JPS60100369A - Production method of zinc alloy powder for alkaline cell - Google Patents

Production method of zinc alloy powder for alkaline cell

Info

Publication number
JPS60100369A
JPS60100369A JP58206276A JP20627683A JPS60100369A JP S60100369 A JPS60100369 A JP S60100369A JP 58206276 A JP58206276 A JP 58206276A JP 20627683 A JP20627683 A JP 20627683A JP S60100369 A JPS60100369 A JP S60100369A
Authority
JP
Japan
Prior art keywords
alloy powder
zinc alloy
group
zinc
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58206276A
Other languages
Japanese (ja)
Inventor
Akira Hayashi
彰 林
Kazumasa Yoshida
和正 吉田
Kojiro Miyasaka
宮坂 幸次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP58206276A priority Critical patent/JPS60100369A/en
Publication of JPS60100369A publication Critical patent/JPS60100369A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To obtain zinc alloy powder with little oxide generation on the particle surface by mixing soluble mercury salt, a soluble salt aqueous solution of a specific tertiary metal, and zinc alloy powder and surface-treating the mixture, removing a mother liquid and washing it, then quickly dehydrating and drying it by means of hydrocarbon halide. CONSTITUTION:A soluble salt aqueous solution of soluble mercury salt or an element selected among I b, IIb, IIIb, IVb, and Vb groups and zinc alloy powder are stirred and mixed, and the mixture is surface-treated and amalgamated. Next, a mother liquid is removed, then it is washed and the washing liquid is removed. The wet zinc alloy powder thus obtained is fed to a dehydrating tank, and it is immersed in a hydrocarbon halide liquid containing a small quantity of a surface active agent or low-quality alcohol such as trichloro trifluoroetane to remove the moisture. Next, it is exposed in the vapor of hydrocarbon halide and is quickly dehydrated and dried. According to such a method, zinc alloy powder for an alkaline cell with an amalgamation factor of 0-3wt% can be produced in a short time.

Description

【発明の詳細な説明】 との発明は酸化銀電池、酸化水銀電池、アルカリマンガ
ン電池、空気亜鉛電池等各種アルカリ亜鉛系電池の負極
材料である亜鉛合金粉末の製造方法の改良に係るもので
あって、亜鉛合金粒子表面への酸化物の生成が少なく、
性能の秀れた負極材料を提供するものである。
[Detailed Description of the Invention] The invention relates to an improvement in a method for producing zinc alloy powder, which is a negative electrode material for various alkaline zinc batteries such as silver oxide batteries, mercury oxide batteries, alkaline manganese batteries, and zinc-air batteries. As a result, less oxides are formed on the surface of zinc alloy particles.
This provides a negative electrode material with excellent performance.

一般にアルカリ電池用負極材料でちる亜鉛または亜鉛合
金の粉末は測々な方法でつくることができる。即ぢ′1
1L解法によやM造した樹枝状(Dendrite)徒
鉛を破砕して得た粉末や、特殊加工による球状粒からな
る粉末等があるが、最も普辺的に用いられているものけ
アトマイズ法によシ製造した不規則形状の粒子群よりな
る噴霧亜鉛粉であって粒径(短径)が61〜350μm
8度のものでちる。このような亜鉛粉末はアルカリ電解
液中での水素ガス発生速度が大きく、また電解液量が極
めて限定されている電池内で放電された場合の化学分極
も大きいから、こノLを氷化(Amalgamatio
n ) l、て用いるのが普通であった。その場合の氷
化率としては氷化亜鉛粉末バルクの重量比として5乃至
15重量%のものが一般に使用されていた。
Zinc or zinc alloy powder, which is generally used as a negative electrode material for alkaline batteries, can be produced by a variety of methods. Sokuji'1
The 1L solution method includes powder obtained by crushing dendritic lead, and powder made from specially processed spherical particles, but the most commonly used method is the Monoke atomization method. Sprayed zinc powder consisting of a group of irregularly shaped particles produced by oxidation, with a particle diameter (minor diameter) of 61 to 350 μm
Chill with 8 degrees. This kind of zinc powder has a high hydrogen gas generation rate in an alkaline electrolyte, and also has a high chemical polarization when discharged in a battery where the amount of electrolyte is extremely limited. Amalgamatio
It was common to use ``n''. In this case, a freezing rate of 5 to 15% by weight of the bulk frozen zinc powder was generally used.

周知のように水銀は公害規制物質であり、亜鉛負極市の
水銀含有承を逓減するため亜鉛合金組成や、亜鉛粒子の
表面処理や、アルカリ電解液中への腐蝕抑制剤(Inh
ibitor)添加等の研究が従来各国で行われてきた
。現在のところ未だ実用化に到っていないが、研究的に
は成る程度の水準に達しつつらシ遠からざる時期にその
実用化が期待されている。
As is well known, mercury is a pollution control substance, and in order to reduce the mercury content in zinc negative electrodes, changes can be made to the zinc alloy composition, the surface treatment of zinc particles, and the addition of corrosion inhibitors (Inh) to the alkaline electrolyte.
Research on the addition of ibitor has been carried out in various countries. At present, it has not yet been put into practical use, but it is expected that it will be put into practical use in the not-too-distant future, as research has reached a certain level.

研究されている代表的な方法の−っは、亜鉛に添加して
その水素過電圧を上昇せしめ、且つ分極特性を低下する
ことのない第三元素との合金化であシ、このような第三
物質として提案されている元素の殆んどは第1b族、第
nb族、第mb族、第1Vb族、第vb族に包含される
ものである。このような第三元素も含む亜鉛合金粉末は
そのま壕、または二次的な処理例えば可溶性水銀塩を含
む水溶液中で低い水化率に水化して用いる。
A typical method being researched is alloying with a third element that is added to zinc to increase its hydrogen overvoltage without deteriorating its polarization properties. Most of the elements proposed as substances are included in Group 1B, Group NB, Group MB, Group 1Vb, and Group VB. Such a zinc alloy powder containing a third element is used as it is, or after a secondary treatment, for example, it is hydrated to a low hydration rate in an aqueous solution containing a soluble mercury salt.

他の一つけ、亜鉛粒子の表面に析出乃至吸着させたとき
、その水素過電圧を上昇せしめ、目、っ分極特性を低下
させることのない第三元素の可溶性塩を含む水溶液中に
亜鉛丑たは亜鉛合金の粉末を浸漬して粒子表面に第三元
素を析出乃至吸着させることによシ表面処理を行なう方
法である。この場合水溶液中に可溶性水銀塩をも含ませ
ておき、粒子表面に水銀と第三元素とを共析させること
が多い。このような目的で提案されている若干(D元素
’llb族、第11b族、第nib族、第■b族、第v
b族に属するものが主である。
Another point is that when zinc is deposited or adsorbed on the surface of zinc particles, it increases its hydrogen overvoltage and does not reduce the polarization characteristics. This is a method of surface treatment by immersing zinc alloy powder to precipitate or adsorb a third element onto the particle surface. In this case, a soluble mercury salt is also included in the aqueous solution, and mercury and a third element are often co-deposited on the particle surface. Some proposed for this purpose (D elements 'llb group, group 11b, group nib, group ■b, group v
The main ones are those belonging to group B.

上述の如くして得られる、従来一般的に用いられてきた
水化唾鉛(氷化率5〜15i量%)K比して水化率の著
しく低い例えば水化率3重量%以下の水化唾鉛粉末(以
下低水化亜鉛と略称す)や、水銀を全く印゛まない亜鉛
合金粉末(以下無氷化亜鉛と略称す)は何れもその製造
過程において水溶液中で汞化処理その他の表面処理、即
ち湿式処理が行われ−Cおり、処理を終了し水洗を行な
ったのち最後に得られた湿潤唾鉛合金粉末の乾燥を行な
うのであるが、この乾燥を従来の水化亜鉛粉末製造にお
いて行われてきた慣用の方法では常圧または減圧丁で加
熱乾燥するものであった。
Water obtained as described above and having a hydration rate significantly lower than that of conventionally commonly used salivary lead hydrate (iceation rate 5 to 15i% by weight), for example, a hydration rate of 3% by weight or less. Both hydrated lead powder (hereinafter referred to as low-hydration zinc) and zinc alloy powder that does not contain any mercury (hereinafter referred to as de-icing zinc) are subjected to hydration treatment or other treatment in an aqueous solution during the manufacturing process. Surface treatment, that is, wet treatment, is carried out, and after finishing the treatment and washing with water, the wet salivary lead alloy powder obtained is finally dried. The conventional manufacturing method has been to heat and dry under normal pressure or under reduced pressure.

然しこの従来方法によれば乾燥に長時間を要するのみな
らず、亜鉛合金粒子表面IC酸化物(広義の酸化物であ
って水酸化物等も含む)を生成し易く、また酸化物生成
量が操作ごとにバッノいて一定し難い欠陥を有していた
。これは亜鉛合金粒子表面が相当時間水で湿潤された状
態で乾燥されるからである。このことは後述するように
、仁れを用いて製造した電池の特性に好ましからざる影
響を与えるのである。その他乾燥工程で若干の水銀蒸気
を発生し、そのための対策を必要とする難点もらった。
However, this conventional method not only takes a long time to dry, but also tends to generate IC oxides (oxides in a broad sense, including hydroxides, etc.) on the surface of zinc alloy particles, and the amount of oxides produced is low. It had defects that varied with each operation and were difficult to stabilize. This is because the surface of the zinc alloy particles is dried while being wet with water for a considerable period of time. As will be described later, this has an undesirable effect on the characteristics of batteries manufactured using the keratin. Another drawback was that a small amount of mercury vapor was generated during the drying process, which required countermeasures.

この発明の主なる目的は低汞化もしくは無氷化の亜鉛合
金粉末製造方法の改良によって、亜鉛合金粒子表面の酸
化物量を減少せしめることによジアルカリ電池用として
%性の丼れ/こ負極材料を提供するKらる。
The main purpose of this invention is to reduce the amount of oxides on the surface of zinc alloy particles by improving the production method of zinc alloy powder with low hydration or no ice. K Ruru provides.

即ち本発明の方法は、亜鉛に添加してアルカリ電解液中
で防蝕効果を有し、且つ分極特性に対する阻害作用のな
い第三元素を添加した亜鉛合金粉末と、可溶性水銀塩お
よび/または同様効果のある第三元素の可溶性塩を含む
水溶液とを攪拌混合して表面処理を行なったのち、母液
を除去し、純水で洗滌し、洗滌液を除去して得た湿潤亜
鉛合金粉末を、少量の界面活性剤若しくは低級アルコー
ルを含むハロゲン化炭化水水素液および/または該有機
溶媒蒸気で処理して、急速脱水乾燥させる方法に係るも
ので、低温度で短時間内に急速乾燥することができるの
で得られた亜鉛合金粒子表面の酸化物含有率が少なく、
且つそのバラツキも小さい。従ってアルカリ電池に用い
たとき、有効活物質量の減少や放電時における拡散阻害
に起因する放電利用率低下を抑制することができる。ま
た乾燥所要時間の短縮、水銀蒸気発生のないこと等生産
性も向上される。
That is, the method of the present invention uses a zinc alloy powder to which a third element is added which has a corrosion-preventing effect in an alkaline electrolyte and does not have an inhibiting effect on polarization properties, and a soluble mercury salt and/or a similar effect. After performing surface treatment by stirring and mixing with an aqueous solution containing a soluble salt of a certain third element, the mother liquor was removed, and the wet zinc alloy powder obtained by washing with pure water and removing the washing solution was mixed with a small amount of wet zinc alloy powder. This method involves rapid dehydration and drying by treating with a halogenated hydrocarbon liquid containing a surfactant or a lower alcohol and/or the organic solvent vapor, and allows rapid drying at low temperatures within a short time. Therefore, the oxide content on the surface of the zinc alloy particles obtained is low,
Moreover, the variation is also small. Therefore, when used in an alkaline battery, it is possible to suppress a decrease in the discharge utilization rate due to a decrease in the amount of effective active material or diffusion inhibition during discharge. Productivity is also improved, such as by shortening the drying time and eliminating the generation of mercury vapor.

以下丈施例を用いて本発明の詳細な説明する。The present invention will be described in detail below using length examples.

実施例1 鉛、ガリウム、インジウムの各少量を含む亜鉛合金をア
トマイズしてイ(Iた粒径(短径)100乃至300μ
!11の噴霧亜鉛合金粉末100/11.gを、塩化第
二水銀5.76准層チ、酢酸(1,90重量%を含む水
溶液31kgを充した反応槽内へ投入し、60分間激し
く攪拌して反応させ水化を完結させる。次にザイフオン
を用いて母液を可及的除去してから、純水を注入し攪拌
洗滌を行なったのち洗滌液を除去する。
Example 1 A zinc alloy containing small amounts of each of lead, gallium, and indium was atomized to obtain particles with a particle size (minor diameter) of 100 to 300μ.
! 11 atomized zinc alloy powder 100/11. g of mercuric chloride was put into a reaction tank filled with 31 kg of an aqueous solution containing 5.76% of mercuric chloride and acetic acid (1.90% by weight), and stirred vigorously for 60 minutes to complete the reaction.Next After removing as much of the mother liquor as possible using a Zyfon, pure water is injected and washing is performed with stirring, followed by removing the washing liquid.

次に珂び1%酢酸水溶液を注入し攪拌洗滌を行なったの
ち洗滌水を除去する。次に純水による洗滌と洗液の除去
を5回反覆し、最後に洗滌液に酢酸イオンが定性的に認
められないことを確かめる。
Next, a 1% acetic acid aqueous solution was injected to perform stirring and washing, and then the washing water was removed. Next, washing with pure water and removing the washing liquid were repeated five times, and finally it was confirmed that no acetate ion was qualitatively observed in the washing liquid.

得られた湿潤低水化亜鉛合金粉末を直ちに脱水槽へ送っ
て急速乾燥を行なう。即ち先ず湿d↓′1低永化亜鉛合
金粉末をナイ四ン繊維製容鼎に入れてエタノール6重量
%を含むトリクロロトリフルオロエタン中で超音波震動
を与えなから40’Oで4分間浸漬し水分除去を行なう
。除去された水は比重差によって有機溶媒上へ浮上する
からメーバー・フローさせて浸漬液外へ取出す。脱水さ
れた低水化亜鉛合金粉末は、次にトリクロロトリフルオ
ロエタン・エタノール共沸組成蒸気中に2分間曝露した
のち、冷却室をへてゆっく勺と空気中へ取出しポリプロ
ピレンで内装した容器中に密栓保管する。
The obtained wet low-hydration zinc alloy powder is immediately sent to a dehydration tank for rapid drying. That is, first, a wet d↓'1 low-permanence zinc alloy powder was placed in a container made of Naishin fiber and immersed in trichlorotrifluoroethane containing 6% by weight of ethanol at 40'O for 4 minutes without applying ultrasonic vibration. and remove moisture. The removed water floats to the top of the organic solvent due to the difference in specific gravity and is taken out of the immersion liquid through a flow. The dehydrated low-hydration zinc alloy powder was then exposed to trichlorotrifluoroethane/ethanol azeotropic vapor for 2 minutes, and then slowly taken out of the cooling chamber into the air and placed in a container lined with polypropylene. Store in a tightly capped container.

実施例2゜ 鉛・カドミウムの各少量を含む亜鉛合金をアトマイズ加
工して得た粒径(短径) 100乃至300μmの噴霧
亜鉛合金粉末100kgを塩化第二水銀5.80重量%
、塩化インジウム0.11重量% 及び非イオン界面活
性剤の微量を含む水溶液36kgを充した反応槽内に投
入し90分間]1を押して反応させ表面処理を完結させ
る。以1:°実施例1に示したと同じ手順で母液除去、
純水洗滌、洗液除去及び得られた湿潤低水化亜鉛合金粉
末の急速脱水乾燥を行なう。
Example 2゜100 kg of atomized zinc alloy powder with a particle size (minor diameter) of 100 to 300 μm obtained by atomizing a zinc alloy containing small amounts of each of lead and cadmium was mixed with 5.80% by weight of mercuric chloride.
, 0.11% by weight of indium chloride and a trace amount of a nonionic surfactant into a reaction tank filled with 36 kg of an aqueous solution and press 1 for 90 minutes to complete the surface treatment. Step 1: Remove the mother liquor using the same procedure as shown in Example 1,
Washing with pure water, removal of washing liquid, and rapid dehydration drying of the obtained wet low hydration zinc alloy powder are performed.

実施例3゜ 鉛・ガリウムの各少量を含む亜鉛合金をアトマイズ加工
して得た粒径(妬径)工00乃至300μmの噴霧亜鉛
合金粉末100に9を塩化インジウム2重量%及び非イ
オン界面活性剤の微量を含む水溶液20.23A:gを
充した反応槽内へ投入し120分間静かに攪拌して表面
処理を完結させる。以下実施例1に示したと同じ手順で
母液除去、純水洗滌、洗液除去を行なつ)だのち、得ら
れた湿潤無氷化亜鉛合金粉末をナイロン繊#製容器に入
れて油溶性界面活性剤0.5重量%を含むトリクロロト
リフルオロエタシ液中にて超音波震Nh?与えながら常
温で5分間浸漬ケ行なう。除去された水分は比重差で有
機溶媒上に浮上するからオーバー・フローさせて浸漬液
外へ取出す。次に脱水された無水化亜鉛合金粉末を浸漬
液外へ取出し、添加物を含′まないトリクロロトリフル
オロエタン液中に常温で3分間再浸漬し微量耐着した界
面活性剤の除去を行なう。
Example 3 Atomized zinc alloy containing small amounts of lead and gallium was added to 100% of atomized zinc alloy powder with a particle diameter of 00 to 300 μm, and 9 was added to 2% by weight of indium chloride and nonionic surfactant. The aqueous solution containing a trace amount of the agent was poured into a reaction tank filled with 20.23 A:g and stirred gently for 120 minutes to complete the surface treatment. After that, the mother liquor was removed, purified water was washed, and the washing liquid was removed in the same manner as shown in Example 1).Then, the obtained wet and ice-free zinc alloy powder was placed in a container made of nylon fiber, and the oil-soluble surfactant Ultrasonic vibration in a trichlorotrifluoroethane solution containing 0.5% by weight of Nh? Soak for 5 minutes at room temperature while feeding. The removed water floats on top of the organic solvent due to the difference in specific gravity, so it overflows and is taken out of the immersion liquid. Next, the dehydrated anhydrous zinc alloy powder is taken out of the immersion solution and re-immersed in a trichlorotrifluoroethane solution containing no additives for 3 minutes at room temperature to remove a small amount of surfactant that has adhered.

次rcトvクロロ・トリフルオロエタン蒸気中に2分間
曝露したのち、冷却室をへてゆつくシと空気中へ取出し
ポリプロピレンで内装した容器中に密栓保管する。
Next, after being exposed to chlorotrifluoroethane vapor for 2 minutes in an rc chamber, it was removed from the cooling chamber into the air and stored tightly in a container lined with polypropylene.

本発明の製造方法と従来の水化亜鉛粉末製造において慣
用されている乾燥条件とで夫れそれ低水化若しくは無氷
化の亜鉛合金粉末を製造したときの乾燥所要時間、得ら
れた粉末の酸化物含有率およびそのバラツキを第1表に
示した。
The drying time required for producing low water or ice-free zinc alloy powder using the production method of the present invention and the drying conditions commonly used in the conventional production of zinc hydrate powder, The oxide content and its dispersion are shown in Table 1.

(以下余白) 第1表 第1表において酸化物含有量とは広義の亜鉛の酸化物、
即し酸化物、水酸化物、塩基性塩等の総計でラシ、これ
らに含まれる亜鉛旦をZnOとして算定表示したもので
ある。また酸化物含有量のバラツキ(1りとは同一試料
に就で同一製造条件で約100kg宛6回製造を繰返し
たときの含有酸化物の最大値及び最小値の差を示す。次
にA、B、Oとは本発明の製造方法による前述の実施例
1,2゜3によって夫れそれ製造したものであり、Dと
は実施例1と同様の表面処理及び水洗を行なったものに
就て、更に少量のイングロパノール・7セ)ン混合溶媒
による洗滌を1回行ない、得られた湿潤低水化亜鉛合金
粉末を従来乾燥条件でちる80°Cで熱風乾燥したもの
である。またEとは実施例3と同様の表面処理及び水洗
を行なったのち、得ら−れた湿潤無水化亜鉛合金粉末を
従来乾燥条件である20 am Hg 、 60°Cで
減圧乾燥を行なったものである。
(Left below) Table 1 In Table 1, oxide content refers to zinc oxide in a broad sense,
In other words, the total amount of oxides, hydroxides, basic salts, etc. is expressed as ZnO, and the zinc contained therein is calculated and expressed as ZnO. In addition, the variation in oxide content (1 indicates the difference between the maximum and minimum values of oxides contained in the same sample when manufacturing is repeated six times for approximately 100 kg under the same manufacturing conditions. B and O were manufactured according to the above-mentioned Examples 1, 2 and 3 using the manufacturing method of the present invention, and D was the same surface treatment and water washing as in Example 1. The powder was further washed once with a small amount of Ingropanol/7sen mixed solvent, and the resulting wet low-hydration zinc alloy powder was dried with hot air at 80°C under conventional drying conditions. Further, E refers to the product obtained by performing the same surface treatment and washing with water as in Example 3, and then drying the obtained wet anhydrous zinc alloy powder under reduced pressure at 20 am Hg and 60°C, which are conventional drying conditions. It is.

第1表から本発明の製造方法を用いた場合には従来方法
に比して乾燥所要時間が著しく短縮され得られた低汞化
乃至無水化の亜鉛合金粉末の酸化物含有量及びそのバラ
ツキが小さくなることが判る。
From Table 1, when the production method of the present invention is used, the drying time is significantly shortened compared to the conventional method, and the oxide content and its dispersion of the resulting low-fragility or anhydrous zinc alloy powder are reduced. It turns out that it becomes smaller.

以下この酸化物含有量のもつ意味に就で更に説明を加え
る。従来、一定条件で製造された低汞化乃至無水化の亜
鉛合金粉末をアルカリ電解液中に浸漬したときの水素ガ
ス発生速度や、これをアルカリ電池に使用したときの放
電特性は、試料の調製ロットや貯蔵条件等の履歴によっ
て試料毎に必ずしも一致しない場合があシ、その原因に
就では従来上として粒子の微視的な表面状態の相異や、
製造過程から混入した微量の不純物によるものと考えら
れていた。然し研究の結果上記原因の相当部分は粒子表
面に生成した哨化物にも起因していることを認めた。即
ち酸化物含有率の増大は単に亜鉛合金粉末中の有効活物
質量の減少即ち電池に使用したときの放電容せ減となる
だけでなく、電池を放電する際の拡散障害になったシ、
水素ガス発生量を再現し難くしたりすることが判った。
The meaning of this oxide content will be further explained below. Conventionally, the hydrogen gas generation rate when low-fragility or anhydrous zinc alloy powder manufactured under certain conditions is immersed in an alkaline electrolyte, and the discharge characteristics when used in an alkaline battery, are determined by sample preparation. Depending on the history of lots and storage conditions, samples may not always match, and the causes of this are conventionally known differences in the microscopic surface condition of particles,
It was thought that this was caused by a trace amount of impurities mixed in during the manufacturing process. However, as a result of research, it was found that a considerable part of the above causes were also caused by the formation of slags on the particle surface. In other words, an increase in the oxide content not only reduces the amount of effective active material in the zinc alloy powder, which reduces the discharge capacity when used in a battery, but also causes a diffusion hindrance when discharging the battery.
It has been found that this makes it difficult to reproduce the amount of hydrogen gas generated.

この場合酸化物の]耽だけでなくその化学的形態の相異
や酸化皮膜の督度の差即ちそれがバリヤー性被JNであ
るか非連続性の被膜であるか等によっても左右されるの
で単純な関係として示すことは困難であるが、何れにし
ても酸化物含有量の増大はアルカリ電池の誘特性を低下
させるのである。
In this case, it depends not only on the oxide content, but also on the differences in its chemical form and the hardness of the oxide film, such as whether it is a barrier JN film or a discontinuous film. Although it is difficult to express a simple relationship, an increase in the oxide content reduces the dielectric properties of the alkaline battery.

アルカリ系電池を常温領域で比較的tQ’l負荷で放電
するような場合VCは酸化物含有量の若干の差による顕
著な障害tよ【謬められないが、特に低温領域で急放′
1するような厳しい東件下では、負極に酸化物含有率の
i+’6い面鉛合金粉末を用いた場合、放電中に負極が
不#I態化して失い負極としての機能を果さなくなる迄
の時間(Passlva口on time) が短かく
なシ亜鉛の放電利用率を低下させる傾向を認めた。第2
表に第1表のA及び第1表のDfこおけると略々同じ条
件で製造した酸化物含有量が異なる3種類の低水化亜鉛
合金粉末を用いたボタン型アルカリマンガン電池LR4
4を一20°Cに於て25Ω負荷で2秒間放電・1秒間
休止の繰返しのパルス放電を0.77 V 丑で行った
ときの負極亜鉛の放以下、本発明の内容に就で更に説明
を加える。
When an alkaline battery is discharged at room temperature under a relatively high load of tQ'l, VC may suffer significant damage due to slight differences in oxide content.
Under severe conditions such as No. 1, if a lead alloy powder with an oxide content of i+'6 is used for the negative electrode, the negative electrode will change to an I state during discharge and lose its function as a negative electrode. It was observed that the time required to pass the discharge (pass on time) was short and the discharge utilization rate of zinc tended to decrease. Second
The table shows the button-type alkaline manganese battery LR4 using three types of low hydration zinc alloy powders with different oxide contents manufactured under almost the same conditions as A in Table 1 and Df in Table 1.
The contents of the present invention will be further explained as follows: Add.

実施例では表面処理後の母液の除去や、その後の洗液の
除去をサイフオンを用いて行なっているが、これは他の
方法例えばポンプによる汲み川じゃ、傾斜法、加圧乃至
減圧濾過法、遠心脱水法等任意の方法で行なうこと、及
びこれらの方法を用いて注水、排液を連続的Vこ行なう
ことができる。
In the examples, the removal of the mother liquor after surface treatment and the subsequent removal of the washing liquid were carried out using a siphon, but this could be done using other methods such as pumping, tilting, pressurization or vacuum filtration, This can be carried out by any method such as centrifugal dehydration, and by using these methods, water can be poured and drained continuously.

また本発明の急車乾燥に用いるハロゲン化炭化水素Qま
作業条件で1氏水化乃至無汞化11E鉛合金に対し不活
性であつ′し、且つ主溶媒が除去した水と分離し易いよ
う水と相溶性のないこと及び水との比重差が大きいこと
が必をである。該主溶媒への水の溶解IJIは作業温度
で1重量φ以下でるることが望ましい。よた沸点が可及
的常温(15〜35°C/1 atnl )以上であっ
て、且つ余り0%〈なく’ (10000以下)、蒸気
1」ミの大きいものが望ましい。また脱水槽内からのi
’fl媒蒸気の散逸を防ぐため蒸気比重(Air=1)
が可及的太きいもの、実用上(d 3以上好゛ましく 
ll14以上のものが適当でらる。このような条ft=
を光すものとして塩素化炭化水λζ、例えば1,1.1
−)リクロルエタン(011,s CCj ls )、
トリクロルエチレン(0Ii0.6 = 004)、テ
トラクロルエテレノ(L! 0112−= CO/ 2
 ) 、メチレノクロライド(C)+2(172)等を
用いることができる。これらの溶媒を用いた場合にも実
用作業条件下では低汞化乃至無水化の亜41〜合金粉末
に対し比較的安定で溶媒の酸化、加水分解、脱ハロゲン
酸等の好ましからざる反応は微少である。然しメタン又
はエタンのクロロ・フルオロ置換体を用いる場合には塩
素化炭化水素に比し更に安定で、毒性も極めて少なく表
面張力や粘度も小さいので本発明の目的に一層適ってい
る。このような溶媒としてはトリある。またメタンまた
はエタ/のクロロ・フルオロ置換体と塩素化炭化水素の
混合液を使用することもできる。次に主溶媒であるハロ
ゲン化炭化水素中にエタノール、イソプロパツール等の
低級アルコールや界面活性剤の少量を添加して用いるの
は、湿Wl亜鉛合金粉末が保持している水とハロゲン化
炭化水素の双方への3j&度の親第11性をもたせる/
ζめである。即ち温州亜鉛合金粒子が上記混合溶媒液中
に浸漬されると、ハロゲン化炭化水素の界面張力と界面
活性剤または低級アルコールの水、ハロゲン化炭化水素
双方への適度の親方11力との相互作用によって、ハロ
ゲン化炭化水素が水を包み込むようにして1世鉛合金粒
子表面から引剥し、水に代って粒子表面をハロゲン化炭
化水素が覆い、一方引剥された水はハロゲン化炭化水素
液との相溶性がないから比重差によって混合溶媒表面へ
浮−卜する。表面に浮上した水はオーバー・フローさせ
る等の方法で4;1q外に除去することによ−り脱水効
果がイjられ1.11つ連わt操作も可能となるのであ
る。
In addition, the halogenated hydrocarbon Q used for drying the express vehicle of the present invention is inert to 1°C hydrated to 11E lead alloy under the working conditions, and the main solvent is easily separated from the water removed. It is essential that it is not compatible with water and that the difference in specific gravity between it and water is large. It is desirable that the dissolution IJI of water in the main solvent is less than 1 weight φ at the working temperature. It is desirable that the boiling point is higher than possible room temperature (15 to 35°C/1 atnl), not more than 0% (10,000 or less), and has a large vapor content. Also, i from inside the dehydration tank.
'fl Steam specific gravity (Air = 1) to prevent dissipation of medium vapor
As thick as possible, practically (preferably d 3 or more)
ll14 or higher is suitable. Such a clause ft=
Chlorinated hydrocarbon λζ, e.g. 1,1.1
-) Lichloroethane (011,s CCj ls ),
Trichlorethylene (0Ii0.6 = 004), tetrachloroethene (L! 0112-=CO/2
), methylene chloride (C)+2 (172), etc. can be used. Even when these solvents are used, they are relatively stable against low-fragility or anhydrous sub-41 alloy powders under practical working conditions, and undesirable reactions such as oxidation, hydrolysis, and dehalogenation of the solvent are minimal. be. However, when chloro-fluoro-substituted methane or ethane is used, it is more stable than chlorinated hydrocarbons, has extremely low toxicity, and has low surface tension and viscosity, and is therefore more suitable for the purpose of the present invention. There are several types of such solvents. It is also possible to use a mixture of a chlorofluoro-substituted product of methane or ethane and a chlorinated hydrocarbon. Next, a small amount of a lower alcohol such as ethanol or isopropanol or a surfactant is added to the halogenated hydrocarbon that is the main solvent. Bringing the parent 11th nature of 3j & degree to both sides of hydrogen/
It is the ζth. That is, when the Wenzhou zinc alloy particles are immersed in the above mixed solvent solution, the interaction between the interfacial tension of the halogenated hydrocarbon and the moderate 11 force of the surfactant or lower alcohol on both water and the halogenated hydrocarbon occurs. , the halogenated hydrocarbon envelops water and peels it off from the surface of the first-generation lead alloy particles, and the halogenated hydrocarbon covers the particle surface instead of water, while the peeled water becomes a halogenated hydrocarbon liquid. Because it has no compatibility with the mixed solvent, it floats to the surface of the mixed solvent due to the difference in specific gravity. By removing the water that has floated to the surface to the outside by overflowing or other methods, the dehydration effect is reduced, and 1.11 continuous operations are also possible.

冑、混合溶媒中に湿n亜鉛合金粉末を単に浸漬してもよ
いが、浸漬中に超音波震ηbを加えると脱水効率乃至界
面活(1,剤除去能率を更に高める効果があシ、よりよ
い結果が得られた。
Although wet n-zinc alloy powder may be simply immersed in a mixed solvent, adding ultrasonic vibration ηb during immersion has the effect of further increasing the dehydration efficiency or surface activity (1). Good results were obtained.

紙上の如く、本発明の製造方法を用いて得だ亜鉛合金粉
末は酸化物の含有量及びそのバラツキが小さく、アルカ
リ・#+c池に用いたときの特性を向上できると共に、
亜鉛寄金粉末製造時の乾燥所要時間を著しく短縮するこ
とが可能で、乾燥工程における水銀蒸気の発生もよい等
工業的価値の大きいものでちる。
As stated in the paper, the zinc alloy powder obtained using the production method of the present invention has a small oxide content and its variation, and can improve the characteristics when used in alkaline / #+C ponds.
It has great industrial value, as it can significantly shorten the time required for drying during the production of zinc-donated powder, and it also generates less mercury vapor during the drying process.

Claims (1)

【特許請求の範囲】 (1)可溶性水銀基、および/または、@Ib族、su
b族、#ff l1lb族、IglVb族、第■b族[
4−jる金属性元素の群から任意1(選択された1種乃
至数種の元素の可溶性塩を含む水溶液と、亜鉛合金粉末
とを攪拌しつつ混合して表面処理を行なわしめる第一工
程と、 表面処理を終了した坤鉛もしくは亜鉛合金の粉末から母
液を除去し、水洗したのち洗滌液を除去する第二工程と
、 洗滌液を除去した湿潤亜鉛合金粉末を、少量の界面活性
剤もしくは低級アルコールを含む〕・ロゲン化炭化水素
液中に浸漬、および/または、ノ・ロゲン化炭化水素と
低級アルコールの混合蒸気中に曝露して、迅速脱水乾燥
する第三工程とよυなる水化箪がO乃至3市量チの範囲
のアルカリ電池用i+Ii m を1ba 昧゛σ) 
1lJl ;:’+ づ−i 9J 、。 (2)該第1工程において用いる亜鉛合金粉末が、第1
b族、第nb族、第mb族、第1Vb族、第vb族に属
する全綱性元素の群から任意に選択される1種乃至数種
の元素を含有していることを特徴とする特許請求の範囲
第1項記戦のアルカリ電池用亜鉛合金粉末の製造方法。 +3)該m3工程において用いるハロゲン化炭化水素の
主成分が、メタンもしくはエタンのりp口・フルオ0置
換体でおることを特徴とする特許請求の範囲第1項記載
のアルカリ電池用亜鉛合金粉末の製造方法1、 (4)該湿潤亜鉛合金粉末が、ハロゲン化炭化水素液中
に浸漬される時、超音波震動を加えられることを特徴と
する特許請求の範囲第1項記載のアルカリ電池用亜鉛合
金粉末の製造方法。
[Claims] (1) Soluble mercury group and/or @Ib group, su
Group b, #ff l1lb group, IglVb group, group ■b [
A first step of performing surface treatment by mixing an aqueous solution containing a soluble salt of one or several selected elements from the group of metallic elements 4-j with stirring and zinc alloy powder. The second step is to remove the mother liquor from the surface-treated lead or zinc alloy powder, wash it with water, and then remove the cleaning solution.The wet zinc alloy powder from which the cleaning solution has been removed is treated with a small amount of surfactant or The third step is rapid dehydration and drying by immersion in a halogenated hydrocarbon liquid containing lower alcohols and/or exposure to a mixed vapor of halogenated hydrocarbons and lower alcohols. For alkaline batteries with a commercial capacity of 0 to 3, i+Ii m is 1 ba.
1lJl;:'+ zu-i 9J,. (2) The zinc alloy powder used in the first step is
A patent characterized in that it contains one or more elements arbitrarily selected from the group of all class elements belonging to Group B, Group NB, Group MB, Group 1Vb, and Group VB. A method for producing zinc alloy powder for alkaline batteries as set forth in claim 1. +3) The zinc alloy powder for alkaline batteries according to claim 1, characterized in that the main component of the halogenated hydrocarbon used in the m3 step is methane or ethane, p-substituted and fluoro-substituted. Production method 1: (4) Zinc for alkaline batteries according to claim 1, characterized in that (4) the wet zinc alloy powder is subjected to ultrasonic vibration when immersed in a halogenated hydrocarbon liquid. Method for producing alloy powder.
JP58206276A 1983-11-02 1983-11-02 Production method of zinc alloy powder for alkaline cell Pending JPS60100369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58206276A JPS60100369A (en) 1983-11-02 1983-11-02 Production method of zinc alloy powder for alkaline cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58206276A JPS60100369A (en) 1983-11-02 1983-11-02 Production method of zinc alloy powder for alkaline cell

Publications (1)

Publication Number Publication Date
JPS60100369A true JPS60100369A (en) 1985-06-04

Family

ID=16520636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58206276A Pending JPS60100369A (en) 1983-11-02 1983-11-02 Production method of zinc alloy powder for alkaline cell

Country Status (1)

Country Link
JP (1) JPS60100369A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02299150A (en) * 1989-05-12 1990-12-11 Matsushita Electric Ind Co Ltd Zinc alloy for alkaline-zinc battery and alkaline-zinc battery using it

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936867A (en) * 1972-08-23 1974-04-05
JPS5084840A (en) * 1973-11-30 1975-07-09
JPS5147664A (en) * 1974-10-22 1976-04-23 Tokyo Shibaura Electric Co EKIBUNRIKI
JPS5313139A (en) * 1976-07-23 1978-02-06 Sanyo Electric Co Method of manufacturing zinc negative electrode
JPS5787879A (en) * 1980-11-22 1982-06-01 Daikin Ind Ltd Washing and drying method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936867A (en) * 1972-08-23 1974-04-05
JPS5084840A (en) * 1973-11-30 1975-07-09
JPS5147664A (en) * 1974-10-22 1976-04-23 Tokyo Shibaura Electric Co EKIBUNRIKI
JPS5313139A (en) * 1976-07-23 1978-02-06 Sanyo Electric Co Method of manufacturing zinc negative electrode
JPS5787879A (en) * 1980-11-22 1982-06-01 Daikin Ind Ltd Washing and drying method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02299150A (en) * 1989-05-12 1990-12-11 Matsushita Electric Ind Co Ltd Zinc alloy for alkaline-zinc battery and alkaline-zinc battery using it

Similar Documents

Publication Publication Date Title
KR101600685B1 (en) A Modification Method of Cathode Material for Lithium Ion Battery
EP0457354B1 (en) Method of manufacturing zinc-alkaline batteries
JPS59175571A (en) Nonaqueous electrochemical cell
FR2611988A1 (en) PROCESS FOR MANUFACTURING A NICKEL HYDROXIDE ELECTRODE
JP3111634B2 (en) Manufacturing method of zinc alkaline battery
CA2089683C (en) Method of manufacturing zinc-alkaline batteries
JPS6127063A (en) Method of stabilizing primary electrochemical generator
KR100431101B1 (en) Electrode alloy powder and method of producing the same
JPS60100369A (en) Production method of zinc alloy powder for alkaline cell
CN112447954B (en) Graphene-modified ferrate material and preparation method and application thereof
JPS5825083A (en) Zinc powder cathode not amalgamed for battery having alkaline electrolyte and method of producing same
JPS60100368A (en) Production method of zinc amalgam powder for alkaline cell
US4906539A (en) Sintered type negative cadmium electrode for an alkaline storage cell and method of manufacturing the same
JP3149783B2 (en) Processing method of hydrogen storage alloy powder
JPS6110861A (en) Alkaline zinc battery
JP3433031B2 (en) Method for producing hydrogen storage alloy for alkaline storage battery
JPH0383818A (en) Manganese dioxide and its production
JPH01309255A (en) Separator for alkaline battery
JPS60101866A (en) Zinc alkaline battery
JPH031442A (en) Paste form cadmium negative electrode for alkaline storage battery
JP2003197185A (en) Hydrogen occlusion alloy electrode, its manufacturing method, and nickel hydrogen storage battery using it
JP2798680B2 (en) Alkaline battery
JPS5912565A (en) Method of producing mercury-containing zinc powder for alkaline battery
JP3136961B2 (en) Method of treating hydrogen storage alloy for batteries
JPS6177267A (en) Zinc alkaline battery