JPS5999903A - Controlling method for controller of electric rolling stock - Google Patents

Controlling method for controller of electric rolling stock

Info

Publication number
JPS5999903A
JPS5999903A JP57209655A JP20965582A JPS5999903A JP S5999903 A JPS5999903 A JP S5999903A JP 57209655 A JP57209655 A JP 57209655A JP 20965582 A JP20965582 A JP 20965582A JP S5999903 A JPS5999903 A JP S5999903A
Authority
JP
Japan
Prior art keywords
modulation
notch
pulse mode
frequency
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57209655A
Other languages
Japanese (ja)
Other versions
JPH0235522B2 (en
Inventor
Ikuo Yasuoka
育雄 安岡
Shiroji Yamamoto
城二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57209655A priority Critical patent/JPS5999903A/en
Publication of JPS5999903A publication Critical patent/JPS5999903A/en
Publication of JPH0235522B2 publication Critical patent/JPH0235522B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/08Controlling based on slip frequency, e.g. adding slip frequency and speed proportional frequency

Abstract

PURPOSE:To improve the notch stopping control accuracy by regulating a modulation factor limiter in response to a pulse mode under a notch stopping condition. CONSTITUTION:A reference slip frequency FSO and a correction slip frequency FS1 in response to a current pattern IP based on a current limiting command IC and a notch command P are added to produce a slip frequency FS, and an inverter output frequency F is obtained by the slip frequency FS and a rotating frequeny FR. A modulation pulse mode calculator 25 sets a modulation pulse mode N to approximate to a sinusoidal wave. A modulation factor calculator 26 outputs a modulation factor AL1 so that the ratio V/F of the inverter output voltage V to the output frequency F becomes constant. A modulation factor limiter selector 30 outputs a modulation factor limiter AL1 in response to notch commands P1-P3 and a modulation pulse mode N. A minimum value priority circuit 27 compares the modulation factors AL1 with AL2 and outputs the smaller one as a modulation factor AL.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、同期した正弦波変調波と三角波搬送波を比較
することによシ所定の変調・平ルスを得るとともに、上
記変調波と搬送波の大きさの比率で定まる変調率を変化
させて上記変!!IAIパルス幅を制御し、この変調パ
ルスを用いてインバータを作動させ、直流電力を交流電
力に変換する可変電圧可変周波数インバータ(以下r 
VVVFインバータ」と称する)にて誘導電動機を駆動
する方式の電気車制御装置の制御方法に係シ、特にいわ
ゆるノツチ止め制御精度の向上に関するものである。
Detailed Description of the Invention [Technical Field of the Invention] The present invention obtains a predetermined modulation and smoothness by comparing a synchronized sine wave modulation wave and a triangular carrier wave, and also calculates the magnitude of the modulation wave and the carrier wave. Change the above change by changing the modulation rate determined by the ratio of ! A variable voltage variable frequency inverter (referred to below as r) that controls the IAI pulse width and uses this modulated pulse to operate an inverter and convert DC power to AC power.
The present invention relates to a control method for an electric vehicle control device that drives an induction motor using a VVVF inverter (referred to as a "VVVF inverter"), and particularly to improving the accuracy of so-called notching control.

〔発明の技術的背景〕[Technical background of the invention]

第1図に従来の電気車における代表的なYVVFインバ
ータ制御システムの一例を示す。
FIG. 1 shows an example of a typical YVVF inverter control system in a conventional electric vehicle.

第1図(a)は駆動回路系を示すもので、1はパンタグ
ラフ、2はしゃ断器、3はフィルタリアクトル、4はフ
ィルムコンデンサ(5Iliフイルタコンデンサの端子
電圧を検知する電圧検知器。
FIG. 1(a) shows a drive circuit system, in which 1 is a pantograph, 2 is a breaker, 3 is a filter reactor, and 4 is a film capacitor (5Ili) A voltage detector that detects the terminal voltage of the filter capacitor.

6はインバータ部、7.8は誘導電動機、9゜10は電
動機の回転数を検知しそれに応じた周波数のパルスを出
力するパルスジェネレータである。!lだ11〜13は
電動機mjil:を検出する11.;流検用器である。
6 is an inverter section, 7.8 is an induction motor, and 9.10 is a pulse generator that detects the rotational speed of the motor and outputs pulses at a frequency corresponding to the rotational speed of the motor. ! 11 to 13 detect the electric motor mjil:11. ;It is a flow tester.

次に第1図(b)はインバータの制御系を示すものテ、
ノやルスジェネレータ9,10の出力PG7゜PG2 
it、回転周波数演γj部2ノで一定時間ずつカウント
さtl、回転周波数FRが求めらtする。限流値指令I
Cおよび力省指令(ノツチ指令)PによすTI流・母タ
ーン演a部22で、Ml、流パターン■、が演算される
。基N・すべり周波数発生部23け、電流パターンIP
入力に応じ、第2図に示すような特性パターンで基W・
すべり周波数F、。を出力する。増幅器24は1う流パ
ターン■、と検出された部、動機電流IMとの偏差分を
増幅し補正すべり周波数F81を出力する。これら基準
すべり周波数Fgoと補正すべり周波数F8.を加豹1
−て、すべυ周波数F8とし、こtlをずベリ周波数リ
ミッタ28を介し千回軒、周波数F8と加算して出力周
波数Fが決定される。通常のVVVFインバータは、電
動板宿、流を極力正弦波に近づけるために、出力Wt圧
を正弦波近似変調制御し7ている。25如:このための
変訴1ノ9ルスモード演q部でを)シ、Ltt力周波数
Fおよびフィルタコンデンサ電、圧EC(市川検知器5
で検知される)に応じて最適力変調パルスモードNを設
定する。変i4.IパルスモードNは、出力周波数Fの
1サイクルにイλ1れる/−、Oルス数に対応するもの
であり、基本的には、・2ルス数が多い程、電動機1j
、流は正弦波に近づくが、そのル「111 インバータ
を構成する素子のスイッチング損失が増加することに&
る。従って、低速では、ノヤルス数を多くし、速度が増
加するに従って、パルス数を低減し最終的には1・ぐル
スモードに至るように制御する。26は名パルスモード
の変調率演舞部で、インバータ出力↑L圧Vの大きさを
決めるものでありインバータ出力面”、圧Vど出力周波
数Fの比V/Fが一定になるように、出力周波数Fとフ
、イルタコンデンザ■f圧E14により、次式のように
、数値演舞1.て変調率AL、を出力する。
Next, FIG. 1(b) shows the control system of the inverter.
Output PG7゜PG2 of Noya Lux generators 9 and 10
It, the rotational frequency calculation section 2 counts the rotational frequency tl for a certain period of time, and calculates the rotational frequency FR. Current limit value command I
In the TI flow/mother turn calculation section a 22, Ml and flow pattern (2) are calculated based on C and force saving command (notch command) P. 23 basic N/slip frequency generators, current pattern IP
Depending on the input, the basic W.
Slip frequency F. Output. The amplifier 24 amplifies the deviation between the detected part of the first flow pattern (2) and the motive current IM, and outputs a corrected slip frequency F81. These reference slip frequency Fgo and corrected slip frequency F8. Ka leopard 1
-, all υ frequencies are F8, and the output frequency F is determined by adding 1,000 times to the frequency F8 via the frequency limiter 28. A normal VVVF inverter performs sinusoidal approximation modulation control on the output Wt pressure in order to make the electric current as close to a sine wave as possible. 25: Modification for this 1 no 9 Lus mode performance q part) shi, Ltt force frequency F and filter capacitor volts, pressure EC (Ichikawa detector 5
The optimum force modulation pulse mode N is set according to the Change i4. The I pulse mode N corresponds to the number of pulses λ1/- and O that occur in one cycle of the output frequency F, and basically, the larger the number of pulses, the more the motor 1j
, the current approaches a sine wave, but this increases the switching loss of the elements that make up the inverter.
Ru. Therefore, at low speeds, the number of Noyals is increased, and as the speed increases, the number of pulses is decreased, and control is performed so as to eventually reach the 1.Guls mode. 26 is the modulation rate control section of the famous pulse mode, which determines the magnitude of the inverter output ↑L pressure V, and the output is adjusted so that the ratio V/F of the output frequency F of the inverter output surface, the pressure V, and the output frequency F is constant. Based on the frequency F and the filter capacitor f pressure E14, a numerical value 1. and a modulation rate AL are output as shown in the following equation.

(ここでAH+ B Nは)(ルスモードによってきま
る定数である。) 第3図に速度とパルスモードおよび変調率の関係を示す
。17ぐルスモードに1、変調率1であり、■)4圧制
御ができない定η);圧領カで・である。
(Here, AH+BN is a constant determined by the pulse mode.) FIG. 3 shows the relationship between speed, pulse mode, and modulation rate. 1 in the 17-force mode, the modulation rate is 1, and () constant η) which cannot perform four-pressure control; and - in the pressure field force.

27は最小飴侵タ1:回路、28け変月1問率IJ ミ
ッタ選択回路である。変調リミyり選択回路28は1ノ
ツチ指令P1+2ノツチ指令P2.3ノツチ指令P3に
応じてズ〕H;8率リミッタKl * K2 、に3を
各々選択し、変調率AL2として最小値優先回路27に
bえ、この最小値優先回路27は変調率AL2を上ri
d *H率AL1と比較して、小さい方を変調率ALと
して出力する。ダート信号発生部29は上記変調率AL
と周波数Fと変調パルスモードNとに応じて、インバー
タ6に力えるr−)何月=01〜G6を出力する。
27 is the minimum candy invader 1: circuit, 28 odd month 1 question rate IJ mitter selection circuit. The modulation limit selection circuit 28 selects 3 for each of the 1-notch command P1 + 2-notch command P2. In addition, this minimum value priority circuit 27 sets the modulation rate AL2 above ri.
d*Compare the H rate AL1 and output the smaller one as the modulation rate AL. The dirt signal generating section 29 uses the above modulation rate AL.
According to the frequency F and the modulation pulse mode N, r-) months=01 to G6 are outputted to the inverter 6.

第4図(a)〜(C)に、それぞれノツチ指令に応じた
/ぐルスモードおよび変調率、インバータ出力電圧基本
渡分、およびけん引力の各特性を示す。
FIGS. 4(a) to 4(c) show the characteristics of the /gus mode, modulation rate, basic inverter output voltage distribution, and traction force according to the notch command, respectively.

変状4パルスモードNおよび変調率ALと出力常圧・−
5− 基体減分■の関係は次式に承り通りである。
Deformation 4-pulse mode N, modulation rate AL and output normal pressure -
5- The relationship of base decrement ■ is as shown in the following equation.

v = Dn、 AL、EC−(2) (ここで、Eはフィルタコンデンザ電圧、Dは各パルス
モードの基本波含有率である。)従って、変Ia+ノe
ルス数に応じて基本波含有率りが異なるので、従来のよ
うにノツチ指令に応じた変調率リミッタが一定の場合に
は、パルスモードが変化する毎に、ノツチ止め特性の変
動が大きく車両の速度制御上好まI7<ないという問題
があった。
v = Dn, AL, EC-(2) (where E is the filter capacitor voltage and D is the fundamental wave content of each pulse mode.) Therefore, the variable Ia + no e
Since the fundamental wave content rate differs depending on the number of pulses, if the modulation rate limiter according to the notch command is constant as in the past, the notch stopping characteristics will fluctuate greatly each time the pulse mode changes. There was a problem that I7 was not favorable in terms of speed control.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、VWFインバータで誘導電動機を駆動
する電気車の制御において、ノツチ止め制御精度を向上
し、変調パルスモードが変化しても、ノツチ止め特性の
変動を抑制し得るようにする電気車制御装置の制御方法
を提供することにある。
An object of the present invention is to improve the accuracy of notch locking control in the control of an electric vehicle in which an induction motor is driven by a VWF inverter, and to suppress fluctuations in the notch locking characteristics even if the modulation pulse mode changes. An object of the present invention is to provide a control method for a vehicle control device.

〔発明の概要〕[Summary of the invention]

本発明は、ノツチ1ト、めすなわち速度制御用ノツチ指
令を選択固定する場合、骸ノツチ指令と6− 十^己変1)y1ノjルスモードとの双方に応じ、出力
電圧がほに−・定となるように十記変H周率を選択設定
することを特徴としている。
In the present invention, when selecting and fixing the notch command, that is, the notch command for speed control, the output voltage is adjusted to It is characterized by selecting and setting the tenth variable H frequency so that the frequency is constant.

〔発明の実施例〕[Embodiments of the invention]

第5図に本発明の−#!#i例におけるインバータ制御
系の構成を示す。
Figure 5 shows -#! of the present invention. The configuration of the inverter control system in example #i is shown.

第5図においで、変n周率リミッタ選択部3゜け、ノツ
チ指令P、 +P2 +P3と変調1パルスモードNを
入力し7て、変調1率リミッタ出力AL2を得る。変調
率リミッタ選択部30の詳細な構成を第6図に示す。第
6図に↓・・いて、31はノツチ指令P1 、p2.P
3に応じて変調率リミッタを選択する/こめの変調率リ
ミッタ選択部、32はノツチ指令P、入力時における各
変調パルスモードのNに応じた変調率リミッタ選択を行
なう変調率リミッタ選択部、33はノツチ指令P2時に
おける各変ml+JパルスモードNに応じた変調率リミ
ッタ選択を9′j′f:rう変81.\I率リミッタ選
択部である。
In FIG. 5, the variable n rate limiter selection section 3 inputs the notch commands P, +P2 +P3 and the modulation 1 pulse mode N to obtain the modulation 1 rate limiter output AL2. A detailed configuration of the modulation rate limiter selection section 30 is shown in FIG. In Fig. 6, 31 indicates notch commands P1, p2. P
3, a modulation rate limiter selection unit that selects a modulation rate limiter according to the notch command P, and a modulation rate limiter selection unit that selects a modulation rate limiter according to N of each modulation pulse mode at the time of input; The modulation rate limiter selection according to each variable ml+J pulse mode N at the time of notch command P2 is changed to 9'j'f:r.81. \I rate limiter selection section.

A9.B9]9ノ5ノしスモードの変調率リミッタ、A
s。
A9. B9] 9/5 mode modulation rate limiter, A
s.

BSは5ノやルスモードの変り周率リミッタ、A3 +
 B3は3・ぐルスモードの変調率リミッタを本ず。
BS is a 5-no or Luz mode change frequency limiter, A3 +
B3 has a 3/Grus mode modulation rate limiter.

こわらの定数は、次の各式より求めらf+る。The stiffness constant is calculated from the following equations.

ノツチ指令P11]Nrの出力箱圧基本波分を■1とす
るど、 V、=4)、@A、・Ec=D5@ As1九ユD3”
k3争E。・−(3)ノツチ相令P2時の出力型、圧基
本波分を■2とすると、 V2 =DglI89’ Ec=DIl” B5・Ec
 ”” Ds ” B 3φE0・・・(4)(ここで
、B9は9パルスモードの基本波含有率(=0.615
 ) 、 B5は5ノぐルスモードの基本波含有率(=
0.75 ) 、 Daは3パルスモードのツメ一本波
含侑率(=0.77))である。
Notch command P11] Let Nr's output box pressure fundamental wave component be ■1, V, = 4), @A, ・Ec=D5@As19D3"
k3 conflict E.・-(3) If the output type and pressure fundamental wave component at the time of notch phase command P2 is ■2, then V2 = DglI89' Ec = DIl" B5・Ec
"" Ds "B 3φE0...(4) (Here, B9 is the fundamental wave content rate of 9 pulse mode (=0.615
), B5 is the fundamental wave content rate of 5 Noggles mode (=
0.75), Da is the claw single wave content ratio (=0.77)) in the 3-pulse mode.

次にこのような構成における作用について説明する。Next, the operation of such a configuration will be explained.

第7図(a)〜(e)に、本実施例におりる動作動性と
して、ノツチ指令に応じたパルスモード、変調率および
インバータ出力電圧力本波分、りん引力話1性をそJT
ぞれ/T< j。ノツチ1トめ時、パルスモードの移行
により上述した(3) 、 (4)式の関係を保って、
変調率リミッタが選択訓、Vさlするので、インバータ
出力電圧は、ノやルスモードの変化に対しても、定霜゛
圧に保たれ、けん引力も滑らかに減衰する。
Figures 7(a) to (e) show the operational dynamics in this example, including the pulse mode, modulation rate, main wave component of the inverter output voltage, and traction force according to the notch command.
Each/T< j. When the notch is at the first position, the relationship of equations (3) and (4) described above is maintained due to the transition of the pulse mode, and
Since the modulation rate limiter selects Vsl, the inverter output voltage is maintained at a constant voltage even with changes in the normal and loose modes, and the traction force is also smoothly attenuated.

なお、本発明は」−述しHつ図面に示す実施例にのみ限
定さtすること外<、ぞの扱旨を変更し々い範囲内で種
々変形して実施することができるととl′、1、いう゛
までも〃い。
It should be noted that the present invention is not limited only to the embodiments described above and shown in the drawings, but may be implemented with various modifications within the scope of changing the spirit of the invention. ′, 1, even ゛.

〔発、明の効果〕〔Effect of the invention〕

本発明によれば、VVVFインバータで銹導重4動機を
駆動する電気車の制御において、ノツチ止め時、ノキル
スモードに応じて、変調率リミッタを調整することによ
って、インバータ出力電圧を一定に保つので、1/Jん
引力も、滑らかな定電圧特にtが得られ、ノツチ止め制
御精度を改善すると、どができる。
According to the present invention, in the control of an electric vehicle in which a four-wheel drive mechanism is driven by a VVVF inverter, when the notch is stopped, the inverter output voltage is kept constant by adjusting the modulation rate limiter according to the Nokirus mode. The 1/J traction force can also be improved by obtaining a smooth constant voltage, especially t, and improving the notching control accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図1(a)および(b)はそれぞれ従来の代表的ガ
WVFインバータシステム構成の一例を示す駆動回路系
の1【+1路構成図およびそのインバータ制御系のブロ
ック図1、第2図は回倒におりる電流−0−〇− 1べり周波数ノRターンを示す図、第3図にj:回倒に
おV)る代表的な速度−変調率、7A″暑)υ・やルス
モード慣性を示す図、第4図は回倒におけるノツチ止め
傷・に↓を示すトχ1、第5図は本発明の一実Mij例
におけるインバータ制御系の構成を示すブロックト1、
第6図は同実施例における変調率IJ ミッタ運択部の
詳細を示すブロックト1、第7図り同実施例によるノツ
チ止め4′?r情を示す図である。 1・・・パンタグラフ、2・・・しゃ断器、3・・・フ
ィルタリアクトル、4・・・フィルタコンデンサ、5・
・・霜、圧積・出器、6・・・インバータ、7,8・・
・誘導%[4L 9.J o・・・ノクルスジェネレー
タ、11゜12.13・・・電流検出器、21・・・回
転周波数演舞部、22・・・電流)(ターン発生部、2
3・・・λ準すべり周波数ツクターン発生部、24・・
・偏差増幅器、25・・・変調パルスモード演算部、2
6・・・変調率演算部、27・・・最小イ「1優先回路
、28.30・・・ti#4+率リミッタす択部、3)
・・・ノツチ指令に応じ/r変調穿リすッタ選択部、3
2 、33・・・バグ・スモードに応じ人−少’?Ji
’!l率すミッタ選択部。 Fs。 領i流ノで17−ン 第3図    (b) 変禍卆
1(a) and 1(b) respectively show an example of the configuration of a typical conventional WVF inverter system. Current in rotation -0-〇- A diagram showing R-turn of 1-bevel frequency, Fig. 3 shows a typical speed-modulation rate of V) in rotation, 7A'' heat) υ/rus mode. Figure 4 is a diagram showing inertia, Figure 4 is a diagram showing notch damage and ↓ during rotation;
FIG. 6 shows the details of the modulation rate IJ transmitter operating section in the same embodiment. FIG. 1... Pantograph, 2... Breaker, 3... Filter reactor, 4... Filter capacitor, 5...
・・Frost, pressurization/output device, 6・・inverter, 7, 8・・
・Induction% [4L 9. J o...Noculus generator, 11゜12.13... Current detector, 21... Rotation frequency performance section, 22... Current) (turn generation section, 2
3...λ quasi-slip frequency tsukturn generation section, 24...
- Deviation amplifier, 25... Modulation pulse mode calculation section, 2
6...Modulation rate calculation section, 27...Minimum i'1 priority circuit, 28.30...ti#4+rate limiter selection section, 3)
... /r modulation punctuator selection unit according to notch command, 3
2, 33... Few people depending on Bug Smode? Ji
'! l-led transmitter selection section. Fs. Figure 3 (b) Disaster

Claims (1)

【特許請求の範囲】[Claims] 同期した正弦波変調波と三角波搬送波を比較することに
より所定の変調)9ルスを得るとともに上記変調波と搬
送波の大きさの比率で定まる変調率を変化させて上記変
調ノ4ルス幅を制御ムこの変調パルスを用いてインバー
タを作動させ、直流電力を交流電力に変換する可変電圧
可変周波数パルス幅変調インバータにて誘導電動機を駆
動する電気車制御装置において、速度制御用ノツチ指令
を選択固定する場合、該ノツチ指令と上記変調パルスモ
ードとの双方に応じ、出力電圧がほぼ一定となるように
上記変調率を選択設定することを特徴とする電気車制御
装置の制御方法。
By comparing the synchronized sine wave modulation wave and the triangular carrier wave, a predetermined modulation pulse is obtained, and the modulation rate determined by the ratio of the modulation wave to the carrier wave is changed to control the modulation pulse width. When selecting and fixing the notch command for speed control in an electric vehicle control device that drives an induction motor with a variable voltage variable frequency pulse width modulation inverter that uses this modulated pulse to operate an inverter and convert DC power to AC power. . A control method for an electric vehicle control device, characterized in that the modulation rate is selected and set according to both the notch command and the modulation pulse mode so that the output voltage is substantially constant.
JP57209655A 1982-11-30 1982-11-30 Controlling method for controller of electric rolling stock Granted JPS5999903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57209655A JPS5999903A (en) 1982-11-30 1982-11-30 Controlling method for controller of electric rolling stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57209655A JPS5999903A (en) 1982-11-30 1982-11-30 Controlling method for controller of electric rolling stock

Publications (2)

Publication Number Publication Date
JPS5999903A true JPS5999903A (en) 1984-06-08
JPH0235522B2 JPH0235522B2 (en) 1990-08-10

Family

ID=16576397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57209655A Granted JPS5999903A (en) 1982-11-30 1982-11-30 Controlling method for controller of electric rolling stock

Country Status (1)

Country Link
JP (1) JPS5999903A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163502A (en) * 1986-01-10 1987-07-20 Hitachi Ltd Inverter controller for electric vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0568120U (en) * 1991-03-30 1993-09-10 キンセキ株式会社 Surface mount type piezoelectric vibrator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163502A (en) * 1986-01-10 1987-07-20 Hitachi Ltd Inverter controller for electric vehicle

Also Published As

Publication number Publication date
JPH0235522B2 (en) 1990-08-10

Similar Documents

Publication Publication Date Title
US7683568B2 (en) Motor drive using flux adjustment to control power factor
CN104578810A (en) Matrix converter
TW200924366A (en) Matrix converter
US5121043A (en) PWM control in the pulse dropping region
JPH0746855A (en) Two phase pwm controller for inverter
US7091690B1 (en) Power conversion device
JP7070064B2 (en) Rotating electric machine control device
CN109980701B (en) Microgrid virtual synchronous generator control method
DE102018202332A1 (en) AC POWER LATHE CONTROL
JPS5999903A (en) Controlling method for controller of electric rolling stock
DE102018220881A1 (en) Device and method for controlling an inverter for driving a motor
JPH07163189A (en) Pwm controller for motor
JP6961096B2 (en) Inverter device
JPH0895655A (en) Inverter control system for drive of solar battery
JP6939465B2 (en) Power converter
JPS61203893A (en) Modulating method for pwm inverter
JP3367737B2 (en) Control device for grid-connected inverter
JPH0522864A (en) Control circuit of inverter
JPH0937582A (en) Variable-speed control equipment for induction motor
EP4207586A1 (en) Motor control method and motor control device
CN117424250A (en) Synchronous switching method, motor controller and high-voltage frequency converter control system
JPH01227693A (en) Apparatus for controlling ac motor and method thereof
JPH07222457A (en) Control method of overloaded inverter
KR100319551B1 (en) Control apparatus of NPC inverter using hysteresis current controller
JPH11134042A (en) Ac power regulator