JPH04104463A - Hydrogen storage alloy electrode and manufacture thereof - Google Patents

Hydrogen storage alloy electrode and manufacture thereof

Info

Publication number
JPH04104463A
JPH04104463A JP2223980A JP22398090A JPH04104463A JP H04104463 A JPH04104463 A JP H04104463A JP 2223980 A JP2223980 A JP 2223980A JP 22398090 A JP22398090 A JP 22398090A JP H04104463 A JPH04104463 A JP H04104463A
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
liquid
electrode
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2223980A
Other languages
Japanese (ja)
Other versions
JPH07120528B2 (en
Inventor
Nobuhiro Yanagisawa
伸浩 柳沢
Tetsumasa Umemoto
哲正 梅本
Hirohisa Uchida
裕久 内田
Yoshito Matsumura
義人 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Sharp Corp
Original Assignee
Tokai University
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University, Sharp Corp filed Critical Tokai University
Priority to JP2223980A priority Critical patent/JPH07120528B2/en
Publication of JPH04104463A publication Critical patent/JPH04104463A/en
Publication of JPH07120528B2 publication Critical patent/JPH07120528B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the cycle characteristic and high-temperature preservation characteristic of a hydrogen storage alloy electrode by carrying the hydrogen storage alloy powder on a synthetic resin binder made of silicone resin and isobutylene-isoprene rubber. CONSTITUTION:One-liquid type liquid silicone rubber 5gr and isobutylene- isoprene rubber liquid rubber 15gr are mixed together to manufacture liquid synthetic resin binder raw material 20gr. Liquid synthetic resin binder raw material 20gr, hydrogen storage alloy powder LaNi4.5Al0.5 100gr with the grain size 45mum or below, and carbon black lgr serving as a conducting material are mixed together to manufacture a pasty hydrogen storage alloy coating liquid. The hydrogen storage alloy coating liquid is coated and filled on a current collector and dried and sufficiently hardened to manufacture a hydrogen storage alloy electrode with a preset shape. The stability of the electrode during the preservation in a high-temperature alkaline electrolyte can be improved.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、水素吸蔵合金電極とその製造方法に関する
。ことに、アルカリニ次電池の製造に用いられる。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a hydrogen storage alloy electrode and a method for manufacturing the same. In particular, it is used in the production of alkaline secondary batteries.

(ロ)従来の技術 水素吸蔵合金は、電気化学的な水素の吸蔵・放出の可逆
性か良く、その容量密度か高いため、高エネルギー密度
のアルカリニ次屓池の負極への応用か期待され、ニッケ
ル水素社1也等への適用について活発に研R,されてい
も。
(b) Conventional technology Hydrogen storage alloys have good reversibility in electrochemical storage and release of hydrogen, and their capacity density is high, so they are expected to be applied to negative electrodes of high energy density alkaline secondary ponds. Active research is being conducted on its application to Nickel Metal Hydride Co., Ltd., etc.

従来の水累吸7哉合金電極の製造方法は、水素吸蔵合金
塗布液(ペースト)を用いた電極の製造方法が知られて
おり、大面積の′電極を連続して作製することか可能で
あり量産に適した製造方法である。この方法は、微粉化
した水素吸、依り金扮米少C・アせヂレノブラック等の
り電財扮末と、ポリテトラフルオロエチレンのディスバ
ージョン液、ポリビニルアルコール水溶液を含ん7こ液
体とを混練してペースト化し、そのペーストや金網やエ
キスバンドメタル等の三次元多孔体或いは発泡メタル等
の三次元多孔体(集電体)に塗布充填し、乾燥し、電極
中の合金の充1m度を向上させるためロル等により加圧
成形して行われている(特公昭57−30273号公報
)。
The conventional manufacturing method for water-absorbing alloy electrodes uses a hydrogen-absorbing alloy coating liquid (paste), and it is possible to continuously manufacture large-area electrodes. This is a manufacturing method suitable for mass production. This method involves kneading finely powdered hydrogen absorbent, Noridenzai powder such as Yorikane Gakubeisho C, Asedileno Black, etc., and 7 liquids including a polytetrafluoroethylene dispersion liquid and an aqueous polyvinyl alcohol solution. Make a paste, apply the paste to a three-dimensional porous body (current collector) such as a wire mesh or expanded metal, or a three-dimensional porous body (current collector) such as a foamed metal, and dry to improve the degree of filling of the alloy in the electrode. This is done by pressure molding using a roll or the like (Japanese Patent Publication No. 30273/1983).

また、重合性液状シリコーンを用いて水素吸蔵合金粉末
をペースト化し、集電体に塗布充填後に重合性液状ンリ
コーンを重合硬化させて水素吸蔵合金を結着する方法も
知られている(例えばY、Matsumura、 L Sugiura、 tl、Uchida、 Zeits
chrift fur physikalische 
chemie Neue Folge、 Bd、164
. S、1545−1550(1989))。
There is also a known method in which hydrogen storage alloy powder is made into a paste using polymerizable liquid silicone, and the hydrogen storage alloy is bonded by coating and filling the current collector and then polymerizing and hardening the polymerizable liquid silicone (for example, Y, Matsumura, L Sugiura, tl, Uchida, Zeits
chrift fur physikalische
Chemie Neue Folge, Bd, 164
.. S, 1545-1550 (1989)).

(ハ)発明が解決しようとする課題 しかし、重合性液状シリコーンを用いて前記方法で得ら
れた水素吸蔵合金電極は、高温保存時に電解液の高濃度
アルカリ水溶液により徐々に加水分解し、結着剤の性能
か低下し、電極活物質である水素吸蔵合金の集電体との
電気的接触の不良或は電極から脱落が発生し、電極の充
放電容量が低下するという欠点があった。
(c) Problems to be Solved by the Invention However, the hydrogen storage alloy electrode obtained by the above method using polymerizable liquid silicone gradually hydrolyzes due to the highly concentrated alkaline aqueous electrolyte solution during high-temperature storage. This has the disadvantage that the performance of the agent deteriorates, and the hydrogen storage alloy, which is the electrode active material, has poor electrical contact with the current collector or falls off from the electrode, resulting in a decrease in the charge/discharge capacity of the electrode.

この発明は、上記欠点を解消するためになされたもので
あって、高温保存時、高濃度アルカリ水溶液によっても
結着剤が加水分解し難く、水素吸蔵合金が脱落せず、集
電体とよく電気的接触でき、電極の充放電容量を高く維
持しうる信頼性の高い水素吸蔵合金電極及びその製造方
法を提供することを目的とする。
This invention was made in order to eliminate the above-mentioned drawbacks, and the binder is difficult to hydrolyze even with a highly concentrated alkaline aqueous solution during high-temperature storage, the hydrogen storage alloy does not fall off, and the current collector is well bonded with the binder. It is an object of the present invention to provide a highly reliable hydrogen storage alloy electrode that can make electrical contact and maintain a high charge/discharge capacity of the electrode, and a method for manufacturing the same.

(ニ)課題を解決するための手段 この発明者らは、上記目的を達成すべく鋭意研究を重ね
た結果、合成樹脂結着剤としてシリコーン樹脂に加えて
、ブチルゴムを併用すると、電極の高温での安定性か向
上することを見いたし、この発明に至った。
(d) Means for Solving the Problems As a result of extensive research to achieve the above object, the inventors found that the use of butyl rubber in addition to silicone resin as a synthetic resin binder can reduce the high temperature of electrodes. It was found that the stability of the compound was improved, and this led to this invention.

この発明によれば、水素吸蔵合金粉末が、ソリコーン樹
脂及びブチルゴムからなろ合成樹脂結着剤に担持されて
なる水素吸蔵合金電極か提供される。
According to the present invention, a hydrogen storage alloy electrode is provided in which hydrogen storage alloy powder is supported on a synthetic resin binder made of soricone resin and butyl rubber.

上記水素吸蔵合金は、特に限定するらのはなく、アルカ
リ電解液中で安定して電気化学的に水素を吸蔵、放出可
能なものであれば良く、例えばLaN i 5MmN 
i 5 (Mm  ミツノヨメタル)、これらのL a
  Mm、 N iの一部を池の金属元素、例えばAI
、Mn、Co、T i、Zrで置換した多元系合金、Z
 r N l を系合金、T1Ni系合金、Ti2Ni
系合金、T i N i 2系合金等を挙げることがで
きる。合金の形状としては、通常機賊的に粉砕、或いは
水素ガスの吸蔵・放出の繰り返しにより微粉化した平均
粒径lO〜50μm程度の粉末か用いられる。
The above hydrogen storage alloy is not particularly limited as long as it can stably electrochemically store and release hydrogen in an alkaline electrolyte, such as LaN i 5MmN.
i 5 (Mm Mitsunoyo Metal), these La
A part of Mm, Ni is replaced with a metallic element such as AI
, Mn, Co, Ti, Zr-substituted multi-element alloy, Z
r N l is a type alloy, T1Ni type alloy, Ti2Ni type alloy,
Examples include T i N i type alloys and T i N i 2 type alloys. The shape of the alloy used is usually a powder having an average particle size of about 10 to 50 μm, which has been pulverized mechanically or by repeated occlusion and release of hydrogen gas.

上記合成樹脂結着剤は、高濃度アルカリ水溶液中におい
て水素吸蔵合金粉末を担持するためのちのてあって、シ
リコーン樹脂及びブチルゴムからなる。
The synthetic resin binder is used to support the hydrogen storage alloy powder in a highly concentrated alkaline aqueous solution, and is made of silicone resin and butyl rubber.

シリコーン樹脂としては、集電体への接着性及び製造工
程における水素吸蔵合金粉末との混合(ペスト化)の容
易性から、原料として、液状のプレポリマー及び/ま几
はモノマー状態の重合性液状シリコーンを原料として用
いるのが好ましく、例えば1液型、或は2液型液状シリ
コーンゴムが用いられ、ペースト塗布充填後に室温放置
、加熱等により重合硬化させて用いる。ブチルゴムとし
ては、同様に液状のプレポリマー及び/またはモノマー
を含む液状ゴム状態の重合性液状ブチルゴムを原料とし
て用いるのが好ましい。また、合成樹脂結着剤には、こ
の池にポリビニルアルコール、カルボキノメチルセルロ
ース、ポリエチレン、ポリテトラフルオロエチレン等を
更に少量配合しても良い。
As silicone resin, liquid prepolymers and/or polymers are used as raw materials because of their adhesion to current collectors and ease of mixing with hydrogen storage alloy powder (paste formation) during the manufacturing process. It is preferable to use silicone as a raw material, and for example, one-component or two-component liquid silicone rubber is used, and after coating and filling the paste, it is allowed to polymerize and harden by standing at room temperature, heating, etc. As the butyl rubber, it is preferable to similarly use a polymerizable liquid butyl rubber in a liquid rubber state containing a liquid prepolymer and/or a monomer as a raw material. Further, as a synthetic resin binder, a small amount of polyvinyl alcohol, carboquinomethyl cellulose, polyethylene, polytetrafluoroethylene, etc. may be added to this pond.

シリコーン樹脂とブチルゴムとの混合比は、通常1/l
O〜10/l、好ましくはl/4〜4/1の重量比であ
る。
The mixing ratio of silicone resin and butyl rubber is usually 1/l.
The weight ratio is from 0 to 10/l, preferably from 1/4 to 4/1.

また、シリコーン樹脂とブチルゴムは、その合計量で、
通常合成樹脂結着剤中20〜100重量%、好ましくは
60〜100重量%含有される。
In addition, the total amount of silicone resin and butyl rubber is
It is usually contained in the synthetic resin binder in an amount of 20 to 100% by weight, preferably 60 to 100% by weight.

水素吸蔵合金電極中の水素吸蔵合金粉末と合成樹脂結着
剤との構成比は、通常+00/1〜100/30、好ま
しくは10.015〜l 00/20の重量比である。
The composition ratio of the hydrogen storage alloy powder and the synthetic resin binder in the hydrogen storage alloy electrode is usually +00/1 to 100/30, preferably 10.015 to 100/20 by weight.

I OO/30未満ては、電池に構成したときの電池容
量が低下するので好ましくない。+ 00/I超ては、
電極の成形が困難となるので好ましくない。
If it is less than IOO/30, it is not preferable because the battery capacity when constructed into a battery decreases. If it exceeds +00/I,
This is not preferable because it makes it difficult to mold the electrode.

また、この発明の水素吸蔵合金電極は、水素吸蔵合金と
前記合成樹脂結着剤とから構成できるが、この他に適宜
導電剤を含有させてもよい。導電剤としては、例えばグ
ラファイト、アセチレンブラック等を用いることかでき
る。この量は、通常水素吸蔵合金100重量ii>に対
して5重量部以];が好ましい。
Further, the hydrogen storage alloy electrode of the present invention can be composed of the hydrogen storage alloy and the synthetic resin binder, but may contain an appropriate conductive agent in addition to this. As the conductive agent, for example, graphite, acetylene black, etc. can be used. This amount is usually preferably 5 parts by weight or more based on 100 parts by weight of the hydrogen storage alloy.

この発明?5二よれば、水素吸蔵合金粉末に重合性液状
ノ1)コーン伎び重り性液状ブチルゴムからなる液状合
成樹脂結着剤1京料を混合して水素吸蔵合金塗布液を作
製し、この水素吸、軸塗布液を集電体に塗布充填し硬化
することによって水素吸蔵合金電極を作製4−ることを
特徴と4−る水素吸蔵合金型(明の製造力、去か(是(
4(されるっ−)−肥液状合成樹脂(1【;着i’il
l啄利:よ、通常高粘度な重合性液状シリ:1−ン及び
重合性液状ブチルゴムを撹f′4′[、、雨音を均一に
分1孜させて作製することかできる0、この液状合成樹
脂結着剤原料と水素吸蔵合金粉末と必要に応じて導電剤
粉末を所定の割合で混合し水素吸蔵合金塗布液を作製す
る。
This invention? According to 52, a hydrogen absorbing alloy coating solution is prepared by mixing a polymerizable liquid synthetic resin binder consisting of 1) cone and heavy liquid butyl rubber with a hydrogen absorbing alloy powder. 4- A hydrogen-absorbing alloy electrode is fabricated by coating and filling a current collector with a shaft coating liquid and curing it.
4 (sareru-) - Fertilizer liquid synthetic resin (1 [; wear i'il
This product can be prepared by stirring the normally high viscosity polymerizable liquid silicone and polymerizable liquid butyl rubber to evenly distribute the rain. A hydrogen storage alloy coating liquid is prepared by mixing a liquid synthetic resin binder raw material, a hydrogen storage alloy powder, and, if necessary, a conductive agent powder at a predetermined ratio.

−の水素吸蔵合金塗布液を、例えば金網エキスバンドメ
タル等の集電体に所定の厚さで塗布充填し、通常80〜
100°Cて乾燥し、その後頁に室温放置、加熱、或は
紫外線等の照射により重合・硬化させ−ご水素吸蔵合金
電極を得ろことかできる。
- A hydrogen storage alloy coating liquid is coated and filled to a predetermined thickness on a current collector such as a wire mesh expanded metal.
It is dried at 100°C, and then allowed to stand at room temperature, heated, or irradiated with ultraviolet rays to polymerize and harden to obtain a hydrogen storage alloy electrode.

二の発明のペーストの配合比は、水素吸蔵合金粉末を1
00重量部としたとき、重合性液状ノリコノは、1〜2
5重量部、重合性液状ブチルゴムは、1〜15重量部で
めろことか好ましく、導電材は、通常01〜5重上部で
よい。又、ペーストの粘度を調整する目的で例えば、メ
チルエチルケトン、トルエン、Jタノール等の溶剤を加
えても良い。
The blending ratio of the paste of the second invention is 1 part hydrogen storage alloy powder.
00 parts by weight, the polymerizable liquid Norikono contains 1 to 2 parts by weight.
5 parts by weight, the polymerizable liquid butyl rubber is preferably 1 to 15 parts by weight, and the conductive material is usually 01 to 5 parts by weight. Further, for the purpose of adjusting the viscosity of the paste, a solvent such as methyl ethyl ketone, toluene, J-tanol, etc. may be added.

(ポ)作用 水素吸蔵合金粉末と混合さ、!−几シリコーン樹脂か、
その接着性に上り集電体と水素吸蔵合金粉末を強固に接
着して電極の集電体を向上させると共に、水素吸蔵合金
表面に保護皮膜を形成し、電極の製造工程にお+′、l
る合金の酸化、或いはアルカリニ次電池の充電時におい
て発生する酸素ガスによる電極の酸化から合金を保護し
、電極特性の安定化、電極のサイクル寿命を向上させる
。また、ブチルゴムが、その粘着性とアルカリに対する
安定性により、高温のアルカリ電解液中ての保存におけ
る電極の安定性の向上に寄与する。
(PO) Mixed with action hydrogen storage alloy powder,! - Silicone resin or
Its adhesive property improves the current collector of the electrode by firmly adhering the current collector and the hydrogen storage alloy powder, and it also forms a protective film on the surface of the hydrogen storage alloy, which improves the electrode manufacturing process.
This protects the alloy from oxidation of the alloy or the oxidation of the electrode due to oxygen gas generated during charging of an alkaline secondary battery, stabilizes the electrode characteristics, and improves the cycle life of the electrode. Additionally, butyl rubber contributes to improving the stability of the electrode during storage in high-temperature alkaline electrolytes due to its tackiness and stability against alkalis.

(へ)実施例 実施例1 1液型液状ノリコ・−ンゴム(信越化学社製、重合性液
状シリコーン、KE−44) 5 ’iとブヂルゴム系
液状ゴl、(コニンボンド社製、重合性液状ブチルゴム
、ブチルコーク)I59とを混合して液状合成樹脂結着
剤原料を209を作製する。
(F) Examples Example 1 1-component liquid Noriko-n rubber (manufactured by Shin-Etsu Chemical Co., Ltd., polymerizable liquid silicone, KE-44) 5'i and butyl rubber-based liquid rubber (manufactured by Konin Bond Co., Ltd., polymerizable liquid butyl rubber) , butyl coke) I59 to prepare a liquid synthetic resin binder raw material 209.

次に、この液状合成樹脂結着剤原料209に、水素化に
より粉砕した粒径45μm以下の水素吸蔵合介粉末La
Ni、+ 5AI051009と導@fAのカーホンブ
ラック19とを混合してペースト状の水素吸蔵合金塗布
液を作製しん。
Next, hydrogen-absorbing synthetic powder La having a particle size of 45 μm or less, which has been pulverized by hydrogenation, is added to the liquid synthetic resin binder raw material 209.
A paste-like hydrogen storage alloy coating solution was prepared by mixing Ni,+5AI051009 and Carphone Black 19 from Ni@fA.

次に、この水素吸蔵合金チ布液を集電体であるエキスバ
ンドメタルに塗布充填し、80℃で2時間乾燥し、その
後室温で放置し、十分便化させ、所定形状の水素吸蔵合
金電極を作製した。
Next, this hydrogen storage alloy cloth solution was applied and filled onto an expanded metal as a current collector, dried at 80°C for 2 hours, and then left at room temperature to be thoroughly evaporated. was created.

実施例2 液状シリコーンゴム(KE−44) 10LiIとブチ
ルゴム系液状ゴム(ブチルコーク)59とを用いた他は
実施例1と同様にして水素吸蔵合金電極を作製した。
Example 2 A hydrogen storage alloy electrode was produced in the same manner as in Example 1, except that liquid silicone rubber (KE-44) 10LiI and butyl rubber-based liquid rubber (butyl coke) 59 were used.

比較例1 液状シリコーンゴム15yのみを用いブチル系液状ゴム
を用いなかった池は、前記実施例1と同様にして水素吸
蔵合金電極を作製した。
Comparative Example 1 A hydrogen storage alloy electrode was fabricated in the same manner as in Example 1 using only liquid silicone rubber 15y without using butyl liquid rubber.

比較例2 ブチル系液状ゴム15gのみを用い液状シリコーンゴム
を用いなかった池は、前記実施例1と同様にして水素吸
蔵合金電極を作製した。
Comparative Example 2 A hydrogen storage alloy electrode was prepared in the same manner as in Example 1 using only 15 g of butyl-based liquid rubber and no liquid silicone rubber.

以上作製した電極を第1図に示すようなガラス製電池セ
ル5の中に組込み、充放電試験器8を用いて充放電を行
い、充放電サイクルに伴う放電容量の変化を測定した。
The electrode prepared above was assembled into a glass battery cell 5 as shown in FIG. 1, and charged and discharged using a charge and discharge tester 8, and changes in discharge capacity due to charge and discharge cycles were measured.

第1図において、水素吸蔵合金電照1は、ポリプロピレ
ン不織布のセパレタ3を挟んで、公知の酸化ニッケル電
極2と対向している。電解液7には、7.2M KOH
水溶液、参照電極4には酸化水銀電極を用い、充放電中
の水素吸蔵合金電極の電(ケを測定した。尚、酸化ニッ
ケル電極の容量は、それぞれの電極中の水素吸蔵合金の
容量を300 mAh/ gとして、その2分の1の容
量とした。
In FIG. 1, a hydrogen storage alloy light source 1 faces a known nickel oxide electrode 2 with a separator 3 of polypropylene nonwoven fabric in between. Electrolyte 7 contains 7.2M KOH
A mercury oxide electrode was used as the aqueous solution and the reference electrode 4 to measure the voltage of the hydrogen storage alloy electrode during charging and discharging.The capacity of the nickel oxide electrode is 300 The capacity was set as 1/2 of that in mAh/g.

電極の評価は以下のように行った。まず電極の充放電サ
イクルを行い、充電容量を測定した。その結果を第2図
に示す。図中、曲線A、B、CDはそれぞれ実施例1、
実施例2、比較例11比較例2で作製した水素吸蔵合金
電極の特性である。
The electrodes were evaluated as follows. First, the electrodes were subjected to charge/discharge cycles and the charge capacity was measured. The results are shown in FIG. In the figure, curves A, B, and CD represent Example 1, respectively.
Example 2, Comparative Example 11 These are the characteristics of the hydrogen storage alloy electrode produced in Comparative Example 2.

その際、充電は、酸化ニッケル電極の容量を5時間て充
電できる電流(0,2C)で75時間行い、放電は、充
電と同し電流で0.8Vまて行った。比較例2(曲線D
)の電極は初期容量が小さく、サイクル特性ら悪かった
ため、以後の評価を中止した。
At that time, charging was performed for 75 hours at a current (0.2 C) that can charge the capacity of the nickel oxide electrode in 5 hours, and discharging was performed at the same current as charging to 0.8 V. Comparative example 2 (curve D
) had a small initial capacity and poor cycle characteristics, so further evaluation was discontinued.

電極の初期容量の測定後、ガラスセルを60℃の恒温槽
中に20日間放置し、その後再充電し、保存後の放電容
量を測定した。その結果を第3図に示す。横軸の充電容
量は水素吸蔵合金の重量当りの値に換算しである。保存
後比較例1の電極では、電池セルの底に電極から脱落し
た電極合剤の沈澱か認められた。図中、曲線A、B、C
は、それぞれ実施例1、実施例2、比較例1の特性であ
る。
After measuring the initial capacity of the electrode, the glass cell was left in a constant temperature bath at 60° C. for 20 days, then recharged, and the discharge capacity after storage was measured. The results are shown in FIG. The charging capacity on the horizontal axis is converted into a value per weight of the hydrogen storage alloy. After storage, in the electrode of Comparative Example 1, precipitation of the electrode mixture that had fallen off from the electrode was observed at the bottom of the battery cell. In the figure, curves A, B, and C
are the characteristics of Example 1, Example 2, and Comparative Example 1, respectively.

合成樹脂結着材として、シリコーン樹脂及びブチルゴム
を含む実施例の電極がサイクル特性、高温保存特性共に
良好であり、この発明か水素吸蔵合金電極の高温保存特
性の向上に有効であることが確認された。
The electrodes of the examples containing silicone resin and butyl rubber as synthetic resin binders had good cycle characteristics and high-temperature storage characteristics, and it was confirmed that the present invention is effective in improving the high-temperature storage characteristics of hydrogen-absorbing alloy electrodes. Ta.

合成樹脂結着剤として、シリコーン樹脂、ブチルゴムに
加えて、ポリテトラフルオロエチレン、ポリエチレン、
ポリビニルアルコール等を更に添加したちのを作製した
か、上記実施例と同様の効果てあった。
In addition to silicone resin and butyl rubber, polytetrafluoroethylene, polyethylene,
The same effect as in the above example was obtained by further adding polyvinyl alcohol or the like.

(ト)発明の効果 この発明によれば、アルカリニ次電池用電匪としてサイ
クル特性及び高温保存特性の良好な水素吸蔵合金電極と
その製造方法を提供することかできる。この水素吸蔵合
金電極は、高エネルギー密度の電極としてその工業的価
値は犬である。
(g) Effects of the Invention According to the present invention, it is possible to provide a hydrogen storage alloy electrode having good cycle characteristics and high temperature storage characteristics as a battery for alkaline secondary batteries, and a method for manufacturing the same. This hydrogen storage alloy electrode has great industrial value as a high energy density electrode.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例及び比較例で作製した水素吸
蔵合金電極の特性評価に用いた電気化学セルの説明図、
第2図は同じく初期充放電ザイクル試験における放電容
量の変化を示した図、第3図は同じく60°C保存試験
後の充電特性を示した図である。 @ 1 図 2  ・ 3  ・ 5−・ ・ 6・ 7 ・ ・ ・水素吸蔵合金電極、 酸化ニッケル電極、 セパ1ノータ、4 ガラス製電池セル、 ポリエチレン製電極おさえ、 電解液、8・ −充放電試験器。 ・・酸化水銀電極、
FIG. 1 is an explanatory diagram of an electrochemical cell used to evaluate the characteristics of hydrogen storage alloy electrodes prepared in Examples and Comparative Examples of the present invention;
FIG. 2 is a diagram similarly showing the change in discharge capacity in the initial charge-discharge cycle test, and FIG. 3 is a diagram similarly showing the charging characteristics after the 60° C. storage test. @ 1 Figure 2 ・ 3 ・ 5-・ ・ 6 ・ 7 ・ ・ ・Hydrogen storage alloy electrode, nickel oxide electrode, Separator 1 node, 4 Glass battery cell, polyethylene electrode retainer, electrolyte, 8. -Charging and discharging test vessel.・Mercury oxide electrode,

Claims (1)

【特許請求の範囲】 1、水素吸蔵合金粉末が、シリコーン樹脂及びブチルゴ
ムからなる合成樹脂結着剤に担持されてなる水素吸蔵合
金電極。 2、水素吸蔵合金粉末に重合性液状シリコーン及び重合
性液状ブチルゴムからなる液状合成樹脂結着剤原料を混
合して水素吸蔵合金塗布液を作製し、この水素吸蔵塗布
液を集電体に塗布充填し硬化することによって水素吸蔵
合金電極を作製することを特徴とする水素吸蔵合金電極
の製造方法。
[Claims] 1. A hydrogen storage alloy electrode comprising hydrogen storage alloy powder supported on a synthetic resin binder made of silicone resin and butyl rubber. 2. Prepare a hydrogen storage alloy coating liquid by mixing hydrogen storage alloy powder with a liquid synthetic resin binder material consisting of polymerizable liquid silicone and polymerizable liquid butyl rubber, and apply and fill the current collector with this hydrogen storage alloy coating liquid. 1. A method for manufacturing a hydrogen storage alloy electrode, which comprises manufacturing a hydrogen storage alloy electrode by hardening the hydrogen storage alloy.
JP2223980A 1990-08-23 1990-08-23 Hydrogen storage alloy electrode and method for manufacturing the same Expired - Fee Related JPH07120528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2223980A JPH07120528B2 (en) 1990-08-23 1990-08-23 Hydrogen storage alloy electrode and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2223980A JPH07120528B2 (en) 1990-08-23 1990-08-23 Hydrogen storage alloy electrode and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04104463A true JPH04104463A (en) 1992-04-06
JPH07120528B2 JPH07120528B2 (en) 1995-12-20

Family

ID=16806691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2223980A Expired - Fee Related JPH07120528B2 (en) 1990-08-23 1990-08-23 Hydrogen storage alloy electrode and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JPH07120528B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100108543A1 (en) * 2007-02-05 2010-05-06 Asahi Kasei E-Materials Corporation Composition comprising hydrogen storage alloy and resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100108543A1 (en) * 2007-02-05 2010-05-06 Asahi Kasei E-Materials Corporation Composition comprising hydrogen storage alloy and resin
US8607969B2 (en) * 2007-02-05 2013-12-17 Asahi Kasei E-Materials Corporation Composition comprising hydrogen storage alloy and resin

Also Published As

Publication number Publication date
JPH07120528B2 (en) 1995-12-20

Similar Documents

Publication Publication Date Title
EP1249882B1 (en) Binder for use in electrolyte of lithium ion secondary cell and use thereof
JP3138120B2 (en) Metal hydride storage battery
JPH01649A (en) Hydrogen storage alloy electrode and its manufacturing method
JPH04104463A (en) Hydrogen storage alloy electrode and manufacture thereof
US3888695A (en) Rechargeable cell having improved cadmium negative electrode and method of producing same
KR100663180B1 (en) Anode active material for lithium secondary battery having high energy density
JPS61163569A (en) Metal oxide-hydrogen secondary cell
CN112670517A (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
JPH02281560A (en) Nickel-hydrogen alkaline storage battery
JPH07120527B2 (en) Hydrogen storage alloy electrode and method for manufacturing the same
JPS60202666A (en) Paste type cadmium anode plate for alkaline storage battery
US4765799A (en) Latex coated electrodes for rechargeable cells
JPS5916272A (en) Lithium battery
JPH09147841A (en) Negative electrode plate for lead acid battery and its manufacture
JP4790205B2 (en) Battery electrode
JP3040760B2 (en) Method for producing active material for positive electrode of alkaline secondary battery, method for producing alkaline secondary battery using positive electrode containing the active material
JP3066021B2 (en) Method for producing active material for positive electrode of alkaline secondary battery, method for producing alkaline secondary battery using positive electrode containing the active material
JPS61208755A (en) Pasted negative cadmium plate for sealed alkaline storage battery
KR102424527B1 (en) Method for manufacturing electrode plate of lead acid battery with improved active material adhesion by applying conductive graphite silicon
JPH03190060A (en) Polyaniline battery
JPH113703A (en) Manufacture of alkaline storage battery positive electrode
JPS60140657A (en) Production of hydrogen-occluding electrode
JPS59114767A (en) Manufacture of hydrogen electrode
JPH02152162A (en) Manufacture of sintered electrode for storage battery
JP3614567B2 (en) Sealed nickel metal hydride battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees