JPS5999980A - Stopping position deciding controller by induction motor - Google Patents

Stopping position deciding controller by induction motor

Info

Publication number
JPS5999980A
JPS5999980A JP20793882A JP20793882A JPS5999980A JP S5999980 A JPS5999980 A JP S5999980A JP 20793882 A JP20793882 A JP 20793882A JP 20793882 A JP20793882 A JP 20793882A JP S5999980 A JPS5999980 A JP S5999980A
Authority
JP
Japan
Prior art keywords
induction motor
frequency
output
unit
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20793882A
Other languages
Japanese (ja)
Inventor
Naka Kawaguchiya
川口屋 仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M SYST GIKEN KK
Original Assignee
M SYST GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M SYST GIKEN KK filed Critical M SYST GIKEN KK
Priority to JP20793882A priority Critical patent/JPS5999980A/en
Publication of JPS5999980A publication Critical patent/JPS5999980A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/02Details of stopping control
    • H02P3/025Details of stopping control holding the rotor in a fixed position after deceleration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Stopping Of Electric Motors (AREA)

Abstract

PURPOSE:To rigidly hold the stop of a movable unit at the prescribed position by generating a reverse torque in a motor when the unit passes the prescribed position, returning the unit to the original, and generating a motor torque against an external force when the external force is operated on the unit. CONSTITUTION:A cycloconverter 2 controls by the voltage of a pulse width an AC frequency supplied through a 3-phase transformer 21 from a 3-phase AC power source by the duty cycle of a control pulse signal from a controller 6 contained in a microcomputer and inputs it to a 3-phase induction motor 3 connected to terminals U-W. The output frequency of the cycloconverter 2 varies positively or negatively by the value of the frequency of the control pulse signal varying by the detected position output of a movable unit from a position detector to vary the rotating direction. When an external force is applied to the unit in the negative direction after the prescribed stop, the output frequency and the output voltage of the cycloconverter 2 rise by the detected ultrafine variation signal of the position detector, and the unit is returned to the original position by the torque of the induction motor.

Description

【発明の詳細な説明】 本発明は停止位置決め制御装置に関し、更に詳しくは、
多相誘導電動機で駆動されて変位する移動体を、誘導電
動機へ供給される電源の周波数と極性を制御することに
より所定位置を中心として所定の幅内に停止させる装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a stop positioning control device, and more particularly:
The present invention relates to a device for stopping a moving body, which is displaced by a multiphase induction motor, within a predetermined width around a predetermined position by controlling the frequency and polarity of power supplied to the induction motor.

電動機で駆動されて変位する移動体を所定位置に停止さ
せる場合、その所定位置からの移動体の変位量を検出す
る位置検出手段を設け、その出刃信号によって電動機の
回転数を制御することにより、所定位置への接近度に応
じて移動体の速度を低下させ、移動体が所定停止位置の
少し手前のあらかじめ定められた点に達した時に電動機
への通電を遮断し、その後は惰力を利用して移動体を所
定位置に到達させ、そこで停)1−させるというのが従
来の方法であった。この場合、惰力による移動距離は、
移動体各部に生ずる摩擦力と、電動機への通電遮断時に
おける移動体の速度にょっ−C決るが、通電遮断時の速
度が如何に正確に制御されたとしても、摩擦力の方は摩
擦部の表面状態、潤滑剤の量および温度等によって微妙
に変化するので、移動体が所定位置に達−ロす、または
、そこを通過して停止1−することがしばj7ばおころ
。また、停止1−後に、移動体に変位をおこさせるよう
な久方が作用する場合にはブレーキを設りる必要がある
When a movable body that is displaced by an electric motor is stopped at a predetermined position, a position detection means is provided to detect the amount of displacement of the movable body from the predetermined position, and the rotational speed of the electric motor is controlled by the blade signal. The speed of the moving object is reduced according to the degree of approach to a predetermined position, and when the moving object reaches a predetermined point slightly before the predetermined stop position, the power to the motor is cut off, and after that, inertia is used. The conventional method was to make the moving body reach a predetermined position and stop there. In this case, the distance traveled by inertia is
This is determined by the frictional force generated in each part of the moving body and the speed of the moving body when power is cut off to the motor, but no matter how accurately the speed at the time of power cutoff is controlled, the frictional force is Since the surface condition of the surface of the surface of the surface of the surface of the surface of the surface of the lubricant varies slightly depending on the amount of lubricant, the temperature, etc., it is often difficult for a moving object to reach a predetermined position or stop after passing through the predetermined position. Furthermore, if a force that causes displacement of the movable body acts on the movable body after the first stop, it is necessary to provide a brake.

本発明は移動体が所定位置の手前に停tl二することが
なく、また、所定位置を通過した場合には、直ちに電動
機に逆転1−ルクが発生して移動体を元に戻し、か“′
])、停止後においても移動体に変位をりえようとする
外力が作用すれば、電動機が直ちにそれに対抗するトル
クを発生し、移動体を所定位置近傍で強固に停止状態に
保つことができ、従ってまたブ1.・−キを必要と1.
ない停止ト位置決め制御装置の1v供をその目的として
いる。
In the present invention, the movable body does not stop before the predetermined position, and when it passes the predetermined position, a reverse torque is immediately generated in the electric motor to return the movable body to its original position. ′
]), even after stopping, if an external force that tries to displace the moving object acts on the moving object, the electric motor immediately generates a torque to counter it, and the moving object can be firmly stopped near a predetermined position. Therefore, B1. - Requires key 1.
Its purpose is to provide 1V for a positioning control device that does not require a stop.

−1−記目的の達成のため、本発明による(? +I−
:、位置決め制御装置乙51、移動体の位置検出手段の
出力信号により、多相誘導電動機電源の周波数、電圧お
よび極性を制御する機能を右し2ている。
In order to achieve the objective -1-, the present invention (? +I-
: The positioning control device 51 has a function of controlling the frequency, voltage, and polarity of the multiphase induction motor power supply according to the output signal of the position detection means of the moving body.

以下に本発明の実施例を図面に基づいて説明する。第1
図は本発明実施例の構成を示すブロック図で、例えば商
用下相交流電源1よりザイクLEzンハータ2を通して
三相誘導電動機3に電力が供給されている。移動体4は
三相誘導電動機3によって駆動され、その位置、即ち、
所定点よりの変位はパルス発生器を用いた位置検出器5
によ、って検出される。イ装置検出器5は移動体4の位
置に関する情報をパルス信号から成る位置検出14号と
17で制御部6に送り、マイクロコンビ1−夕を内臓す
るこの制御部6は位置検出信号に応じた制御パルス信−
」をサイクロ:1ンハータ2に入力する。ザイク11 
:lンバータ2ば、この制御パルス信号により五組交流
電源1の周波数と電1丁を、移動体40所定位置への接
近度に応じて制御し、誘導電動機3の回転数を制御する
Embodiments of the present invention will be described below based on the drawings. 1st
The figure is a block diagram showing the configuration of an embodiment of the present invention, in which, for example, power is supplied from a commercial lower phase AC power source 1 to a three-phase induction motor 3 through a ZIKEN hearter 2. The moving body 4 is driven by a three-phase induction motor 3, and its position, that is,
Displacement from a predetermined point is measured by a position detector 5 using a pulse generator.
It is detected by The device detector 5 sends information regarding the position of the moving body 4 to the control unit 6 using position detection signals 14 and 17 consisting of pulse signals, and this control unit 6, which includes a microcombi 1-1, responds to the position detection signal. Control pulse signal
” into Cyclo:1 Inharter2. Zaik 11
The inverter 2 controls the frequency of the five sets of AC power sources 1 and one electric power source according to the degree of approach of the moving body 40 to a predetermined position, and controls the rotational speed of the induction motor 3 using this control pulse signal.

この場合、ジイクしIJ!ンハ・−夕2は、そ、二に入
力される制御パルス信号のデノ、−ティザイクルによ−
って■相交流電源1から供給される交流の周波数を、ま
たパルス幅によって電圧を制御しτニー相誘導電動機3
に入力する。サイクロコンバータ2の出力周波数f (
iはぞ相交流電源1の周波数f [1とL記制御パルス
信号の周波数fc(デユーティ・シイクル)との差fd
 =f(3−fcとして与えられる。このfdの値は、
位置検出器5の出力信号によって変わる制御パルス信号
の周波数f cの値によっては、正負の画成にわたって
変化するが、fdの符■−のj逆転はカイクロコンバー
タの場合その出力する三相交流の極性の逆転を意味する
。このようにして刃イクロコンバータ2は、誘導電動機
3へ供給される三相交流の周波数および電圧を制御する
1段と、−二相交流の極性を反転さ・lて誘導電動機の
回転方向を逆転させる1段とを兼備している。
In this case, IJIKU! The control pulse signal input to the controller 2 is determined by the cycle of the control pulse signal input to the controller 2.
By controlling the frequency of the AC supplied from the ■phase AC power supply 1 and the voltage according to the pulse width, the τ knee-phase induction motor 3
Enter. Output frequency f of cycloconverter 2 (
i is the frequency f of the phase AC power supply 1 [the difference fd between 1 and the frequency fc (duty cycle) of the control pulse signal indicated in L]
= f (given as 3-fc. The value of this fd is
The frequency f of the control pulse signal changes depending on the output signal of the position detector 5. Depending on the value of c, it changes over positive and negative divisions, but in the case of a cycloconverter, the three-phase alternating current it outputs means the reversal of the polarity of In this way, the blade microconverter 2 has one stage that controls the frequency and voltage of the three-phase AC supplied to the induction motor 3, and one that reverses the polarity of the two-phase AC and reverses the rotation direction of the induction motor. It also has one stage.

次Qこ、本実於1例における勺イクロコンバータ2と、
その制御部にの実施例について説明する。
Next Q: The microconverter 2 in this example,
An embodiment of the control section will be described.

第2図に、制御部6とシイクロコンバータ2の回路構成
を示す。制御部6はマイクロコンピュータにより構成さ
れでいる。制御部6の入力用インターフェース11には
位置検出器5(第1図)よりの位置検出信号と、移動体
4(第1図)の停止位置を指定するデジタル設定器14
の出力とが入力されている。ROMには制御用プログラ
ム等を記憶する。出力用インターフェース15は21[
1i1のフリソプフ11ツブFFI とFF2を備えこ
のフリップフロップの状態信号を出力する。このフリ・
7ブフロノブFF、とFF2は2相のパルス信号P1と
P2を発生させるためのもので、第3図に示すように、
周期Tごとにセットとリセットを繰り返し、FF+ と
FF2とは180°の位相差を有し、セットからリセノ
1−までの時間、ずなわら論理″1”の時間ば1゛aで
ある。CPUI 6はクロック発生器及びカウンタを内
蔵し、プログラムに(I:いFFI、J:FF2のセッ
ト及びリセットを制御する6後述するようにフリソプフ
11ツブF Fl とFF2が出力する状態信号の周期
Tがサイクロ7ンパータの出力周波数を、パルス幅′1
゛αが出力電圧を決定するのである。′rおよび1゛α
の(1〜はRAM13に記憶されている。フリップフロ
ップF F 1及びl−’ I=” 2の出力はザイク
ロ゛1ンバータ2の制御信号入力部にあるホ1−カプラ
PC1,PC2の発光素子に導入される。ホ1−カプラ
PC1のホl−)ランジスタ出力は第1のトランジスタ
駆動用増幅回路17に入力され、ポトI−ランジスタ受
光時に’y’−1−信号G1が■■iレベルになってパ
ワー用1−ランジスタI9を導通さ・口る。同様にして
、ホトカプラP C2のホトl・ランジスタ出力は第2
のトランジスタ駆動用増幅回路18に入力され、ボ1−
トランジスタ受光時にグーI−信号G2がHiレベルに
なってパワートランジスタ20を導通さゼる。
FIG. 2 shows the circuit configuration of the control section 6 and the cycloconverter 2. The control section 6 is constituted by a microcomputer. The input interface 11 of the control unit 6 includes a position detection signal from the position detector 5 (FIG. 1) and a digital setting device 14 that specifies the stop position of the moving body 4 (FIG. 1).
The output and the input are input. The ROM stores control programs and the like. The output interface 15 is 21 [
It has 11 flip-flops FFI and FF2, and outputs the state signal of this flip-flop. This pretend
7 Buflo knobs FF and FF2 are for generating two-phase pulse signals P1 and P2, as shown in Figure 3.
Setting and resetting are repeated every cycle T, FF+ and FF2 have a phase difference of 180°, and the time from setting to reset 1- is 1 a for the logic "1". The CPU 6 has a built-in clock generator and a counter, and the program (I: FFI, J: controls the set and reset of FF2).As will be described later, the CPU 6 has a built-in clock generator and a counter. is the output frequency of the Cyclo 7 parter, and the pulse width '1
゛α determines the output voltage. ′r and 1゛α
(1~ are stored in the RAM 13. The outputs of the flip-flops FF 1 and l-' The output of the resistor of the coupler PC1 is input to the first transistor driving amplifier circuit 17, and when the resistor receives light, the 'y'-1 signal G1 reaches the ■■i level. Then, the power transistor I9 is made conductive.Similarly, the photocoupler PC2's photol transistor output is connected to the power resistor I9.
input to the transistor driving amplifier circuit 18 of
When the transistor receives light, the goo I-signal G2 becomes Hi level, making the power transistor 20 conductive.

−力、中性点タップ付3相変成器21の1次巻線には入
力端j’R,S、1゛が接続され、この入力端子に商用
交情の3相電源線が接続される。3相変成器21の3個
の2次巻線は各一端a、  b、  cと、各他端d、
e、fと、各中性点g、h、iをイト、7いる。各−6
Qa、b、c(−AL3相全波整流器22が接続され、
その整流出力端子j、kに前述したパワーJTI l・
うンジスタ19のエミッタ、コレクタ回路が接続される
。同様に、変成器21の各他端d、e、fにも3相全波
整流器23が接続され、その整流出力端子1.rnにパ
ワー用I・ランジスタ20のエミッタ、コレクタ端子が
接続される。変成器21の各中111点g、h、iに(
、」変換された交流出力を導出するための出力端子T、
J、  V。
- Input terminals j'R, S, 1' are connected to the primary winding of the three-phase transformer 21 with power and neutral point taps, and a three-phase power line of commercial communication is connected to these input terminals. The three secondary windings of the three-phase transformer 21 have one end a, b, c, and the other end d,
e, f, and each neutral point g, h, i, 7. each -6
Qa, b, c (-AL three-phase full-wave rectifier 22 is connected,
The rectified output terminals j and k are connected to the power JTI l.
The emitter and collector circuits of the resistor 19 are connected. Similarly, a three-phase full-wave rectifier 23 is also connected to each of the other ends d, e, and f of the transformer 21, and its rectified output terminals 1. The emitter and collector terminals of the power I transistor 20 are connected to rn. At 111 points g, h, and i in each of the transformer 21 (
, ”output terminal T for deriving the converted AC output,
J.V.

Wが接続されている。この出力端子U、V、Wには三相
誘導電動機2が直接接続される。
W is connected. A three-phase induction motor 2 is directly connected to the output terminals U, V, and W.

次に作用を説明する。Next, the action will be explained.

マ、イクロコンピュータのRAM13にはサイクロコン
バータ制御信号の周期′■゛とパルス時間幅Tαが書込
まれて、t3す、クロックパルスを計数するCPtJ内
のカウンタが1゛/2及び′「を計数するごとにセ、7
1−指令信υ〜を発U7.1゛α及び(T/2  + 
′I’α)をd)数するごとにリセソ目li令信号を発
し、′■゛をit数するごとにカウンタの内容が0にク
リヤされる。、二のようにL7て、比較部の偏差に応1
うてフリップフロップFF、とドF2のセット及びリセ
ットを繰り返し、第4図に小ず2相のパルス列Y)1及
びP2を出力する。
At t3, the period '■' and pulse time width Tα of the cycloconverter control signal are written in the RAM 13 of the microcomputer, and at t3, the counter in CPtJ that counts clock pulses counts 1/2 and '''. every time, 7
1-Send command signal υ~ U7.1゛α and (T/2 +
Every time 'I'α) is counted by d), a resetting command signal is issued, and the contents of the counter are cleared to 0 every time '■' is counted by it. , L7 as in 2, and 1 according to the deviation of the comparison part.
Setting and resetting of the flip-flops FF and F2 are repeated to output a small two-phase pulse train Y)1 and P2 as shown in FIG.

第4図において、実線で71々ずiF弦波形E a 、
  l’、’、 l:i 。
In FIG. 4, the solid line indicates 71 iF string waveforms E a ,
l',', l:i.

[尤〔・は3相変成器21の−・端a、b、c各点に現
れる電圧4示し、点線で示す正弦波形Ed、Ee。
[尤[] represents the voltage 4 appearing at each point a, b, and c of the three-phase transformer 21, and the sinusoidal waveforms Ed and Ee shown by dotted lines.

F fば3相変成器21の他端d、e、f各点に現れる
電圧4示L2ている。信号P1がHiレベルのときにゲ
ート電■F G HもHiレヘルになりパワートランジ
スタ19が導通ずる。同様に、信号P2がT(i イー
ベルのときにデーl−電圧G2もHiレベルになりバリ
ー1−ランジスタ20が導通ずる。2個のパワー・l−
ランジスタ19,20が共にオフの2・きは中f!、+
F、tHr  11.’の各線間に電圧は現われない。
F indicates the voltage 4 appearing at each point d, e, f on the other end of the three-phase transformer 21 L2. When the signal P1 is at Hi level, the gate voltage FGH also becomes Hi level, and the power transistor 19 becomes conductive. Similarly, when the signal P2 is T(i), the data voltage G2 also becomes Hi level, and the Barry 1 transistor 20 becomes conductive.
2 when transistors 19 and 20 are both off is medium f! ,+
F, tHr 11. 'No voltage appears between each line.

L、かし2、第1のパワートランジスタ19が4゛ンに
ムると、全波整流器22を構成するダイオ−Fと1−ラ
ンジスタ19のエミッタ、コレクタ回路によりa、b、
c各点間の回路が形成され、出力を端子[1,V、W?
j電圧が印加され、交流電動機が付勢さJする。同様i
、:、 +−で、第2のバリー l、ランジスタ20が
オ゛・になると、全波整治a23を構成ずl))?’イ
メードとトランジスタ1し0の11ニミソタ、−■ノl
−′回路&Vよ2つcl、e、f(7)各点間の回!M
が)]キ成さ拍、出力端イIJ、V、W間に電圧が印加
され、交’/At、電!11 転)夷、hクイS、i勢
igれ6゜第4 [RI (、iZおいて、IT:、弦
波形卜〕a、卜1b、Rc。
When the number of transistors 19 and 2 is 4, the emitter and collector circuits of diode F and transistor 19, which constitute the full-wave rectifier 22, provide a, b,
c A circuit is formed between each point, and the output is connected to the terminal [1, V, W?
j voltage is applied and the AC motor is energized. Similar i
, :, When the second Barry l and transistor 20 becomes OFF at +-, it constitutes a full-wave rectification a23 l))? 'Image and transistor 1 and 0, 11 days, - ■ nol
-'Circuit & V, two cl, e, f (7) times between each point! M
)] When the key is pressed, a voltage is applied between the output terminals IJ, V, and W, and the voltage is changed to '/At, electric! 11 turn) 夷, h qui S, i force igre 6° 4th [RI (, iZ, IT:, string waveform]a, 卜1b, Rc.

Ed、Fie、Efに伺された縦縞部−S”f It、
パワートランジスタ19が4通状態のとき出力部)了U
Vertical stripes seen by Ed, Fie, and Ef-S”f It,
When the power transistor 19 is in the 4-way state, the output section) is completed.
.

■、Wに現れる電圧と、パワートランジスタ20が導通
状態のとき出力端、−4LJ、  V、 Wに現れる電
圧をイト1!でポしている。図から明らかなよ・)に1
、二の縦縞部5)の模様は周期的1.i’−変化し7て
おり、その変化に穐まれでいる最も低い周波数成分は周
期0.1秒の正弦波である。いま、第4図の時間目盛t
こ示ず。■、パ)!3で、制御信号P 、及び1〉2の
周期′■゛が1 、/6011t> (X本川波数f 
c =60T(2) 、商用文Mf周波数が50Hノ、
の場合、出力部1.−.p−[1,V、 Wに得られ’
rl電圧のW4構成子!、 u 、  P v 、  
IE 1+7の周波数1、まf (] −1f口■ン;
みとなる。
■, the voltage that appears at W, and the voltage that appears at the output terminal, -4LJ, V, and W when the power transistor 20 is in a conductive state. I'm posting it. It is clear from the figure.) to 1
, the pattern of the second vertical striped portion 5) is periodic 1. i' - changes, and the lowest frequency component that is affected by the change is a sine wave with a period of 0.1 seconds. Now, the time scale t in Figure 4
This is not shown. ■, Pa)! 3, the control signal P and the period ′■゛ of 1>2 are 1, /6011t> (X Honkawa wave number f
c = 60T(2), commercial sentence Mf frequency is 50H,
In the case of output section 1. −. p-[1,V, obtained in W'
W4 constituent of rl voltage! , u, Pv,
IE 1+7 frequency 1, maf (] -1f口■n;
Become a servant.

本発明!、、−# イーr:、−11k LT、制御信
号P+、Prの周波数ろ−fC(六−だしfc−1/T
)、変成器111の1次側ζ1X皿印加される交流入力
の周波数をr(]出出御−i1了[J、  V’、 W
に現れる交、希出力の周波数イ:fd、、!、:寸れば
、 f d −fイ)−f C の関係が成立する。
This invention! ,, -# Er:, -11k LT, control signal P+, frequency of Pr -fC (6-dashi fc-1/T
), the frequency of the AC input applied to the primary side ζ 1
The frequency of the alternating and rare output appearing in :fd,,! , : If the relationship is f d −f i)−f c holds true.

従って、制御信号の周波数を変化させることにより出力
の周波数fdを任意かつ連続的に変えることができ、三
相交流電動機の回転速度を、必要なトルクを維持しなが
ら任意かつ連続的に制御することができる。また、制御
信号PI、P2のパルス幅Tαを変えれば周波数fdで
出力される交流の電圧を実効的に変化させることができ
、電圧を変えることによっても電動機の回転速度を制御
することができる。
Therefore, by changing the frequency of the control signal, the output frequency fd can be arbitrarily and continuously changed, and the rotational speed of the three-phase AC motor can be arbitrarily and continuously controlled while maintaining the required torque. I can do it. Furthermore, by changing the pulse width Tα of the control signals PI and P2, the alternating current voltage output at the frequency fd can be effectively changed, and the rotational speed of the motor can also be controlled by changing the voltage.

また、誘導電動機のl・ルクと回転数の関係は第5図の
ような特性を示し、回転数は、電源の電圧と周波数およ
び負荷の大きさに依存する。即ち、図において横軸は回
転数、縦軸はトルクであって、電圧と周波数を一定に保
てば、例えば曲線aで示すようなトルク曲線が得られる
。回転数が周期回転数Noに等しいとき、つまり、電動
機が「滑り」なしで回転しているときはl・ルク零で、
一般に滑り10〜20%で最大トルクを示す。また、回
転数がNOを超えたときは負のトルク、即ち[制動力」
が発生する。普通、定常状態にある誘導電動機は、滑り
約5%の時のトルクが被駆動体の反抗力に釣り合って回
転している。電源周波数を減じて同期回転数をNo ’
  (<No)にすれば曲線aは曲線すに移動し、また
、同期回転数をNOに保って電圧を上げれば、トルク曲
線は曲線Cに移る。
Further, the relationship between l·lux and rotational speed of the induction motor exhibits characteristics as shown in FIG. 5, and the rotational speed depends on the voltage and frequency of the power supply and the size of the load. That is, in the figure, the horizontal axis is the rotational speed, and the vertical axis is the torque. If the voltage and frequency are kept constant, a torque curve as shown by curve a, for example, can be obtained. When the rotational speed is equal to the periodic rotational speed No., that is, when the motor is rotating without "slip", l・lux is zero,
Generally, maximum torque is shown at 10 to 20% slip. Also, when the rotation speed exceeds NO, there is a negative torque, that is, [braking force]
occurs. Normally, an induction motor in a steady state rotates with a torque that is balanced by the reaction force of the driven body when the slip is approximately 5%. Reduce the power frequency and reduce the synchronous rotation speed to No'
If it is set to (<No), the curve a will move to the curve A, and if the voltage is increased while keeping the synchronous rotation speed at NO, the torque curve will move to the curve C.

ところで、第1図に示すような本発明実施例の構成にお
いて、移動体4が所定の停止位置より充分離れている間
は、誘導電動機3には定格またはほぼ定格の周波数と電
圧の三相交流が供給されているが、所定位置に近づくに
つれて、サイクロコンバータの出力周波数は低下し、従
って誘導電動機の同期回転数と実際の回転数も共に低下
し、移動体4はその移動速度を下げながらついには所定
位置に達する。なお、以下の説明の便宜に、移動体4の
これまでの移動方向を「正−1、その反対方向を「負」
の方向とする。ここで、移動体4が停止状態にあるとき
にも移動体4に変位を与えようとする外力が作用してい
る一般の場合を考え、しかも、その力の方向が上に定義
した負の方向であるとすれば、移動体4の所定位置にお
りる停止は、誘導電動機4の零回転トルクと外力の釣り
合いによる。即ち、この時のサイクロコンバータ2の出
力周波数Nsは初期の値Noにくらべて非常に小さくな
っており第5図の曲線aで示されたトルク曲線は、第6
図の曲線dの位置にまで移動しており、回転数零におけ
る誘導電動機のトルクτSと外力が釣り合っているわけ
である。このようにして移動体4が所定位置に停止して
後、若し何等かの原因でさらに負の方向の外力が加われ
ば、それによる移動体の微少変位を位置検出器5が検出
し、その信号によりサイクロコンバータの出力周波数な
いしは出力電圧が上昇し、誘導電動機3はトルクτSよ
り大きいl・ルクを発生して移動体4を元の位置に戻す
。移動体4が再び所定位置に復帰した場合の誘導電動機
の1〜シルク線は曲線eまたばfで表わされ、τS′ 
(くτS)がこの時の夕(力に釣り合うことになる。曲
線Cはサイクロコンバータ2の出力電圧が増加した場合
の1−ルク曲線、曲線fは、出力周波数が増加した場合
のトルク曲線である。次に、移動体4に、正のりI力が
作用した場合には、それによる移動体の微少変位を位置
検出器5が捕えその出力信号によってサイクロコンバー
タ2の出力周波数が1負」に、即ち出力される三相交流
の極性が反転し、誘導電動機には逆回転のトルクτSが
生し、移動体4を再び所定位置に保持する。この時の誘
導電動機のI・ルク曲線ば曲線gで示される。ただし、
この場合にも同しトルクτS′を発生させるためにはト
ルク曲線は曲線りであってもよく、曲線りによる場合は
、曲線gの場合よりサイクロコンバータの出力周波数の
「絶対値−」は低いが電圧は高い。以1−1において誘
導電動機3の零回転トルクの制御は、サイクロコンバー
タ2の出力周波数と電圧のいづれを変えることによって
も、また、周波数と電圧の双方を変えることによっても
実現されるが、いづれの方法によるかは実際に使用する
誘導電動機の特性や、移動体の負荷特性に応じて適宜選
択することができ、その選択に従って、制御部6に内臓
されているマイクロコンビ1−夕のプログラムを作成ず
ればよい。
By the way, in the configuration of the embodiment of the present invention as shown in FIG. 1, while the movable body 4 is sufficiently far away from the predetermined stop position, the induction motor 3 is supplied with three-phase AC at the rated or almost rated frequency and voltage. is being supplied, but as it approaches the predetermined position, the output frequency of the cycloconverter decreases, and therefore both the synchronous rotation speed and the actual rotation speed of the induction motor decrease, and the moving body 4 finally decreases its moving speed. reaches the predetermined position. For convenience of explanation below, the moving direction of the moving body 4 so far will be referred to as "positive -1", and the opposite direction will be referred to as "negative".
direction. Here, we will consider the general case where an external force that tries to displace the moving body 4 is acting even when the moving body 4 is in a stopped state, and the direction of the force is in the negative direction defined above. If so, the stopping of the movable body 4 at a predetermined position depends on the balance between the zero rotation torque of the induction motor 4 and the external force. That is, the output frequency Ns of the cycloconverter 2 at this time is much smaller than the initial value No, and the torque curve shown by curve a in FIG.
It has moved to the position of curve d in the figure, and the torque τS of the induction motor at zero rotation speed and the external force are in balance. After the movable body 4 has stopped at a predetermined position in this way, if an external force in the negative direction is further applied for some reason, the position detector 5 will detect the slight displacement of the movable body due to this, and The output frequency or output voltage of the cycloconverter increases in response to the signal, and the induction motor 3 generates l·rook larger than the torque τS to return the movable body 4 to its original position. The line 1 to silk of the induction motor when the moving body 4 returns to the predetermined position is represented by a curve e or f, and τS'
(τS) is balanced by the force at this time.Curve C is a 1-torque curve when the output voltage of cycloconverter 2 increases, and curve f is a torque curve when the output frequency increases. Next, when a positive I force acts on the moving body 4, the position detector 5 captures the slight displacement of the moving body due to it, and the output signal of the position detector 5 causes the output frequency of the cycloconverter 2 to become 1 negative. That is, the polarity of the output three-phase alternating current is reversed, and a reverse rotational torque τS is generated in the induction motor, which holds the moving body 4 at a predetermined position again.At this time, the I-Luke curve of the induction motor is Indicated by g.However,
In this case as well, in order to generate the same torque τS', the torque curve may be curved, and if it is curved, the "absolute value -" of the output frequency of the cycloconverter is lower than in the case of curve g. But the voltage is high. In 1-1 below, the zero rotation torque of the induction motor 3 can be controlled by changing either the output frequency or the voltage of the cycloconverter 2, or by changing both the frequency and the voltage. The method to be used can be selected as appropriate depending on the characteristics of the induction motor actually used and the load characteristics of the moving body.According to the selection, the program of the microcombination unit 1 built into the control unit 6 is programmed. Just create it differently.

以」二の説明からも明らかなように、本発明により移動
体の停止後にそれに変位を与えようとする外力に変化が
生じても、直ちにその変化に対抗して移動体を定位置に
戻してそこに保持することのできる停止位置決め制御装
置が得られる。
As is clear from the following explanation, according to the present invention, even if there is a change in the external force that tries to displace the moving body after it has stopped, the moving body can be immediately returned to its home position by countering the change. A stop positioning control device is obtained which can be held there.

なお、本発明は、上記三相交流電源1とサイクロコンバ
ータ2を、それぞれ直流電源とインバータに置きかえて
実施することも、また、パルス発生器による位置検器5
を、イメージセンサ、リニアーエンコーダ、ボテンシオ
メーク等を用いて実施することも可能である。
Note that the present invention can be implemented by replacing the three-phase AC power supply 1 and the cycloconverter 2 with a DC power supply and an inverter, respectively, or by replacing the three-phase AC power supply 1 and the cycloconverter 2 with a DC power supply and an inverter.
It is also possible to implement this using an image sensor, linear encoder, potentiometer, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の構成を示すプロ、り図、第2図
は、第1図に示したサイクロコンバータ2と制御部6の
構成例を示す図である。第3図は上記制御部6より出力
される制御信号の波形図を示す。第4図はサイクロコン
バータ2の作用説明図である。第5図は誘導電動機のト
ルク特性図、第6図は本発明実施例における誘導電動機
の零回転トルクの変化を示す、移動体停止作用説明図で
ある。 1−−−三相交流電源 2−サイクロコンバータ 3−誘導電動機 4−移動体     5−位置検出器 6−制御部   11−人力インターフェース12−p
oM   13−RAM 14−デジタル設定器 15−出力インターフェース 17.18−−−増幅回路 19.20−−−パワートランジスタ 21−三相トランス(変成器) 22.23−三相全波整流回路 特許出願人  株式会社エム・システム技研化 理 人
 弁理士  西   1)  新−区 43 第4図 −432−一−
FIG. 1 is a schematic diagram showing the configuration of an embodiment of the present invention, and FIG. 2 is a diagram showing an example of the configuration of the cycloconverter 2 and the control section 6 shown in FIG. FIG. 3 shows a waveform diagram of the control signal output from the control section 6. As shown in FIG. FIG. 4 is an explanatory diagram of the operation of the cycloconverter 2. FIG. 5 is a torque characteristic diagram of the induction motor, and FIG. 6 is an explanatory diagram of moving body stopping action showing changes in zero rotation torque of the induction motor in an embodiment of the present invention. 1----Three-phase AC power supply 2-Cycloconverter 3-Induction motor 4-Moving body 5-Position detector 6-Control unit 11-Human power interface 12-p
oM 13-RAM 14-Digital setting device 15-Output interface 17.18--Amplifier circuit 19.20--Power transistor 21-Three-phase transformer (transformer) 22.23-Three-phase full-wave rectifier circuit Patent application Person M-System Gikenka Co., Ltd. Person Patent Attorney Nishi 1) New Ward 43 Figure 4-432-1-

Claims (1)

【特許請求の範囲】[Claims] 所望の周波数と電圧を出力する周波数変換部と、この周
波数変換部の出力で駆動される多相誘導電動機と、この
多相誘導電動機で駆動されて変位する移動体の、定位置
からの変位量を検出する変位量検出手段と、−F記多相
誘導電動機の回転方向を反転させるための回転方向切換
手段と、上記変位量検出手段の出力信号に基づいて上記
周波数変換部の出力周波数と上記回転方向切換手段の設
定位置を制御する制御部とを有し、上記変位量検出手段
の検出する変位量の絶対値が所定の値より大きい間は変
位量の絶対値の減少と共に上記周波数変換部の出力周波
数を減じて一ヒ記誘導電動機の回転数を減少させ、変位
量の絶対値が上記所定の値以下で、かつ、変位量の符号
が反転する毎に上記多相誘導電動機の回転方向を反転さ
せることにより」−記移動体を所定の位置を中心とした
所定の幅内に保つことを特徴とする、誘導電動機による
停止位置決め制御装置。
A frequency converter that outputs a desired frequency and voltage, a polyphase induction motor that is driven by the output of this frequency converter, and the amount of displacement from a fixed position of a moving object that is displaced by being driven by this polyphase induction motor. a rotational direction switching means for reversing the rotational direction of the polyphase induction motor indicated by F; and a rotational direction switching means for reversing the rotational direction of the multiphase induction motor; a control section that controls the set position of the rotation direction switching means, and while the absolute value of the displacement amount detected by the displacement amount detection means is larger than a predetermined value, the absolute value of the displacement amount decreases and the frequency conversion section The rotational speed of the induction motor is decreased by decreasing the output frequency of A stop positioning control device using an induction motor, characterized in that the movable body is kept within a predetermined width centered at a predetermined position by reversing the movable body.
JP20793882A 1982-11-26 1982-11-26 Stopping position deciding controller by induction motor Pending JPS5999980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20793882A JPS5999980A (en) 1982-11-26 1982-11-26 Stopping position deciding controller by induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20793882A JPS5999980A (en) 1982-11-26 1982-11-26 Stopping position deciding controller by induction motor

Publications (1)

Publication Number Publication Date
JPS5999980A true JPS5999980A (en) 1984-06-08

Family

ID=16548020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20793882A Pending JPS5999980A (en) 1982-11-26 1982-11-26 Stopping position deciding controller by induction motor

Country Status (1)

Country Link
JP (1) JPS5999980A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61109484A (en) * 1984-10-31 1986-05-27 Eiji Ishii Induction motor positioning device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4844683A (en) * 1971-10-06 1973-06-27
JPS53111841A (en) * 1977-03-11 1978-09-29 Mitsubishi Electric Corp Circuit for controlling speed of sewing machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4844683A (en) * 1971-10-06 1973-06-27
JPS53111841A (en) * 1977-03-11 1978-09-29 Mitsubishi Electric Corp Circuit for controlling speed of sewing machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61109484A (en) * 1984-10-31 1986-05-27 Eiji Ishii Induction motor positioning device

Similar Documents

Publication Publication Date Title
US5072166A (en) Position sensor elimination technique for the switched reluctance motor drive
US8519662B2 (en) Method and apparatus for controlling motor torque
US8022649B2 (en) Control of switched reluctance machines
EP0518244A2 (en) Electric current measurement apparatus for a solid state motor controller
WO2002078168A1 (en) Method of detecting motor current and motor control device
JPS58186373A (en) Regenerative rectifier circuit
GB2056128A (en) Closed loop micro computer controlled pulse with modulated inverter-induction machine drive system
US5402054A (en) Variable speed AC drive control
KR0153103B1 (en) Apparatus for input power control of induction motor
JPS5999980A (en) Stopping position deciding controller by induction motor
CA1177877A (en) Control apparatus for single phase ac induction motor
JP2006025587A (en) Power conversion device for ac motor
JPH0219718B2 (en)
EP0497783B1 (en) Variable speed ac drive control
JP2593270B2 (en) Power measurement type load detector
JPH04364395A (en) Power converter
JPH0426394A (en) Load current detection in power conversion device
RU2207578C2 (en) Procedure determining emf of rotor of synchronous and current of rotor of asynchronous electric motors (variants)
SU877767A1 (en) Device for control of multiphase induction electric motor
Alagur et al. Speed Control of Induction Motor by V/F Method Using Fuzzy Technique
KR830001015B1 (en) Induction Motor Drive
RU2259627C2 (en) Thyristor current regulator
JPS63103696A (en) Micro-angle driving circuit for stepping motor
SU1332506A1 (en) Alternating-current electric drive
JPS63186579A (en) Drive controller for induction motor