JPS60100366A - Production method of negative electrode for zinc- alkaline cell - Google Patents

Production method of negative electrode for zinc- alkaline cell

Info

Publication number
JPS60100366A
JPS60100366A JP20451783A JP20451783A JPS60100366A JP S60100366 A JPS60100366 A JP S60100366A JP 20451783 A JP20451783 A JP 20451783A JP 20451783 A JP20451783 A JP 20451783A JP S60100366 A JPS60100366 A JP S60100366A
Authority
JP
Japan
Prior art keywords
negative electrode
zinc
negative
particles
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20451783A
Other languages
Japanese (ja)
Other versions
JPH0119740B2 (en
Inventor
Akira Hayashi
彰 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP20451783A priority Critical patent/JPS60100366A/en
Publication of JPS60100366A publication Critical patent/JPS60100366A/en
Publication of JPH0119740B2 publication Critical patent/JPH0119740B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture
    • H01M4/12Processes of manufacture of consumable metal or alloy electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To improve the heavy-load discharge characteristic by mixing negative- electrode particles formed with a sizing material coating layer on the surface and negative-electrode particles having no sizing material coating layer and injecting an alkali electrolyte to the mixture to form a gel-like negative electrode. CONSTITUTION:Negative electrode particles made of zinc or zinc alloy powder and sizing material powder such as a carboxyvinyl polymer are mixed to form a sizing material coating layer on the surface of negative-electrode particles, which are mixed with 10-60wt% of negative-electrode particles having no sizing material coating layer to form a mixed negative-electrode particle group. A fixed amount of it is stored in a negative-electrode container, an alkali electrolyte is injected and absorbed to form a gel-like negative electrode, thus a negative electrode for a zinc-alkaline cell is formed. Accordingly, the heavy-load discharge characteristic of a cell can be improved by bringing zinc powder in contact with the low-viscosity portion in the gel structure of the gel-like negative electrode formed via the CZ method.

Description

【発明の詳細な説明】 本発明は、11;1鉛−アルカリ電池に使用する負極の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a negative electrode for use in a 11:1 lead-alkaline battery.

、 一般に亜鉛−アルカリ電池は、主電解質とじて水酸
化アルカリを用い、負極活物質として亜鉛な用いている
。この電池は、負極表面で反応生成物に起因する拡散障
害が生じるため、急放電時または低温放電時に負極反応
面が不活性化する欠点がある。このためアトマイズ法等
で粒状化した粒状亜鉛負極を用いて負極の有効作用面積
を大きくして、上記欠点を防ぐようにしている。
In general, zinc-alkaline batteries use alkali hydroxide as the main electrolyte and zinc as the negative electrode active material. This battery has the disadvantage that the reaction surface of the negative electrode becomes inactive during rapid discharge or low-temperature discharge because diffusion disturbance occurs on the negative electrode surface due to reaction products. For this reason, a granular zinc negative electrode granulated by an atomization method or the like is used to increase the effective area of the negative electrode, thereby preventing the above-mentioned drawbacks.

初期の亜鉛−アルカリ電池は、負極として粒状亜鉛をペ
レット状に成型したものを用いていた。
Early zinc-alkaline batteries used granular zinc molded into pellets as the negative electrode.

このものは、電池組立時に負極を成型体単位で取扱うこ
とができるので、製造工程での作業性に優れている。し
かしペレット状とするため、粒状亜鉛表面に存在するア
ルカリ電解液量が少なく、急放電特性及び低温放電特性
が劣っていた。
This product has excellent workability in the manufacturing process because the negative electrode can be handled as a molded body when assembling the battery. However, because it is made into pellets, the amount of alkaline electrolyte present on the surface of the granular zinc is small, resulting in poor rapid discharge characteristics and low-temperature discharge characteristics.

これを改良した負極として、糊剤を溶解した粘稠性ゲル
状アルカリ電解液中に粒状亜鉛を分散させたゲル状負極
がある。この負極の製造法は、ゲル方式と称されるもの
で、粒状亜鉛が分散しているため、急放電特性及び低温
放電特性が大巾に改良される。しかしこの負極は充填量
管理がきわめて困t1tである。すなわち亜鉛−アルカ
リ電池は、その放電容量が通常少極活物質支配となるよ
う役割され、セル内へのゲル状負極の組込精度は電池の
放電特性に大きな影響を及ぼす。これに対しセルを構成
する負極容器内にゲル状負極を充JjQする場合弁極が
ゲル状−Cあるため、充填量の誤差が大きく、調整が困
F□1(である。とくに小型、薄型のマイクロボタンセ
ルの場合、充填量が少ないために相対的に誤差が人きく
なり、充填量の管理がきわめて困殖となる。
An improved negative electrode is a gel negative electrode in which granular zinc is dispersed in a viscous gel alkaline electrolyte in which a sizing agent is dissolved. This negative electrode manufacturing method is called a gel method, and because granular zinc is dispersed, the rapid discharge characteristics and low-temperature discharge characteristics are greatly improved. However, it is extremely difficult to manage the filling amount of this negative electrode. That is, in a zinc-alkaline battery, the discharge capacity is usually dominated by a small number of active materials, and the precision with which the gelled negative electrode is incorporated into the cell has a large effect on the discharge characteristics of the battery. On the other hand, when filling a gelled negative electrode into the negative electrode container constituting the cell, the valve electrode is gelled -C, so there is a large error in the filling amount, and adjustment is difficult. In the case of micro-button cells, the filling amount is small, so the error is relatively large, making it extremely difficult to manage the filling amount.

このようなことから上記ゲル方式に代えて、新しい別の
方法による負極の製造方法が、とくにマイクロボタンセ
ルな中心に用いられるようになっている。この方法は、
CZ方式と呼ばれるもので、亜鉛1′+’r r−の表
面に予じめ糊剤を主成分とする薄い被覆層を形成して、
これら粒子群の一定量を負極容器内に充填したのちアル
カリ電解液を注液、吸収さぜゲル化ぜしめる方法である
。この方法によれば1.1,1.子ITを充Jl′1%
するのでゲル化したものを充填するゲル方式に比べて負
極充填骨のばらつきを小さくすることができる。しかし
この方法は、電池の重負荷放電特性が劣る問題があった
For this reason, instead of the above-mentioned gel method, a new and different method for producing negative electrodes has come to be used, particularly in the center of micro button cells. This method is
This is called the CZ method, in which a thin coating layer containing glue as the main component is formed in advance on the surface of zinc 1'+'r r-.
This is a method in which a certain amount of these particles are filled into a negative electrode container, and then an alkaline electrolyte is injected and absorbed to form a gel. According to this method, 1.1,1. Charge child IT Jl'1%
Therefore, the variation in the negative electrode-filled bone can be reduced compared to the gel method in which gelled material is filled. However, this method has a problem in that the heavy load discharge characteristics of the battery are poor.

本発明者はこの原因について鋭意研究をおこなった結果
、負極ゲルのゲル構造自体に特性阻害要因があることが
わかった。すなわち亜鉛粒子表面を被覆している糊層は
、注液されたアルカリ電解液の大部分を自然吸収して不
完全膨潤し、互いに隣接する亜鉛粒子表面の不完全膨潤
糊層が相当時間経過後も相溶しない。その境界は顕微鏡
的に観察された。そして各膨潤粒子間の間隙部分は、糊
剤の一部を溶解した低粘性のアルカリ電解液で満されて
いる。換言すればCZ方式のゲル状負極のゲル構造は、
第1図(顕微鏡写真)及び第2図(同模式図)に示すよ
うに、亜鉛粒子aの表面を囲繞する糊剤がアルカリ電解
液を静的に吸収して不完全膨潤した相対的に高粘性の部
分すと、電解液が糊剤の一部を溶解した低粘性の部分C
とからなる不均一系のゲル構造をなしている。この場合
電解液と糊剤の間には一種の分配率の関係が成立してい
る。本発明者は、このような不均一系の疑似ゲルを構成
する亜鉛粒子面の高粘度の不完全膨潤層が急放電におけ
る拡散阻害層となっていることを認めた。なお図中eは
負極集電体である。
As a result of intensive research into the cause of this problem, the present inventors found that the gel structure of the negative electrode gel itself has a characteristic inhibiting factor. In other words, the glue layer covering the surface of the zinc particles spontaneously absorbs most of the injected alkaline electrolyte and swells incompletely, and the incompletely swollen glue layers on the surfaces of adjacent zinc particles disappear after a considerable period of time. are also incompatible. The border was observed microscopically. The gaps between each swollen particle are filled with a low-viscosity alkaline electrolyte in which a portion of the sizing agent is dissolved. In other words, the gel structure of the CZ type gel negative electrode is
As shown in Figure 1 (micrograph) and Figure 2 (schematic diagram), the adhesive surrounding the surface of the zinc particle a statically absorbs the alkaline electrolyte, resulting in incomplete swelling and relatively high temperature. The viscous part is the low viscosity part C where the electrolyte dissolves a part of the glue.
It has a heterogeneous gel structure consisting of. In this case, a kind of distribution ratio relationship is established between the electrolyte and the adhesive. The present inventor recognized that the highly viscous, incompletely swollen layer on the surface of the zinc particles constituting such a heterogeneous pseudo-gel serves as a diffusion inhibiting layer during rapid discharge. Note that e in the figure is a negative electrode current collector.

本発明は、このような知見にもとづいてなされたもので
、低粘性部分に亜鉛粉末が接するようにすることにより
CZ方式においても電池の重負荷放電特性を向上するこ
とができる亜鉛−アルカリ電池用負極の製造方法な得ん
とするものである。
The present invention was made based on such knowledge, and is a zinc-alkaline battery that can improve the heavy load discharge characteristics of the battery even in the CZ system by bringing the zinc powder into contact with the low viscosity part. This is an advantageous method for producing a negative electrode.

すなわち本発明は、亜鉛又は亜鉛合金からなる負極粒子
と糊剤粉末とを混合して負極粒子表面に糊剤被覆層を形
成せしめた後、この負極粒子に糊剤被覆層を有しない負
極粒子を混合して混合負極粒子群を形成し、次いで同粒
子群の一定量を負極容器内に収納した後アルカリ電解液
を注入して吸液崩壊さぜゲル状負極を形成することを特
徴とする。
That is, the present invention mixes negative electrode particles made of zinc or zinc alloy with glue powder to form a glue coating layer on the surface of the negative electrode particles, and then coats the negative electrode particles with no glue coating layer on the negative electrode particles. The method is characterized in that a mixed negative electrode particle group is formed by mixing, and then a certain amount of the same particle group is stored in a negative electrode container, and then an alkaline electrolyte is injected to form a liquid-absorbing and collapsing gel-like negative electrode.

また/J?合負極粒子群中の糊剤被覆層を有しない負極
粒子の含有−を10〜60重量係とし、又負極して説明
する。
Again/J? The content of negative electrode particles without a glue coating layer in the composite negative electrode particle group is 10 to 60% by weight, and the negative electrode will be explained.

まず亜鉛又は亜鉛合金の粉末からなる負極粒子と糊剤及
び必要に応じてフィラーをそれぞれ側索して攪拌混合す
る。負極粒子としては、水化亜鉛粒、第1b族、第1b
族、第111b族、第■b族、第Vb族に属する金属性
元素の群から任意に選択される1種乃至数鍾の元素の少
量を含む亜鉛合金粒、例えばPb −Cd 、Pb−G
a 、Pb −InまたはPl)−〇a−Inを少量含
む亜鉛合金粒またはその低氷化物等が挙げられ、その粒
度が通常0.05〜0.25 mmφ(平均粒径)のも
のを用いる。また糊剤としては、合成高分子であるカル
ボキシビニルポリマーあるいはアクリル酸又はその共重
合体、カルボキシメチルセルローズ等の繊維系誘導体、
その低分子側鎖にカルボキシル基又はそのアルカリ金属
塩を有しアルカリ電解液と親和性を有する各種の糊剤を
使用することができる。またフィラーとしては、マグネ
シア、チタン白、アルミシリケート等が挙げられる。こ
の場合フィラーは無添加でもよい。
First, negative electrode particles made of zinc or zinc alloy powder, a sizing agent, and, if necessary, a filler are mixed by stirring on their side. As negative electrode particles, zinc hydrate particles, group 1b, group 1b
Zinc alloy grains containing a small amount of one to several elements arbitrarily selected from the group of metallic elements belonging to Group 111b, Group 1b, Group Vb, such as Pb-Cd, Pb-G
Examples include zinc alloy grains containing a small amount of a, Pb-In or Pl)-○a-In, or low-icing products thereof, and those having a grain size of usually 0.05 to 0.25 mmφ (average grain size) are used. . In addition, as a sizing agent, synthetic polymers such as carboxyvinyl polymer, acrylic acid or its copolymer, fiber derivatives such as carboxymethyl cellulose,
Various glues having carboxyl groups or alkali metal salts thereof in their low-molecular side chains and having affinity with alkaline electrolytes can be used. Further, examples of the filler include magnesia, titanium white, aluminum silicate, and the like. In this case, no filler may be added.

これらの混合割合は、通常のCZ方式の場合と同様で、
例えば負極粒J”1.00重量部に対し、糊剤05〜2
0重惜部、フィラー03〜15重量部とする。
These mixing ratios are the same as in the normal CZ method,
For example, for 1.00 parts by weight of negative electrode particles J'', 05 to 2 parts of glue
0 parts by weight and 03 to 15 parts by weight of filler.

この攪拌混合により、負極粒子表面に糊剤被覆層が形成
される。この後加湿調湿する。この加湿調湿工程は、糊
剤の種類によっては不要となる。
By this stirring and mixing, a glue coating layer is formed on the surface of the negative electrode particles. After this, humidify and adjust the humidity. This humidification and humidity control step may be unnecessary depending on the type of adhesive.

このようにして得られた糊剤被覆負極粒子群と、糊剤を
被覆していない亜鉛又は亜鉛合金からなる負極粒子をそ
れぞれ計量・シ、攪拌混合して混合負極粒子群ぽを得る
。混合割合は混合負極粒子群100重量部に対して10
〜60重量部が好ましい。これは、この範囲の重負荷放
電特性がとくに優れているためである。
The glue-coated negative electrode particles thus obtained and the negative electrode particles made of zinc or zinc alloy that are not coated with the glue are each weighed and mixed by stirring to obtain a mixed negative electrode particle group. The mixing ratio is 10 parts by weight per 100 parts by weight of the mixed negative electrode particles.
~60 parts by weight is preferred. This is because the heavy load discharge characteristics in this range are particularly excellent.

一−,ニ ′−゛ −二 − +嶋〒次いでこの混合負極粒子群を一定竜計量して負極
容器に収納する。この場合混合負極粒子群の計量は容桔
劃;診または重量計量の同れを用いることもできる。ま
た混合負極粉末を収納した負極容器全体を再度重量選別
すれば、電池内に川み込まれる負極活物質叶を一層厳密
に管理することができる。
1-, 2'-゛-2-+shima〒Next, this mixed negative electrode particle group is weighed to a certain degree and stored in a negative electrode container. In this case, the mixed negative electrode particles can be measured by volumetric measurement or gravimetric measurement. Furthermore, if the entire negative electrode container containing the mixed negative electrode powder is weight-sorted again, it is possible to more strictly control the amount of negative electrode active material that is mixed into the battery.

ルカリ電解液を注入して吸液させゲル状負極を形成する
。この場合注液操作を減圧下で行なえば、より短時間で
吸液ゲル化を進行させることができる。このようにして
得られたゲル状負極は、第4図(模式図)に示すように
、負極粒子aIの表面を囲繞する糊剤がアルカリ電解液
を静的に吸収して不完全膨潤した相対的に高粘性の部分
すと、負極粒子a2の表面を囲繞する電解液が糊剤の一
部を溶解した低粘性の部分Cとからなる不均一系のゲル
構造を有している。このように負極粒子a2が低粘性部
分Cに接しているので、このゲル状負極は重負荷特性に
優れている。
A caustic electrolyte is injected and absorbed to form a gel-like negative electrode. In this case, if the liquid injection operation is performed under reduced pressure, liquid absorption gelation can proceed in a shorter time. As shown in FIG. 4 (schematic diagram), the gelled negative electrode obtained in this way is made up of an incompletely swollen material by the glue surrounding the surface of the negative electrode particles aI statically absorbing the alkaline electrolyte. It has a heterogeneous gel structure consisting of a high viscosity part and a low viscosity part C in which the electrolyte surrounding the surface of the negative electrode particle a2 partially dissolves the paste. Since the negative electrode particles a2 are in contact with the low-viscosity portion C in this way, this gel-like negative electrode has excellent heavy load characteristics.

そしてこのようにして得られたゲル状負極は、等、亜鉛
を負極活物質とする各種構造(ボタン型、扁平型、コイ
ン型、円筒型等)の電池に適用される。
The gelled negative electrode thus obtained is applied to batteries of various structures (button type, flat type, coin type, cylindrical type, etc.) using zinc as the negative electrode active material.

次に本発明の実施例につき説明する。Next, examples of the present invention will be described.

平均粒径(1)I) ) 160μmの10係氷化亜鉛
粒980重量部、]7均分頂!@・3000000のカ
ルボキシビニルポリマー10重量部、及び微粉マグネシ
ア1.0重量部を攪拌混合した後、60℃、R; IL
 90%の恒温恒湿槽中で8時間加湿し、更に25°C
,RoH。
Average particle size (1) I) ) 980 parts by weight of 160 μm 10-layered zinc grains,] 7 equal parts! After stirring and mixing 10 parts by weight of carboxyvinyl polymer of @3,000,000 and 1.0 parts by weight of fine powder magnesia, the mixture was heated at 60°C, R; IL
Humidify in a constant temperature and humidity chamber at 90% for 8 hours, then heat to 25°C.
, RoH.

50係の恒l:IX恒湿槽中で16時間調湿を行なって
、糊剤被覆負極粒子群をmだ。この糊剤被覆負極粒子群
と糊剤被覆層を;白しない負極粒子群を第1表に示すM
用比でそれぞれ攪拌混合して5種炉の混合子のみからな
る負極粒子群(A)を得た。
Humidity was controlled for 16 hours in a constant humidity tank of 50 parts, and the glue-coated negative electrode particles were dried. The glue-coated negative electrode particles and the glue-coated layer; non-white negative electrode particles are shown in Table 1.
The mixtures were stirred and mixed at different ratios to obtain a negative electrode particle group (A) consisting only of mixers of five types of furnaces.

(す、十余白) 第 1− 表 次にこれら負極粒子群(A、−F)をそれぞれ含有亜鉛
量が175mAに相当する分量だけ自動計量装置を用い
て秤取し負極容器内に収納した後、酸化亜鉛を飽和させ
た35係水酸化カリウム溶液100μlを注液し5分間
後に常法に従ってSR44型の酸化銀ボタン電池を組立
てた。
(10 margins) 1st Table Next, the amount of these negative electrode particle groups (A, -F) corresponding to the zinc content of 175 mA was weighed using an automatic weighing device and stored in the negative electrode container. Thereafter, 100 μl of a 35% potassium hydroxide solution saturated with zinc oxide was injected, and after 5 minutes, an SR44 type silver oxide button battery was assembled according to a conventional method.

組立てた電池を20゛Cで22μA3秒放電、27秒休
止の繰返しパルス放電した。このときの平均作動″小川
を第5図に、又その際の負砂活物質(fMJ鉛)の放電
利用・1′を弔6図に示す。またこの電池セルを60′
Cで/l0FI貯蔵したのち50mAパルス放電したと
きの芥1yt Kdl持イ(を第7図に示す。
The assembled battery was subjected to repeated pulse discharge of 22 μA for 3 seconds and a 27-second rest at 20°C. The average operation "Ogawa" at this time is shown in Figure 5, and the discharge utilization of the negative sand active material (fMJ lead) at that time is shown in Figure 6. Also, this battery cell is shown at 60'
Figure 7 shows the 1yt Kdl when 50 mA pulse discharge was performed after storage at /10FI at C.

第5図に小ず結果から明らかなようにパルス放電時の平
均作動電圧は、糊剤被光層を有しない負極1′σ子)?
Yを添加することにより向上し、添加率10係以−にで
一定になることが認めらAlだ。また第6図から負極活
物質の放電利用率は糊剤被光層を有しない負極1゛☆j
’ 1rfを添加することにより向トし、添加率50係
以」ニーで一定になることが認められた。
As is clear from the results shown in Fig. 5, the average operating voltage during pulse discharge is 1'σ (1'σ) for the negative electrode without a glue coating layer.
It was found that the addition of Y improves the resistance of Al, and it becomes constant at an addition rate of 10 parts or more. Also, from Figure 6, the discharge utilization rate of the negative electrode active material is 1゛☆j
It was found that by adding 1rf, the temperature was improved and became constant at the addition rate of 50 or higher.

また第7図から容量j、1(持重は、糊剤被光層を有し
ない負極1〜′rr7VYを添加することにより向上す
るが、添加キ70%以I−で武士することが認めらλ1
だ。
In addition, from FIG. 7, the capacity j, 1 (the holding weight is improved by adding negative electrodes 1 to 'rr7VY that do not have a glue coating layer, but it is recognized that the samurai is λ1 when the addition level is 70% or more I-).
is.

辺、上託Jホしたように本発明によれば、CZ、))式
において、糊剤神覆層をイ]しない負極粒子群を添加す
るので、曲鉛−アルカリ電池の重負荷放電特性を向−」
−することができる顕著な効果を奏する。
As mentioned above, according to the present invention, in the CZ, )) formula, a group of negative electrode particles that do not have a glue layer is added, so that the heavy load discharge characteristics of the curved lead-alkaline battery can be improved. Toward”
- It can produce remarkable effects.

4 図[「11の筒中な説1明 第1図は従来のCZ方式で得られたゲル負極な拡大して
示−す顕微鏡写真、第2図は同写真の模式図、第3図〜
第7図は本発明の一実施例を示し、第(図は亜鉛−アル
カリ電池用負極の製造ノー法のフロ−シート図、第1図
はゲル負極を拡大1〕C示す模式図、第5図は糊剤被覆
層を有しない負極も)了ノーT(MZ)の添加率と平均
作動電圧との関係を示す特性図、第6図は糊剤被覆層を
有しない負極]′立了群(MZ)の添加率と放電利用率
との関係を示す% M図、第7図は糊剤被キ!層を有し
7′1、い負・素粒子ノi−Y(MZ)の添加率と容量
層(持重との関係を示−1−% t’!−図である。
4 Figure 1 is an enlarged micrograph of the gel negative electrode obtained by the conventional CZ method, Figure 2 is a schematic diagram of the same photograph, and Figures 3~
FIG. 7 shows an embodiment of the present invention, and FIG. The figure shows a characteristic diagram showing the relationship between the addition rate of MZ and the average operating voltage for the negative electrode without a glue coating layer. Figure 6 shows the relationship between the average operating voltage and the negative electrode without a glue coating layer. Figure 7 shows the relationship between the addition rate of (MZ) and the discharge utilization rate. It is a diagram showing the relationship between the addition rate of negative/elementary particle noi-Y (MZ) and the capacity layer (holding weight).

特許出願人の名称 第1図 (x56) 第2図 第3図 r−”lZ 等方σ牛 111、。Patent applicant name Figure 1 (x56) Figure 2 Figure 3 r-”lZ isotropic σ cow 111.

Claims (2)

【特許請求の範囲】[Claims] (1) 亜鉛又は亜鉛合金からなる負極粒子と糊剤粉末
とを混合して負極粒子表面に糊剤被覆層を形成せしめた
後、この負極粒子に糊剤被覆層を有しない負極粒子を混
合して混合負極粒子群を形成し、次いで同粒F JrY
o)一定量を負極容器内に収納した後アルカリ電解液を
注入して吸液させゲル状負極を形成することを特徴とす
る亜鉛−アルカリ電池用負極の製造方法。
(1) After mixing negative electrode particles made of zinc or zinc alloy with glue powder to form a glue coating layer on the surface of the negative electrode particles, negative electrode particles without a glue coating layer are mixed with the negative electrode particles. to form a mixed negative electrode particle group, and then the same particles F JrY
o) A method for producing a negative electrode for a zinc-alkaline battery, which comprises storing a certain amount in a negative electrode container, and then injecting and absorbing an alkaline electrolyte to form a gel-like negative electrode.
(2)混合負極粒子群中に糊剤被梱層を有しない負極粒
子を10〜60重量係含有することを特徴とする特許請
求の範囲第1項記載の亜鉛−アルカリ電池用負極の製造
方法。
(2) The method for producing a negative electrode for a zinc-alkaline battery according to claim 1, characterized in that the mixed negative electrode particles contain 10 to 60 negative electrode particles without a glue enveloping layer by weight. .
JP20451783A 1983-10-31 1983-10-31 Production method of negative electrode for zinc- alkaline cell Granted JPS60100366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20451783A JPS60100366A (en) 1983-10-31 1983-10-31 Production method of negative electrode for zinc- alkaline cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20451783A JPS60100366A (en) 1983-10-31 1983-10-31 Production method of negative electrode for zinc- alkaline cell

Publications (2)

Publication Number Publication Date
JPS60100366A true JPS60100366A (en) 1985-06-04
JPH0119740B2 JPH0119740B2 (en) 1989-04-12

Family

ID=16491840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20451783A Granted JPS60100366A (en) 1983-10-31 1983-10-31 Production method of negative electrode for zinc- alkaline cell

Country Status (1)

Country Link
JP (1) JPS60100366A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06243861A (en) * 1993-02-16 1994-09-02 Fuji Elelctrochem Co Ltd Alkaline cell
JP2005100677A (en) * 2003-09-22 2005-04-14 Toshiba Battery Co Ltd Button type alkaline battery and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06243861A (en) * 1993-02-16 1994-09-02 Fuji Elelctrochem Co Ltd Alkaline cell
JP2005100677A (en) * 2003-09-22 2005-04-14 Toshiba Battery Co Ltd Button type alkaline battery and its manufacturing method

Also Published As

Publication number Publication date
JPH0119740B2 (en) 1989-04-12

Similar Documents

Publication Publication Date Title
CN102132442A (en) Battery separator and method for producing same, and lithium ion secondary battery and method for producing same
US4122133A (en) Material for an alkaline cell separator and a process of making
TW200414580A (en) Liquid-absorbing composition, liquid-absorbing sheet, and nonaqueous electrolyte battery pack
JPS60100366A (en) Production method of negative electrode for zinc- alkaline cell
US3888700A (en) Absorbent separator for an electric battery
CN1204635C (en) Electrode structure, electric component and production methods
US3725129A (en) Method for preparing pasted nickel hydroxide electrode
JPS61163569A (en) Metal oxide-hydrogen secondary cell
US4253927A (en) Material for an alkaline cell separator and a process of making
JPS5882472A (en) Lead storage battery and manufacture thereof
US4206275A (en) Material for an alkaline cell separator and a process of making
CN108841025A (en) A kind of low moisture ceramic coating, ceramic slurry and preparation method thereof, ceramic diaphragm and lithium ion battery cell
US3749605A (en) Battery having zinc electrode containing tio2
JP2004055417A (en) Manufacturing method of pasty active material for positive electrode and lead storage battery using it
JPS59121779A (en) Manufacture of negative pole for zinc-alkali cell
JPS6161228B2 (en)
KR100666167B1 (en) Producing Method for Positive Electrode of Battery
JPH09147849A (en) Negative electrode for paste-type alkaline storage battery and its manufacture
JPH04104462A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH04104463A (en) Hydrogen storage alloy electrode and manufacture thereof
JPH0410708B2 (en)
US2080340A (en) Electric battery
JPS5854556A (en) Manufacture of alkaline battery
JPS5873958A (en) Manufacture of alkaline battery
JPS59114767A (en) Manufacture of hydrogen electrode