JPS599987A - Magnetoresistance effect element - Google Patents

Magnetoresistance effect element

Info

Publication number
JPS599987A
JPS599987A JP57119461A JP11946182A JPS599987A JP S599987 A JPS599987 A JP S599987A JP 57119461 A JP57119461 A JP 57119461A JP 11946182 A JP11946182 A JP 11946182A JP S599987 A JPS599987 A JP S599987A
Authority
JP
Japan
Prior art keywords
magnetic field
film
uneven
substrate
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57119461A
Other languages
Japanese (ja)
Inventor
Noboru Nomura
登 野村
Kenji Kanai
金井 謙二
Nobumasa Kaminaka
紙中 伸征
Yuji Komata
雄二 小俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57119461A priority Critical patent/JPS599987A/en
Publication of JPS599987A publication Critical patent/JPS599987A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To detect a magnetic field bearing in a broad dynamic range, by providing uneven part on the surface of a substrate of a magnetoresistance effect (MR) element, aligning anisotropy in the uneven direction, increasing the magnitude of an anisotropic magnetic field by the uneven part, and enlarging a linear region. CONSTITUTION:Steps 12 are formed on the surface of a square substrate 14, on which an MR film 11 is to be deposited, so that the steps form 45 degrees with a current (i) that is flowed to the MR film 11. Electrodes 13 are provided at both ends of the MR so that the current can be uniformly conducted in the film. When the film 11 is evaporated on the substrate, the axis of the MR film 11, which can be readily magnetized, is directed to the direction along the uneven parts of the surface. The magnitude of an anisotropic magnetic field HK can be controlled by the repeating pitch and depth of the unevenness of the surface. When a magnetic field H is applied at a right angle with respect to the uneven direction, the change is resistivity delta0 indicates a straight line and has the maximum value when the H is small, and the polarity of the magnetic field can be judged. When the H is applied in parallel, the change is small and the value of change becomes the minimum in this direction. The relative angle between the magnetic field and the element can be read by comparing both values.

Description

【発明の詳細な説明】 本発明は磁気センサや磁気ヘッドなどに応用される磁気
抵抗効果(MR)素子に関し、静磁気的に誘導した磁気
異方性によシ、磁区構造を制御し、新しいバイアス方法
を実現するとともに、新しいバイアス方法を応用したM
R素子を提供するとと゛を目的としている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to magnetoresistive (MR) elements applied to magnetic sensors, magnetic heads, etc., in which the magnetic domain structure is controlled by magnetostatically induced magnetic anisotropy. In addition to realizing the bias method, M that applied a new bias method
The purpose is to provide an R element.

従来、磁気抵抗効果を利用した磁気ヘッドの原理的構成
としては、第1図に示されるような構成の短冊状素子の
磁気抵抗効果形ヘッドが考えられていた。第1図の例で
は磁気記録媒体1と垂直(y方向)に強磁性薄板よりな
る磁気抵抗効果素子2を当接または近接させ、磁気抵抗
効果素子2の長手方向(2方向)の両端に電極3,4を
配置し、電極3,4間に定電流iを流し、磁気記録媒体
1の一壕方向の信号磁界−よりx方向の抵抗値変化を電
極3,4間の電圧変化より検出する方式である。この方
式では、磁気記録媒体1からの信号磁界強度は指数関数
的に減少する。特に磁気記録媒体1上の記録波長がUい
領域では信号磁界の成長が非常に大きなものとなる。こ
のため、磁気抵抗効果素子20幅Wは加工精度、耐摩耗
特性などを考慮してできるだけ狭くすることが望捷しい
Conventionally, as a basic structure of a magnetic head that utilizes the magnetoresistive effect, a magnetoresistive head having a strip-like element as shown in FIG. 1 has been considered. In the example shown in FIG. 1, a magnetoresistive element 2 made of a ferromagnetic thin plate is brought into contact with or close to the magnetic recording medium 1 perpendicularly (in the y direction), and electrodes are placed at both ends of the magnetoresistive element 2 in the longitudinal direction (two directions). 3 and 4 are arranged, a constant current i is passed between the electrodes 3 and 4, and the change in resistance value in the x direction is detected from the voltage change between the electrodes 3 and 4 using the signal magnetic field in the trench direction of the magnetic recording medium 1. It is a method. In this method, the signal magnetic field strength from the magnetic recording medium 1 decreases exponentially. In particular, in the region where the recording wavelength on the magnetic recording medium 1 is large, the growth of the signal magnetic field becomes very large. For this reason, it is desirable that the width W of the magnetoresistive element 20 is made as narrow as possible in consideration of processing accuracy, wear resistance characteristics, and the like.

磁気抵抗効果素子の比抵抗変化Δρは強磁性薄板を一軸
異方性とし、磁化M8の方向と電流lのなす角度をθ、
a、bを定数とすると Δρ= a 十b cos  θ という関係が成立っている。印力旧1箋界Hと比抵抗変
化Δρをその最大値Δρmaxで除した比抵抗変化率(
Δρ/Δρmax)との関係はH= Hsで飽和するい
ちじるしい非直線性を有しており、この非直線性を改善
するためにはバイアス磁界HBで飽和するいちじるしい
非直線性を有しており、この非直線性を改善するために
はバイアス磁界HBを印加してha適動作点に設定する
必要がある。この最適動作点ではHB−Hs/I2 、
θ−45° となっている。
The specific resistance change Δρ of the magnetoresistive element is determined by assuming that the ferromagnetic thin plate is uniaxially anisotropic, and the angle between the direction of magnetization M8 and the current l is θ,
When a and b are constants, the relationship Δρ=a + b cos θ holds true. The rate of change in resistivity obtained by dividing the impression force old 1 paper field H and the resistivity change Δρ by its maximum value Δρmax (
Δρ/Δρmax) has significant nonlinearity that saturates at H=Hs, and in order to improve this nonlinearity, it has significant nonlinearity that saturates at bias magnetic field HB, In order to improve this nonlinearity, it is necessary to apply a bias magnetic field HB to set ha to an appropriate operating point. At this optimal operating point, HB-Hs/I2,
θ-45°.

磁気抵抗効果素子は、抵抗変化率を大きくとるためおよ
びヒステリシス特性を避けるため、−軸に配向した強磁
性薄板が使用されるのか普通である。−例として第2図
に示す短冊形状の素子を考えると素子長手方向に配向(
実線)した場合、その配向性は安定であるか、最適動作
点θ−45゜に設定するためにバイアス磁界としては素
子の長手方向と直角な方向の反磁界程度すなわち、HB
=4πM6・t/w  程度必要である。ここてtは素
子2の厚さを示す。これはかなり大きな磁界となり、た
とえば短手方向に磁化成分を有する魚礁方向に磁化配向
する。すなわち、素子長手方向からθたけ幀けて配向し
た場合を考えると、素子栴 幅方向に生ずる磁荷により実で不す反磁界を生じ磁化M
6の方向は長手方向に曲げられるため、θを初期値に保
持するのが困難になるという問題があった。
In a magnetoresistive element, a ferromagnetic thin plate oriented along the -axis is generally used in order to increase the rate of change in resistance and avoid hysteresis characteristics. -As an example, considering the strip-shaped element shown in Figure 2, the orientation is in the longitudinal direction of the element (
solid line), the orientation is stable, or in order to set the optimum operating point θ-45°, the bias magnetic field should be about the demagnetizing field in the direction perpendicular to the longitudinal direction of the element, that is, HB
=4πM6·t/w is required. Here, t indicates the thickness of the element 2. This becomes a fairly large magnetic field, and the magnetization is oriented in the direction of the fish reef, for example, with a magnetization component in the lateral direction. In other words, if we consider the case where the element is oriented a distance θ from the longitudinal direction of the element, the magnetic charge generated in the width direction of the element causes a real demagnetizing field and the magnetization M
Since the direction 6 is bent in the longitudinal direction, there is a problem in that it is difficult to maintain θ at the initial value.

本発明においては、強磁性体よりなるMR膜を蒸着すべ
き基板の表面に凹凸を形成しておくことによって、MR
素子の磁気異方性の方向および異方性磁界の大きさを制
御し、かつMR素子に流した電流とfi(U気層方性の
向きを実質的に45磨として、外部磁界信号に対して直
線性の良好な素子や、外部磁界の方向を検知する新り見
な素子を提供することを目的としている。
In the present invention, by forming irregularities on the surface of the substrate on which the MR film made of ferromagnetic material is to be deposited, MR film can be deposited.
The direction of the magnetic anisotropy of the element and the magnitude of the anisotropic magnetic field are controlled, and the current applied to the MR element and fi (U, with the direction of the magnetic layer orientation substantially set at 45°, relative to the external magnetic field signal) are controlled. The purpose of this invention is to provide an element with good linearity and a new element that detects the direction of an external magnetic field.

第3図(−)は、本発明によるMR素子の一実施例力 の東面図、同図(b)はそのx−X線に治った断面図、
同図(C) 、 (d)はそのMR特性を示す。
FIG. 3(-) is an east view of an embodiment of the MR element according to the present invention, FIG. 3(b) is a cross-sectional view taken along line x-X,
Figures (C) and (d) show the MR characteristics.

N< 3 Ill (a) 、 (b)に示すように、
四辺形をなすMR11侍11の破着する基板14の表向
に凹凸段差12を、M RIIK 11に流ずべき電流
iと46度の角度をなすように形成しておく。MR素子
膜の両端には電極13が設けられており、MR素子中を
電流が均一に流れるように配慮している。
N< 3 Ill As shown in (a) and (b),
An uneven step 12 is formed on the surface of the substrate 14 to which the quadrilateral MR 11 is torn so as to form an angle of 46 degrees with the current i that should flow through the MR IIK 11. Electrodes 13 are provided at both ends of the MR element film to ensure that current flows uniformly through the MR element.

子連のように、基板14の表面に線状をなす凹凸段差1
2形成し、MR膜11を蒸笛すると、基IJy、14の
表面凹凸に沿った方向にMR膜11の磁k 化容勿軸か向く。さらに異方性磁界壮者の太きさも、[
)1工紀基板14の表面凹凸の繰返しピンチと深さによ
って制御できる。
A linear uneven step 1 on the surface of the substrate 14, like a child chain.
When the MR film 11 is steamed, the magnetization axis of the MR film 11 is directed in the direction along the surface irregularities of the base IJy, 14. Furthermore, the thickness of the anisotropic magnetic field generator is also [
) It can be controlled by repeated pinching and depth of the surface irregularities of the 1st century substrate 14.

第4図に、基板表面が平担である場合のMR膜の異方性
磁界Hkoに対する表面凹凸のある場合の異方性磁界H
kの比と、表面凹凸の繰返しピッチPおよび凹凸深さD
の関係を示しだ。浅い凹凸深さで十分大きなHkを得る
には、凹凸の繰返しピッチは、0.5μm程度必要とな
る。ピッチ2μm以上で、十分なHkを得ようとすると
、400Å以上の深い凹凸深さが必要となり、MR膜の
厚さと同和の段差になるだめに、MR膜の信頼性が悪く
なるため、段差は小さい方が好ましい。
Figure 4 shows the anisotropic magnetic field Hko of the MR film when the substrate surface is flat, and the anisotropic magnetic field Hko when the substrate surface is uneven.
The ratio of k, the repetition pitch P of the surface unevenness, and the depth D of the unevenness
It shows the relationship between In order to obtain a sufficiently large Hk with a shallow depth of depressions and depressions, the repetition pitch of the depressions and depressions needs to be approximately 0.5 μm. In order to obtain sufficient Hk with a pitch of 2 μm or more, a deep unevenness depth of 400 Å or more is required, and the reliability of the MR film will deteriorate if the step is equal to the thickness of the MR film. Smaller is preferable.

このようにして得た異方性を持つMR膜は、第3図(c
) 、 (d)に示したような特性を示す。第3図(c
)では、凹凸方向に対して直角な方向の磁場H(正弦波
状)が印加された場合の特性であり、第3図(d)は、
凹凸方向に対して平行な方向に磁場Hが加えられた場合
である。表面の凹凸方向に対してHが直角に加えられる
と、比抵抗ρに対する比抵抗変化Δρの比Δρ/ρ。は
、磁場が小さい領域で直線的に変化し、Δρ/ρ。の変
化は最大を示す。
The anisotropic MR film obtained in this way is shown in Figure 3 (c
), exhibiting the characteristics shown in (d). Figure 3 (c
) shows the characteristics when a magnetic field H (sinusoidal) in a direction perpendicular to the uneven direction is applied, and Fig. 3(d) shows
This is a case where a magnetic field H is applied in a direction parallel to the direction of the unevenness. When H is applied perpendicularly to the direction of the surface unevenness, the ratio of the resistivity change Δρ to the resistivity ρ is Δρ/ρ. varies linearly in the region of small magnetic field, Δρ/ρ. The change in indicates the maximum.

また、直線性が良好であり、磁場の方向によってΔρ/
ρ。が逆向きに変化するため磁場の極性を見分けること
ができる。また、凹凸に対してHが・1行である場合に
は、Δρ/ρ。の変化は小さく、Δρ/′ρ。の値はこ
の方向で極小値を示す。第3図(C) 、 (d)の比
較によって、磁場の方向に対して3600 が−周期と
なるようにΔρ/ρが変化することがわかる。すなわち
、第3図(a) 、 (b)に示した素子によって磁界
と素子との間の相対的な角度を読み取ることができる。
In addition, the linearity is good, and depending on the direction of the magnetic field, Δρ/
ρ. It is possible to distinguish the polarity of the magnetic field because it changes in opposite directions. In addition, if H is one row for the unevenness, Δρ/ρ. The change in is small, Δρ/′ρ. The value of shows the minimum value in this direction. By comparing FIGS. 3(C) and 3(d), it can be seen that Δρ/ρ changes in the direction of the magnetic field so that 3600 is a minus period. That is, the relative angle between the magnetic field and the element can be read by the elements shown in FIGS. 3(a) and 3(b).

第5図に本発明による他の実施例を示す。第3図(a)
 、 (b)に示した実施例と異なる点け、MR素子を
細線状に分割して、抵抗を増加させ、900の角度全な
す素子を二つ設け、その中間に中点端子を設けたことで
ある。これにより、より明確に磁場方向を検知できるよ
うになっている。
FIG. 5 shows another embodiment according to the present invention. Figure 3(a)
This is different from the embodiment shown in (b) by dividing the MR element into thin wires to increase the resistance, providing two elements that form a full angle of 900, and providing a midpoint terminal between them. be. This allows the direction of the magnetic field to be detected more clearly.

第5図(b)に磁場に対する左右の素子の抵抗値変化を
示した。電流を第5図(a)に示したように左の素子か
ら右の素子へ流すと、基板に設けた表面凹凸と電流のな
す角度が90度異るため、左の素子で中点に対する出力
が増加すると右の素子の中点に対する出力が減少し、第
5図ら)に示したように角度に対する選択性がより明確
になる。
FIG. 5(b) shows the resistance value change of the left and right elements with respect to the magnetic field. When a current is passed from the left element to the right element as shown in Figure 5(a), the angle between the current and the surface unevenness provided on the board is 90 degrees, so the output from the left element relative to the midpoint is different. As , increases, the output to the midpoint of the right element decreases, and the selectivity to angle becomes more pronounced, as shown in Figures 5, et al.

第6図に本発明による他の実施例を示す。本実施例では
、90度の角度をなすMR素子が二つ設けられているが
、この各々に設けた基板表面凹凸が右の素子と左の素子
で90度の角度をなし、かつ、MR素子と基板表面凹凸
とのなす角度が45゜である。この素子の間に中点端子
を設け、左右の素子に定電流を流し、画素子で発生する
電圧を読み取る。第6図(−)のような構成では、二つ
のMR素子が90度の角度を持っており、かつ、二つの
素子の磁化容易軸である基板表面凹凸が9Q度の角度を
なしているため、第5図に示した例よりも、より細分化
された磁界の方位を読み取ることができる。第6図(b
)にその様子を示した。右の素子と左の素子の磁化容易
軸方向が90度異るため、出力の極小を示す方位が右の
素子と左の素子で異な9、電流の方向が90度異在って
いるため、第6図に示しだように、右の素子と左の素子
で検出する出力が90度毎に零を示し、90度の位相を
もって極大点十十が検出され、また、180度の位相の
ところで極小点−一を示す。丑だ、各素子の零点を示す
位相差90度の中間点45°のところで出力の絶対値が
等しくなり、第5図に示した例と比較すると、より細分
化された精度の高い磁界方位を検出することができる。
FIG. 6 shows another embodiment according to the present invention. In this embodiment, two MR elements are provided which form an angle of 90 degrees. The angle between this and the unevenness on the substrate surface is 45°. A midpoint terminal is provided between these elements, a constant current is passed through the left and right elements, and the voltage generated in the pixel elements is read. In the configuration shown in Figure 6 (-), the two MR elements have an angle of 90 degrees, and the substrate surface irregularities, which are the easy magnetization axes of the two elements, form an angle of 9Q degrees. , it is possible to read the direction of the magnetic field in a more finely divided manner than in the example shown in FIG. Figure 6 (b
) shows the situation. Because the directions of the easy magnetization axes of the right and left elements differ by 90 degrees, the direction in which the minimum output occurs is different between the right and left elements9, and the current directions differ by 90 degrees. As shown in Figure 6, the output detected by the right element and the left element shows zero every 90 degrees, ten maximum points are detected at a phase of 90 degrees, and at a phase of 180 degrees. Indicates the minimum point -1. Unfortunately, the absolute values of the outputs become equal at 45°, the midpoint of the 90° phase difference that indicates the zero point of each element, and compared to the example shown in Figure 5, it is possible to obtain a more detailed and highly accurate magnetic field direction. can be detected.

以上、本発明では、MR素子の基板表面に凹凸を設けて
、MR素子の異方性をその凹凸方向fそろえ、寸だ、異
方性磁界Hkの大きさを表面凹凸によって十分大きくし
、線型領域を大きくしダイナミックレンジを大きくする
ことによって、新しい泣 磁界力価検出可能なMR素子を提供することができる。
As described above, in the present invention, irregularities are provided on the substrate surface of the MR element, the anisotropy of the MR element is aligned in the irregular direction f, and the magnitude of the anisotropic magnetic field Hk is made sufficiently large by the surface irregularities. By increasing the area and increasing the dynamic range, it is possible to provide a new MR element capable of detecting the strength of a crying magnetic field.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の磁気抵抗効果素子の一例を示す余[視図
、第2図はその磁化の方向の説明図である。 第3図(、)は本発明の一実施例の磁気抵抗効果素子5
舌 の平面図 同図(b)はそのX−X線に4つだ断面図。 (d) 同図(C)、→はその特性図、第4図はその異方性磁界
と表面凹凸の関係を示す図、第6図(−)は本発明の他
の実施例の平面図、同図(b)はその磁界方位と出力と
の関係を示す図、第6図(a)は本発明のさらに他の実
施例の平面図、同図(b)はその磁界方位と出力との関
係を示す図である。 11・・・・・・磁気抵抗効果を有する膜、12・・・
・・凹凸段差、13・・・・・電極、14・・・・・基
板。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第4図 第5図 tα2
FIG. 1 is a perspective view showing an example of a conventional magnetoresistive element, and FIG. 2 is an explanatory diagram of the direction of magnetization thereof. FIG. 3(,) shows a magnetoresistive element 5 according to an embodiment of the present invention.
Plan view of the tongue Figure (b) is a cross-sectional view taken along the line X-X. (d) In the same figure (C), → is its characteristic diagram, FIG. 4 is a diagram showing the relationship between the anisotropic magnetic field and surface unevenness, and FIG. 6 (-) is a plan view of another embodiment of the present invention. , FIG. 6(b) is a diagram showing the relationship between the magnetic field direction and the output, FIG. 6(a) is a plan view of still another embodiment of the present invention, and FIG. 6(b) is a diagram showing the relationship between the magnetic field direction and the output. FIG. 11... Film having magnetoresistive effect, 12...
... Uneven step, 13... Electrode, 14... Substrate. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 4 Figure 5 tα2

Claims (1)

【特許請求の範囲】 (1)基板上に被着形成された強磁性体よりなり、かつ
少なくとも一面に凹凸が形成されており、前記凹凸が前
記−面に一定方向にかつ線状に設けられており、前記凹
凸に対してほぼ45度の角度でとも一対の磁気抵抗効果
を有する素子を持ち、前記対をなす素子間に中間端子を
有し、かつ前記対をなす素子は互いに90度の角度をな
すよう配置されており、かつ前記対をなす素子の少なく
とも一面に凹凸が形成されており、前記凹凸が前記−面
に一定方向にかつ異方的な線状に設けられており、前記
対をなす素子の一辺と前記凹凸のなす角度がほぼ46度
である、ことを特徴とする磁気抵抗効果素子。 (3)少なくとも一対の素子の各々の表面に形成しだ凹
凸が、各々の素子で90度の角度をなすことを特徴とす
る特許請求の範囲第2項に記載の磁気抵抗効果素子。
[Scope of Claims] (1) The substrate is made of a ferromagnetic material deposited on the substrate, and has projections and depressions formed on at least one surface, and the projections and depressions are provided linearly in a fixed direction on the − surface. The device has a pair of elements having a magnetoresistive effect even at an angle of approximately 45 degrees with respect to the unevenness, and has an intermediate terminal between the paired elements, and the paired elements are oriented at an angle of 90 degrees to each other. They are arranged to form an angle, and unevenness is formed on at least one surface of the pair of elements, and the unevenness is provided in an anisotropic linear shape in a certain direction on the - surface, and A magnetoresistive element characterized in that an angle between one side of the pair of elements and the projections and depressions is approximately 46 degrees. (3) The magnetoresistive element according to claim 2, wherein the unevenness formed on the surface of each of the at least one pair of elements forms an angle of 90 degrees for each element.
JP57119461A 1982-07-08 1982-07-08 Magnetoresistance effect element Pending JPS599987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57119461A JPS599987A (en) 1982-07-08 1982-07-08 Magnetoresistance effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57119461A JPS599987A (en) 1982-07-08 1982-07-08 Magnetoresistance effect element

Publications (1)

Publication Number Publication Date
JPS599987A true JPS599987A (en) 1984-01-19

Family

ID=14761924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57119461A Pending JPS599987A (en) 1982-07-08 1982-07-08 Magnetoresistance effect element

Country Status (1)

Country Link
JP (1) JPS599987A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170478A (en) * 1984-09-14 1986-04-11 Fujitsu Ltd Magnetic detector
EP0662667A2 (en) * 1994-01-11 1995-07-12 Murata Manufacturing Co., Ltd. Magnetic sensor with member having magnetic contour anisotropy
WO1996016339A1 (en) * 1994-11-21 1996-05-30 International Business Machines Corporation Magnetoresistive sensor
JPWO2011007767A1 (en) * 2009-07-13 2012-12-27 日立金属株式会社 Magnetoresistive element manufacturing method, magnetic sensor, rotation angle detection device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170478A (en) * 1984-09-14 1986-04-11 Fujitsu Ltd Magnetic detector
EP0662667A2 (en) * 1994-01-11 1995-07-12 Murata Manufacturing Co., Ltd. Magnetic sensor with member having magnetic contour anisotropy
EP0662667A3 (en) * 1994-01-11 1995-11-15 Murata Manufacturing Co Magnetic sensor with member having magnetic contour anisotropy.
US5512822A (en) * 1994-01-11 1996-04-30 Murata Mfg. Co., Ltd. Magnetic sensor with member having magnetic contour antisotropy
WO1996016339A1 (en) * 1994-11-21 1996-05-30 International Business Machines Corporation Magnetoresistive sensor
JPWO2011007767A1 (en) * 2009-07-13 2012-12-27 日立金属株式会社 Magnetoresistive element manufacturing method, magnetic sensor, rotation angle detection device
JP5516584B2 (en) * 2009-07-13 2014-06-11 日立金属株式会社 Magnetoresistive element manufacturing method, magnetic sensor, rotation angle detection device

Similar Documents

Publication Publication Date Title
US4626946A (en) Twin track vertical read-write head structure
JPH0719923B2 (en) Position detector
JP3089828B2 (en) Ferromagnetic magnetoresistive element
JPS599987A (en) Magnetoresistance effect element
JP4281913B2 (en) Moving body detection device
JPH09231517A (en) Magnetic reluctance sensor
JP2746226B2 (en) Magnetic field detection method using magnetoresistive element
JPH08201492A (en) Magnetic sensor
JPH0217476A (en) Differential type magnetoresistance effect element
JP2004301741A (en) Magnetic sensor
US6211669B1 (en) Magnetic detector with improved noise resistance characteristics
JPS5941881A (en) Magnetoresistance effect element
EP0326192A2 (en) Magneto resistive coupled thin films for magnetic flux sensing
JPH0664719B2 (en) Magnetoresistive Readout Transducer Assembly
JPS5941880A (en) Magnetoresistance effect element
JPS5910290A (en) Magneto-resistance effect element
JPH048852B2 (en)
JPS5827386A (en) Magneto-resistance effect element
JPH08297814A (en) Magneto-resistance effect element
GB2360875A (en) Magnetoresistive layer system
JPS63142688A (en) Magnetoresistance effect device
JP3182858B2 (en) Ferromagnetic magnetoresistive element
JPH073650Y2 (en) Magnetoresistive element
JPS63255980A (en) Magnetoresistance element
JPS61236177A (en) Magnetoresistance effect element