b
)に示すようにI) S G膜が全面に現われるまで行
い、有機物被膜24のΔIZ jjiな表面形状なPS
GM23’に転写する方法がある。
Next, dry etching was performed under conditions such that the organic film 24 and the psci had approximately the same etching rate, and as shown in FIG.
) as shown in I) until the S G film appears on the entire surface, and the surface shape of the organic film 24 is
There is a method of transcribing to GM23'.

この方法はエツチングをP S G膜の途中で止めるた
め、終点検出が難かしく、またウェハー内のエツチング
速にのばらつきによって絶縁膜の膜厚が変わったシする
欠点がある。
This method has the disadvantage that etching is stopped midway through the PSG film, making it difficult to detect the end point, and that the thickness of the insulating film changes due to variations in the etching speed within the wafer.

さらに、PSGと有機物被膜24のエツチング速度比の
変動や、有機物被膜24の表面形状が下地のパターンに
よって変わることなどによって安定した平坦化を得るこ
とは難かしい。
Furthermore, it is difficult to obtain stable planarization due to fluctuations in the etching rate ratio between PSG and the organic film 24, and the surface shape of the organic film 24 depending on the underlying pattern.

(発明の目的) この発明は上記従来の欠点を除去するためになされたも
ので、絶縁膜の平坦な表面を再現性よく得ることができ
、配線の断線や短絡を防止できるとともに、LS’Iの
高集積化、高速度化、高信頼性を期することのできる半
導体装置の製造方法を提供することを目的とする。
(Objective of the Invention) The present invention was made to eliminate the above-mentioned conventional drawbacks, and it is possible to obtain a flat surface of an insulating film with good reproducibility, prevent wiring disconnections and short circuits, and prevent LS'I An object of the present invention is to provide a method for manufacturing a semiconductor device that can achieve high integration, high speed, and high reliability.

(発明の概要) この発明の要点は、多層配線構造を形成する際に有機物
被膜上における不要な第1配線層をドライエツチングで
除去して平坦化するようにしたものである。
(Summary of the Invention) The gist of the present invention is that when forming a multilayer wiring structure, an unnecessary first wiring layer on an organic film is removed by dry etching and flattened.

(実施例) 以下、この発明の半導体装置の製造方法の実施例につい
て図面に基づき説明する。
(Example) Hereinafter, an example of the method for manufacturing a semiconductor device of the present invention will be described based on the drawings.

第4図(a)〜第4図(f)はこの発明の第1の実施例
を工程順に示した断面図である。まず、第4図(a)に
示すように半導体基板31上にCV D (Chemi
calVapor Deposition )法により
絶縁膜として、PSG膜32を約1M形成し、バターニ
ングされた有機物被膜としての7オトレソスト膜33を
マスクにして、前記PSG#′32を選択的にエツチン
グする。
FIGS. 4(a) to 4(f) are cross-sectional views showing the first embodiment of the present invention in the order of steps. First, as shown in FIG. 4(a), CVD (Chemical
A PSG film 32 of approximately 1M is formed as an insulating film by the calVapor Deposition method, and the PSG #'32 is selectively etched using the patterned organic film 33 as a mask.

次に、第4図(b)に示すように、フォトレノスト膜3
3を残したまま、全面に前記PSG膜32とほぼ同じ膜
厚の配線層としてAI膜34を形成する。
Next, as shown in FIG. 4(b), the photorenost film 3
An AI film 34 is formed as a wiring layer with approximately the same thickness as the PSG film 32 on the entire surface, leaving the PSG film 32.

次に、第4図(c)に示すように全面に有機物被膜、た
とえばフォトレノスト膜35をスピン塗布し、凹部には
厚く他の部分は薄くなるように形成する。
Next, as shown in FIG. 4(c), an organic film, such as a photorenost film 35, is spin-coated over the entire surface so that it is thicker in the recesses and thinner in other parts.

次に第4図(d)に示すように、前記7オトレソスト膜
33上の不要なAJ膜膜種4なくなるまで、前記フォト
レノスト膜35とAJ膜膜種4エツチングを行う。この
エツチングはドライエツチングで行なう。
Next, as shown in FIG. 4(d), the photorenost film 35 and the AJ film type 4 are etched until unnecessary AJ film types 4 on the photorenost film 33 are removed. This etching is performed by dry etching.

フォトレノスト35とAJ膜膜種4のエッチ速度の比は
1:l〜4が過当である。エツチング方法の1例をあげ
ると装置は平行平板型を用い、エツチングガスはBG*
3: CF4 + 5チQ2=4 : 1の混合ガスで
圧力約20 paの条件で行うと、エッチ速度の比がフ
ォトレノスト: AA!膜;約1:3とな夛この実施例
に適している。
An appropriate etch rate ratio between the photorenost 35 and the AJ film type 4 is 1:1 to 4. To give an example of an etching method, a parallel plate type device is used, and the etching gas is BG*.
3: CF4 + 5ch Q2 = 4: When carried out at a pressure of about 20 pa with a mixed gas of 1, the etch rate ratio is photorenost: AA! A membrane ratio of approximately 1:3 is suitable for this embodiment.

このエツチングの終点は、不要なAll膜種4力なくな
ったときなので、波長396−のAlの発光強度の減少
を検出すれば、終点検出は可能である。
The end point of this etching is when unnecessary Al film species are no longer present, so the end point can be detected by detecting a decrease in the Al emission intensity at a wavelength of 396-.

不要なAJ膜34を取シ除いた後の残ったフォトレジス
ト膜33′及び35′は02プラズマエツチによ)取シ
除き、第4図(e)のようにし、次にCVD法によるP
SG膜36を全面に形成することによって第4図(f)
に示すような平坦な表面形状が得られる。
After removing the unnecessary AJ film 34, the remaining photoresist films 33' and 35' are removed by 02 plasma etching as shown in FIG. 4(e), and then P is etched by CVD.
By forming the SG film 36 on the entire surface, as shown in FIG.
A flat surface shape as shown in is obtained.

以上に説明したように、第1の実施例では従来のリフト
オフ法とはちがって、不要なAl!膜をト9ライエツチ
ングによって固形物として残さ方いため、溶液を汚染す
るというような問題はなく、大量処理が可能であるとい
う利点がある。
As explained above, in the first embodiment, unlike the conventional lift-off method, unnecessary Al! Since the membrane is left as a solid by tri-etching, there is no problem of contaminating the solution, and there is an advantage that large-scale processing is possible.

また、不要なAI膜を除去するだめのエツチングは終点
検出が可能であるばかりでなく、取り除くAI膜の下に
は不要なフォトレジスト膜33′が介在しているため、
多少のオーバエツチングを行なっても平坦度にはなんら
変化がなく、再現性よく平坦化される。
In addition, it is not only possible to detect the end point of etching to remove unnecessary AI films, but also because there is an unnecessary photoresist film 33' under the removed AI film.
Even if some overetching is performed, there is no change in flatness, and flattening is achieved with good reproducibility.

さらに上記実施例によれば、平坦な絶縁膜の表面上に塗
布したホトレジスト膜が凹凸のない均一な膜厚として得
られるので、これを同鞘度なマスクパターンを得るため
の技術的手段として応用することが可能である。
Furthermore, according to the above embodiment, the photoresist film coated on the surface of the flat insulating film can be obtained as a uniform film thickness with no unevenness, so this can be applied as a technical means to obtain a mask pattern with uniform thickness. It is possible to do so.

第1の実施例は、第4図(b)のAI!膜34の形成に
おいてホトレジスト膜33によって完全に分力1#、で
きた場合について説明したが、ホトレジスト膜33の形
状やAII膜34の形成方法によシ、レジスト膜33の
側壁にAI膜が付着してしまう場合がある。。
The first example is the AI! shown in FIG. 4(b). In the case where the film 34 is formed completely by the photoresist film 33 with a component force of 1#, the AI film may adhere to the side wall of the resist film 33 depending on the shape of the photoresist film 33 or the method of forming the AII film 34. You may end up doing this. .

この場合、大部分の不要なAl膜34′は、ドライエツ
チングによって取シ除くことができるが、若干AJ配線
の路肩部分に残ることがある。このAIは第4図(e)
の工程のききに等方性エッチ(ウェットエッチ)を少し
行なうことに取シ除くことができる。
In this case, most of the unnecessary Al film 34' can be removed by dry etching, but some may remain on the shoulder of the AJ wiring. This AI is shown in Figure 4(e)
It can be removed by performing a little isotropic etch (wet etch) during the process.

このとき、第5図に示すように、半導体基板41上のA
J膜43とPSG膜4膜上2間に溝の部分46が生じる
。この講を埋めるには、第1の実施例における絶縁膜3
6をCVD法によるPSG膜のみの代わりに−にスピン
塗布によって形成したシリカフィルムによシ溝を詰め、
次にCVD法によるPSG#44を形成すると云うふう
に2回に分けて絶縁膜45を形成することにより、第5
図に示すように完全に平坦な表面を得ることができる。
At this time, as shown in FIG.
A groove portion 46 is formed between the J film 43 and the PSG film 4. To fill this space, the insulating film 3 in the first embodiment
Instead of using only the PSG film formed by the CVD method in 6, fill the grooves with a silica film formed by spin coating.
Next, by forming the insulating film 45 in two steps, such as forming PSG #44 by the CVD method, the fifth
A perfectly flat surface can be obtained as shown in the figure.

この方法によれば、ホトレジスト膜33の形状や、Aノ
膜34の配線部分と不要部分との分離状態にほとんど影
響なく、平坦性にすぐれた表面形状を得られるという利
点がある。
This method has the advantage that it has almost no effect on the shape of the photoresist film 33 or the state of separation between the wiring portion and the unnecessary portion of the A-no film 34, and that a surface shape with excellent flatness can be obtained.

(発明の効果) 以上のように、この発明の半導体装置の製造方法によれ
ば、多層配線構造の製造に際し、ノくターニングされた
有機物被膜によフ半導体基板上の絶縁膜をパターニング
して半導体基板上にこの絶縁膜と同じ厚さの第1層配線
を埋め込むとともに、有機物被膜上に第1層配線層を形
成し、この有機物被膜上の不要な第1層配線がなくなる
までドライエツチングによりこの有機物被膜およびその
上の第1溝配線を除去するようにしたので、この不要な
第1層配線は固形物として残らないため処理が容易であ
る。
(Effects of the Invention) As described above, according to the method of manufacturing a semiconductor device of the present invention, when manufacturing a multilayer wiring structure, an insulating film on a semiconductor substrate is patterned using a finely turned organic film, and a semiconductor A first layer wiring layer with the same thickness as this insulating film is embedded on the substrate, and a first layer wiring layer is formed on the organic film, and this layer is dry-etched until unnecessary first layer wiring on the organic film is removed. Since the organic film and the first groove wiring thereon are removed, this unnecessary first layer wiring does not remain as a solid substance, making it easy to process.

またドライエツチングは、取シ除く第1層配線の下地に
有機物被膜が介在しているため、オー・々エッチに余裕
があル、特に技術的に困難なエツチングを必要とせずに
絶縁膜の平坦な表面を再現性よく得ることができる。
In addition, with dry etching, since there is an organic film underlying the first layer wiring to be removed, there is plenty of room for over-etching, and it is possible to flatten the insulating film without the need for particularly technically difficult etching. surface can be obtained with good reproducibility.

これにともない第2層配線の断線や、第1層配線と第2
層配線の短絡の問題が解消できるばかりでなく、あわせ
て半導体装置の多層配線形成方法として、また、高精度
なマスクパターンを初る方法として、広い利用価値を得
ることができると云う効果を発する。
As a result, the second layer wiring may be disconnected, and the first layer wiring may
This method not only solves the problem of short circuits in layer wiring, but also has a wide range of utility as a method for forming multilayer wiring in semiconductor devices and as a method for creating highly accurate mask patterns. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体装置の製造方法による多層配線構
造の断面図、第2図(aン〜第2図(d)は従来の半導
体装置の製造方法の一例の工程説明図、第3図(a)お
よび第3図(b)はそれぞれ従来の半導体装置の製造方
法の別の例の工程説明図、第4図(a)〜第4図(f)
はこの発明の半導体装置の製造方法の一実施例の工程説
明図、第5図はこの発明の半導体装置の製造方法の他の
実施例を説明するための断面図である。 31.41・・・半導体基板、32,42,44゜45
・・・絶縁膜、33 、33’、 35’・・・フォト
レノスト膜、34.43・・・AI膜。 特許出願人 沖電気工業株式会社 手続補正書 昭和59年6月−7日 特許庁長官若杉和夫 殿 1、事件の表示 昭和58年 特 許 願第 2075562、発明の名
称 半導体装置の製造方法 3、補正をする者 事件との関係 特 許 出願人 (029)沖電気工業株式会社 4、代理人 5、補正命令の日付 昭和 年 月 日(自発)6、補
正の対象 BAa沓の発明の詳細な説明の欄 7、 補正の内容 1)明細書3頁12行「′ft除」を「を除去」と訂正
する。 2)同6頁4行rMJを「μ」と訂正する。 3)同10頁4行「第1溝」を「第1層」と訂正する。
FIG. 1 is a cross-sectional view of a multilayer wiring structure according to a conventional method for manufacturing a semiconductor device, FIG. 2 (a) to FIG. (a) and FIG. 3(b) are process explanatory diagrams of another example of the conventional method for manufacturing a semiconductor device, and FIG. 4(a) to FIG. 4(f) are respectively
5 is a process explanatory diagram of one embodiment of the method for manufacturing a semiconductor device according to the present invention, and FIG. 5 is a sectional view for explaining another embodiment of the method for manufacturing a semiconductor device according to the present invention. 31.41...Semiconductor substrate, 32,42,44°45
... Insulating film, 33, 33', 35'... Photorenost film, 34.43... AI film. Patent Applicant Oki Electric Industry Co., Ltd. Procedural Amendment June-7, 1980 Kazuo Wakasugi, Commissioner of the Patent Office 1, Indication of Case 1981 Patent Application No. 2075562, Name of Invention Method for Manufacturing Semiconductor Device 3, Amendment Relationship with the case of the person who made the patent Applicant (029) Oki Electric Industry Co., Ltd. 4, Agent 5, Date of amendment order 1925, Month, Day (self-motivated) 6, Detailed description of the invention of BAa shoes subject to amendment Column 7, Contents of amendment 1) ``Exclude 'ft'' on page 3, line 12 of the specification is corrected to ``remove.'' 2) On page 6, line 4, rMJ is corrected to "μ". 3) On page 10, line 4, "1st groove" is corrected to "1st layer."

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に形成した第1絶縁膜上にバターニングさ
れた第1の感光性有機物被膜を塗布してこの第1の感光
性有機物被膜をマスクとして第1絶縁膜を選択的にエツ
チングする工程と、このエツチング後に第1の配線層を
全面に形成する工程と、この第1の配線層の形成後凹部
には厚く他の部分は薄くなるように第2の有機物被膜を
形成する工程と、前記第2の有機物被膜および前記第1
の感光性有機物被膜上の前記第1の配線膜をドライエツ
チングにより取シ除く工程と、前記第1のJw元注性有
機物被膜よび前記第2の有機物被膜を取り除いた後、全
面に第2の絶縁膜を形成する工程とを有することを特徴
とする半導体装置の製造方法。
a step of applying a patterned first photosensitive organic film on the first insulating film formed on the semiconductor substrate and selectively etching the first insulating film using the first photosensitive organic film as a mask; , a step of forming a first wiring layer on the entire surface after this etching, a step of forming a second organic film so as to be thicker in the recessed part and thinner in other parts after the formation of the first wiring layer; a second organic coating and the first organic coating;
After removing the first wiring film on the photosensitive organic film by dry etching, and removing the first Jw-containing organic film and the second organic film, a second wiring film is applied to the entire surface. 1. A method for manufacturing a semiconductor device, comprising the step of forming an insulating film.
JP20755683A 1983-11-07 1983-11-07 Manufacture of semiconductor device Granted JPS60100451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20755683A JPS60100451A (en) 1983-11-07 1983-11-07 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20755683A JPS60100451A (en) 1983-11-07 1983-11-07 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS60100451A true JPS60100451A (en) 1985-06-04
JPH0220141B2 JPH0220141B2 (en) 1990-05-08

Family

ID=16541688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20755683A Granted JPS60100451A (en) 1983-11-07 1983-11-07 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60100451A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267825A (en) * 1985-09-20 1987-03-27 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Flattening method for surface of semiconductor device
JPH029120A (en) * 1988-06-28 1990-01-12 Tokuda Seisakusho Ltd Vacuum processor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267825A (en) * 1985-09-20 1987-03-27 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Flattening method for surface of semiconductor device
JPH029120A (en) * 1988-06-28 1990-01-12 Tokuda Seisakusho Ltd Vacuum processor

Also Published As

Publication number Publication date
JPH0220141B2 (en) 1990-05-08

Similar Documents

Publication Publication Date Title
JPS63304644A (en) Method of forming via-hole
JPS62219923A (en) Manufacture of semiconductor device
JPH0456130A (en) Manufacture of semiconductor device
JPS60100451A (en) Manufacture of semiconductor device
JPS607737A (en) Manufacture of semiconductor device
JP2650313B2 (en) Dry etching method
JPH06275577A (en) Formation of contact hole of semiconductor device
JPH06267943A (en) Manufacture of semiconductor device
JPH0265256A (en) Manufacture of semiconductor device
JPS5893328A (en) Method of flattening insulating layer
JPH04171815A (en) Formation of contact hole for semiconductor device
JPS63161645A (en) Manufacture of semiconductor device
JPS5816545A (en) Manufacture of semiconductor device
JPS61222235A (en) Manufacture of semiconductor device
JP2872298B2 (en) Method for manufacturing semiconductor device
JPS5893330A (en) Manufacture of semiconductor device
JPS59171124A (en) Method for burying photoresist film
JPH04299846A (en) Manufacture of semiconductor device
JPS61228656A (en) Forming method for interlayer insulating film
JPS62263656A (en) Semiconductor device
JPH0555182A (en) Surface flattening method
JPH09246376A (en) Semiconductor integrated circuit device and manufacture thereof
JPS621230A (en) Forming method for pattern
JPH022619A (en) Manufacture of semiconductor device
JPH01205523A (en) Formation of electrode