JPS61236177A - Magnetoresistance effect element - Google Patents

Magnetoresistance effect element

Info

Publication number
JPS61236177A
JPS61236177A JP60078097A JP7809785A JPS61236177A JP S61236177 A JPS61236177 A JP S61236177A JP 60078097 A JP60078097 A JP 60078097A JP 7809785 A JP7809785 A JP 7809785A JP S61236177 A JPS61236177 A JP S61236177A
Authority
JP
Japan
Prior art keywords
film
magnetic
magnetoresistive
magnetic field
output voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60078097A
Other languages
Japanese (ja)
Inventor
Katsuya Mitsuoka
光岡 勝也
Shinji Narushige
成重 真治
Akira Kumagai
昭 熊谷
Mitsuo Sato
佐藤 満雄
Masanobu Hanazono
雅信 華園
Masahiko Sakakibara
正彦 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Proterial Ltd
Original Assignee
Hitachi Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Metals Ltd filed Critical Hitachi Ltd
Priority to JP60078097A priority Critical patent/JPS61236177A/en
Publication of JPS61236177A publication Critical patent/JPS61236177A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To decrease the variation in read-out output and to increase the read- out output value, by providing highly permeable magnetic films near a magnetoresistance effect film so as not to be contacted therewith and providing a single-domain magnetic pressure structure in the mangetoresistance effect film. CONSTITUTION:Thick and highly permeable films 6 are arranged adjacent to a magnetoresistance film 4 through insulation films so as to enable the focali zation of a magnetic field. According to this arrangement, a single magnetic domain can be provided in the magnetoresistance film with a good re producibility and the hysteresis can be eliminated. Accordingly, the variation in output voltage is not caused pratically and the output voltage can be almost its maximum value. Since the element can be used with a high output voltage, a maximum output value can be obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は磁気センサ素子、磁気ヘッド素子及び磁気パル
プ検出素子等に用いられる強磁性磁気抵抗効果素子に係
り、特に素子形状における高感度な強磁性磁気抵抗効果
素子に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a ferromagnetic magnetoresistive element used in a magnetic sensor element, a magnetic head element, a magnetic pulp detection element, etc., and particularly relates to a highly sensitive ferromagnetic element in the element shape. This invention relates to a magnetoresistive element.

〔発明の背景〕[Background of the invention]

近年、磁気抵抗効果を有する強磁性薄膜を用い回転角及
び回転速度を検出する磁気センサ、磁気抵抗効果型薄膜
磁気ヘッド、磁気パルプ検出素子の開発が急速に進展し
ている。磁気センサ、磁気抵抗効果型薄膜磁気ヘッド及
び磁気パルプ検出素子等には膜厚が25〜400mの強
磁性磁気抵抗効果膜が用いられるのが一般的である。こ
れらの強磁性磁気抵抗効果を利用した素子の強磁性磁気
抵抗効果には82重量*Nt−xs重量1Fe合金であ
るパーマロイが広範に用いられている。
In recent years, rapid progress has been made in the development of magnetic sensors that detect rotational angles and rotational speeds using ferromagnetic thin films having a magnetoresistive effect, magnetoresistive thin film magnetic heads, and magnetic pulp detection elements. A ferromagnetic magnetoresistive film having a thickness of 25 to 400 m is generally used in magnetic sensors, magnetoresistive thin film magnetic heads, magnetic pulp detection elements, and the like. Permalloy, which is an 82wt*Nt-xswt 1Fe alloy, is widely used for the ferromagnetic magnetoresistive effect of elements that utilize these ferromagnetic magnetoresistive effects.

読み出し用の磁気センサと磁気ディスクとの関係を示す
模式図が第4図に示されている。磁気センサは磁化パタ
ーン6が記録された磁気ディスク2と磁気抵抗効果膜4
とこの磁気抵抗効果膜4が接続されている導体膜5とか
らなる磁気抵抗効果素子1とから構成されている。この
磁気抵抗効果素子1は磁気ディスク2の各磁化パターン
6の境目に磁化遷移領域上では磁気ディスク2からの磁
界を出来るだけ検知せず、磁化遷移領域の中間位置すな
わち、磁化パターン6の中央位置上では磁気ディスク2
からの磁界を十分検知出来るように、磁化抵抗効果素子
lを構成している磁気抵抗効果膜40間隔寸法形状を決
め、磁気抵抗効果素子1と磁気ディスク2の表面との間
隔を50〜100μm離して磁気抵抗効果素子1を高感
度化していることは周知のごとくである。この磁気抵抗
効果膜4に、磁気抵抗効果を有する強磁性磁性膜を使用
するためには第4図に示されるストライプ長手方向(磁
気抵抗効果膜4の長手方向)に磁化容易軸(スピンが向
きやすい軸)を有する −軸磁気異方向膜とすることは
良く知られた事実である。
A schematic diagram showing the relationship between the read magnetic sensor and the magnetic disk is shown in FIG. The magnetic sensor includes a magnetic disk 2 on which a magnetization pattern 6 is recorded and a magnetoresistive film 4.
and a conductive film 5 to which the magnetoresistive film 4 is connected. This magnetoresistive element 1 detects the magnetic field from the magnetic disk 2 as little as possible on the magnetization transition region at the boundary between each magnetization pattern 6 of the magnetic disk 2, and detects the magnetic field from the magnetic disk 2 at an intermediate position of the magnetization transition region, that is, at the center of the magnetization pattern 6. Above, magnetic disk 2
In order to sufficiently detect the magnetic field from the magnetoresistive element 1, the dimensions and shape of the spacing between the magnetoresistive films 40 constituting the magnetoresistive element 1 are determined, and the distance between the magnetoresistive element 1 and the surface of the magnetic disk 2 is set at a distance of 50 to 100 μm. It is well known that the magnetoresistive element 1 is made highly sensitive. In order to use a ferromagnetic film having a magnetoresistive effect as the magnetoresistive film 4, the axis of easy magnetization (spin direction) must be aligned in the stripe longitudinal direction (longitudinal direction of the magnetoresistive film 4) shown in FIG. It is a well-known fact that the -axis magnetically anisotropically oriented film is used.

しかしながら、磁気抵抗効果膜4を注意を払って膜形成
してもストライプ長手方向と磁化容易軸方向とを一致さ
せることは難かしく、磁気困難軸励磁におけるヒステリ
シス曲線の原点近くに第5図に示す如くクビレAが発生
することが多い。これについては、Midde Iho
ekの報告(J、Appl 。
However, even if the magnetoresistive film 4 is carefully formed, it is difficult to match the longitudinal direction of the stripe with the easy axis direction of magnetization. Cracks A often occur. Regarding this, Midde Iho
Report of ek (J, Appl.

Phys、33s (1962)pptxix〜111
2)を参照されたい。本来磁化遷移領域上で0にならな
ければならない、すなわち、磁場「0」の状態で常に同
じ値を出さなければならない。ところがこのような3磁
区構造の膜を磁気抵抗効果素子lに適用すると、ヒステ
リシスがあるため第6図からも明らかな如く点lと点5
では磁界Oでも抵抗値が異るため出力電圧が変ってしま
う。すなわち、このような3磁区構造の膜を磁気抵抗効
果素子1に適用すると出力電圧が変動し、零ドリフトを
生ずることが知られている。そこで、それを防止するた
めに従来法として磁気抵抗効果膜にバイアス磁界を加え
、読み出し用の磁気センサの動作点を磁気ディスク2の
信号磁界に対して電気抵抗率が大きく変化する領域にも
ってきて使用する方法が用いられている(例えば、特開
昭57−21883 )。
Phys, 33s (1962) pptxix~111
Please refer to 2). Essentially, it must become 0 on the magnetization transition region, that is, it must always produce the same value in the state of magnetic field "0". However, when a film with such a three-domain structure is applied to a magnetoresistive element 1, there is hysteresis, and as is clear from FIG.
In this case, even in the magnetic field O, the resistance value differs, so the output voltage changes. That is, it is known that when a film with such a three-domain structure is applied to the magnetoresistive element 1, the output voltage fluctuates and zero drift occurs. Therefore, in order to prevent this, as a conventional method, a bias magnetic field is applied to the magnetoresistive film, and the operating point of the read magnetic sensor is brought to a region where the electrical resistivity changes greatly with respect to the signal magnetic field of the magnetic disk 2. (For example, Japanese Patent Laid-Open No. 57-21883).

しかしながら、この従来方法では磁気抵抗効果膜全体の
磁気抵抗変化率の一部しか使用出来ないため、磁気抵抗
効果素子1の出力変化量が小さくなり、高分解能化を図
る際に障害となる磁気エンコーダに組み込んだ場合、磁
気抵抗効果素子と磁気ディスクとの距aa4mやアジマ
ス調整が厳しくなるということ等が明らかとなった。
However, in this conventional method, only a part of the magnetoresistive change rate of the entire magnetoresistive film can be used, so the amount of change in the output of the magnetoresistive element 1 becomes small, which becomes an obstacle to the magnetic encoder when achieving high resolution. It has become clear that when the magneto-resistance effect element is incorporated into a magnetic disk, the distance aa4m between the magnetoresistive element and the magnetic disk and the azimuth adjustment become difficult.

また、別な従来法としては、磁気抵抗効果膜の磁化曲線
の原点近くに生ずるクビレを防止するためにバイアス磁
界を印加するもので、本発明者らが実験によって確認し
北結果を第5図に示す。第5図はストライプ長手方向(
磁性膜の容易軸方向)にバイアス磁界を印加した時の磁
気抵抗変化を示したものである。すなわち、第5図Fに
示されるだけの負のバイアスあるいはAに示す如き正の
バイアスをかけるとヒステリシスがなくなることを示し
ている。このようにストライプ長手方向にバイアス磁界
を印加することにより磁界に対する磁気抵抗変化のヒス
テリシス現象は消失することができる。このヒステリシ
ス現象が消失するときの磁気抵抗効果膜の磁区構造は牟
磁区構造となっている。しかし、ストライプ長手方向に
バイアス磁界を印加することによって単磁区構造にする
場合相手方である磁気ディスクに記録されている磁界に
よってストライプ長手方向に印加される磁界とバイアス
磁界とが平行か反平行かによって第5図人あるいはFと
最適なバイアス磁界の大きさが異っている。そこで、こ
のバイアス磁界の大きさを確定することができない磁気
センサに適用した時磁界が印加してくる方向が同一方向
であれば単磁区構造の状態で存在可能であるが、同一方
向でなく逆方向の磁界がある場合単磁区構造の状態では
存在出来ずそのため出力特性の安定化を得ることが難か
しい。このため、読み出し用の磁気センサにこのような
磁気抵抗効果膜を用いると誤検出をしてしまうという欠
点を有している。
Another conventional method is to apply a bias magnetic field to prevent the constriction that occurs near the origin of the magnetization curve of a magnetoresistive film. Shown below. Figure 5 shows the longitudinal direction of the stripe (
This figure shows the change in magnetoresistance when a bias magnetic field is applied in the direction of the easy axis of the magnetic film. That is, it is shown that if a negative bias as shown in FIG. 5F or a positive bias as shown in FIG. 5A is applied, hysteresis disappears. By applying a bias magnetic field in the longitudinal direction of the stripe in this way, the hysteresis phenomenon of changes in magnetoresistance with respect to the magnetic field can be eliminated. The magnetic domain structure of the magnetoresistive film when this hysteresis phenomenon disappears is a square magnetic domain structure. However, when forming a single domain structure by applying a bias magnetic field in the longitudinal direction of the stripe, it depends on whether the magnetic field applied in the longitudinal direction of the stripe and the bias magnetic field are parallel or antiparallel due to the magnetic field recorded on the other magnetic disk. Figure 5: The optimum bias magnetic field size is different from that of the person or F. Therefore, when applied to a magnetic sensor in which the magnitude of this bias magnetic field cannot be determined, it is possible to have a single domain structure if the magnetic fields are applied in the same direction, but if the magnetic field is applied in the same direction, it can exist in a single magnetic domain structure, but if the magnetic field is applied in the same direction and the direction is opposite When there is a directional magnetic field, a single magnetic domain structure cannot exist, which makes it difficult to stabilize the output characteristics. For this reason, if such a magnetoresistive film is used in a magnetic sensor for reading, it has the drawback of erroneous detection.

〔発明の目的〕[Purpose of the invention]

本発明の目的は出力変動がなく高い出力値を得ることの
できる磁気抵抗効果素子を提供することにある。
An object of the present invention is to provide a magnetoresistive element that can obtain a high output value without output fluctuation.

〔発明の概要〕[Summary of the invention]

本発明磁気抵抗効果素子の特徴とするところは磁気抵抗
効果を有する強磁性薄膜が単磁区構造となる点にある。
The magnetoresistive element of the present invention is characterized in that the ferromagnetic thin film having the magnetoresistive effect has a single magnetic domain structure.

磁性膜を単磁区構造とすることにより、後述するように
続出出力の変化率を極めて小さく出来、かつ続出出力値
を大きく出来るのである。
By making the magnetic film have a single magnetic domain structure, the rate of change in successive output can be made extremely small, and the successive output value can be increased, as will be described later.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

第1図には本発明の一実施例が示されて仏る。FIG. 1 shows an embodiment of the present invention.

因において、磁気抵抗効果素子組立体は面粗れを極力抑
えた非磁性基板3上に磁気抵抗効果膜4と共に形成され
る。磁気抵抗効果膜の寸法は膜厚が20〜501m1幅
が5〜4Qnm、長さが100〜3000μmであるこ
とから長さが幅に比べて十分に大きい。磁気抵抗効果膜
4は非磁性基板3上に蒸着により形成されている。この
磁気抵抗効果膜4は単磁区構造となる特性を有している
Incidentally, the magnetoresistive effect element assembly is formed together with the magnetoresistive effect film 4 on a non-magnetic substrate 3 with surface roughness suppressed as much as possible. The magnetoresistive film has a thickness of 20 to 501 m, a width of 5 to 4 Q nm, and a length of 100 to 3000 μm, so that the length is sufficiently larger than the width. The magnetoresistive film 4 is formed on the nonmagnetic substrate 3 by vapor deposition. This magnetoresistive film 4 has a characteristic of having a single magnetic domain structure.

リード線に接続された導体膜5が磁気抵抗効果膜4の両
端で電気的に接続されるように配置されている。
A conductive film 5 connected to a lead wire is arranged so as to be electrically connected at both ends of the magnetoresistive film 4.

かかる構成の磁気抵抗効果素子によれば、出力特性の安
定化と続出出力の増大化が図れるわけであるがその理由
を説明する。
According to the magnetoresistive element having such a configuration, it is possible to stabilize the output characteristics and increase the continuous output.The reason will be explained below.

磁気抵抗効果素子の出力特性の不安定性は磁界に対する
磁気抵抗変化のヒステリシス現象に原因しており、磁気
抵抗変化のシステリシス現象は磁区構造の不安定性に基
づくものである。
The instability of the output characteristics of a magnetoresistive element is caused by the hysteresis phenomenon of magnetoresistance changes in response to a magnetic field, and the systeresis phenomenon of magnetoresistive changes is based on the instability of the magnetic domain structure.

第6因は磁界と磁気抵抗変化との曲線と各磁界下での磁
区構造を調べた結果を示すものでヒステリシス現象を示
す磁界下では磁区構造は3つの異つた性格を有するスピ
ンをもつ3磁区構造となっている。矢印はスピンの方向
を示している。このように3磁区構造となっているか放
風、この構造の中の磁気モーメントのふるまいが変って
くるためにこのようなりビレAのような現象がおきる。
The sixth factor shows the results of examining the curve of magnetic field and magnetoresistance change and the magnetic domain structure under each magnetic field. Under a magnetic field that exhibits a hysteresis phenomenon, the magnetic domain structure has three magnetic domains with spins with three different characteristics. It has a structure. The arrow indicates the direction of spin. Due to this three-domain structure, the behavior of the magnetic moment within this structure changes, and this causes phenomena such as fin A.

磁界を0から負の方向にだんだん強い磁界をかけていっ
である点(第4図の点4)で0までもどしく第4図点5
)、正の方向の磁界をかけていくと第4図点6から点7
に移るときにクビレAを生じる。これは、第4図点1か
ら負の方向に磁界をかけていって再び戻し0点にき念と
きは本来消磁しているのである筈であるが戻ってきたと
きは完全に磁化された方向を保持するものと保持できな
いものとが混在していることによるものであるつしたが
って、ヒステリシス現象は磁壁移動に基づく磁化過程に
より生じるものと考えられ、そのため磁気抵抗効果素子
の出力特性を安定化するには、磁化過程が回転磁化によ
る単磁区構造にする必要があることが分る。そこで、磁
気抵抗効果膜にNi−:[’e合金膜を例にとって単磁
区構造となる磁気抵抗効果膜を再現性良く得る方法を説
明する。
Applying a gradually stronger magnetic field in the negative direction from 0 returns to 0 at a certain point (point 4 in Figure 4) and returns to point 5 in Figure 4.
), when applying a magnetic field in the positive direction, from point 6 to point 7 in Figure 4
Cracks A occur when moving to This is because a magnetic field is applied in the negative direction from point 1 in Figure 4 and brought back again.When it reaches the 0 point, it should have been demagnetized, but when it returns, it is completely magnetized. Therefore, the hysteresis phenomenon is thought to be caused by the magnetization process based on domain wall movement, which stabilizes the output characteristics of the magnetoresistive element. It can be seen that the magnetization process needs to have a single domain structure due to rotational magnetization. Therefore, a method for obtaining a magnetoresistive film having a single domain structure with good reproducibility will be explained by taking a Ni-:['e alloy film as an example of the magnetoresistive film.

磁気抵抗効果素子に使用するNi−Fe合金膜は一軸異
方性を有するために異方性の方向とストライプ長手方向
との角度を厳密に制御出来ればN1−Fe合金膜の磁区
構造を単磁区化することが学理的には可能である。しか
しながら、Ni−Fe合金膜を磁界中蒸着等により注意
深く膜形成してもN1−Fe合金膜の容易軸はストライ
プ長手方向に対し一定方向でなく数度ずれるのが普通で
ある。そのため膜形成法により単磁区化することはほと
んど不可能であり、本発明では第2図に示すような素子
構成とすることにより磁気抵抗効果膜の単磁区化を試み
た。即ち、磁気抵抗効果膜4に隣接して磁界を集束でき
るように膜が厚い高透磁率膜6を絶縁膜を介して配置し
た構成である。
Since the Ni-Fe alloy film used in the magnetoresistive element has uniaxial anisotropy, if the angle between the direction of anisotropy and the longitudinal direction of the stripe can be strictly controlled, the magnetic domain structure of the N1-Fe alloy film can be changed to a single magnetic domain. It is theoretically possible to do so. However, even if the Ni--Fe alloy film is carefully formed by evaporation in a magnetic field or the like, the easy axis of the N1--Fe alloy film is not in a constant direction but is usually shifted by several degrees with respect to the longitudinal direction of the stripe. For this reason, it is almost impossible to make a magnetoresistive film into a single magnetic domain by a film forming method.In the present invention, an attempt was made to make a magnetoresistive film into a single magnetic domain by using an element configuration as shown in FIG. That is, the configuration is such that a thick high magnetic permeability film 6 is placed adjacent to the magnetoresistive film 4 with an insulating film interposed therebetween so as to be able to focus the magnetic field.

第3図に第2図の素子構成をした磁気抵抗効果膜の磁区
構造と磁界に対する磁気抵抗変化の曲線を示す。第2図
のような素子構成にすることによりNi−Fe合金膜を
簡単にしかも再現性良く単磁化することが可能となる。
FIG. 3 shows the magnetic domain structure of a magnetoresistive film having the element configuration shown in FIG. 2 and a curve of magnetoresistance change with respect to a magnetic field. By configuring the device as shown in FIG. 2, it becomes possible to monomagnetize the Ni--Fe alloy film easily and with good reproducibility.

すなわち、ヒステリシスをなくすことができる。父、出
力特性は単磁区構造とすることが出来る。すなわち、ヒ
ステリシスをなくすことができるので出力電圧の変動率
はほとんどなく出力電圧も最大値に近い値を示した。
That is, hysteresis can be eliminated. However, the output characteristics can be a single magnetic domain structure. That is, since hysteresis can be eliminated, there is almost no fluctuation rate in the output voltage, and the output voltage also exhibits a value close to the maximum value.

これはヒステリシスがなくなったため磁界Oの部分を使
用できるからである。出力電圧の変動率がなくなれば、
出力電圧の高いところで使用できるため最大出力値を取
り出すことができる。本発明はこれに拘束されることな
く種々の変形が可能である。
This is because the magnetic field O can be used because hysteresis is eliminated. If the fluctuation rate of the output voltage disappears,
Since it can be used in areas with high output voltage, the maximum output value can be obtained. The present invention can be modified in various ways without being restricted thereto.

例えば、磁気抵抗効果膜をNi−Co合金膜とした磁気
抵抗効果素子で形成してもよい。
For example, the magnetoresistive film may be formed of a magnetoresistive element using a Ni-Co alloy film.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、安定な出力特性
と大きい出力電圧を得ることができる。
As explained above, according to the present invention, stable output characteristics and a large output voltage can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す磁気抵抗効果素子の概略
斜視図、第2図は本発明磁気抵抗効果素子の実施例を示
す概略斜視図、第3図は本発明磁気抵抗効果素子の磁界
に対する磁気抵抗変化を示す図、第4図は磁気抵抗効果
素子と磁気ディスクとの関係を示す模式図、第5図はス
トライプ長手方向にバイアス磁界印加時の磁気抵抗変化
を示す図、第6図は磁界に対する磁気抵抗変化の曲線及
び各磁界下での磁区構造を示す図である。 1・・・磁気抵抗効果素子、2・・・磁気ディスク、3
・・・非磁性基板、4・・・磁気抵抗効果膜、5・・・
導体膜、6・・・高透磁率磁性膜、7・・・絶縁膜。
FIG. 1 is a schematic perspective view of a magnetoresistive element showing an embodiment of the present invention, FIG. 2 is a schematic perspective view showing an embodiment of a magnetoresistive element of the invention, and FIG. 3 is a schematic perspective view of a magnetoresistive element of the invention. FIG. 4 is a schematic diagram showing the relationship between the magnetoresistive element and the magnetic disk. FIG. 5 is a diagram showing the change in magnetoresistive force when a bias magnetic field is applied in the longitudinal direction of the stripe. FIG. The figure shows a curve of magnetoresistance change with respect to a magnetic field and a magnetic domain structure under each magnetic field. 1... Magnetoresistive element, 2... Magnetic disk, 3
...Nonmagnetic substrate, 4...Magnetoresistive film, 5...
Conductor film, 6... High permeability magnetic film, 7... Insulating film.

Claims (1)

【特許請求の範囲】[Claims] 1.両端が導体膜に接続され、磁気抵抗効果を有する強
磁性磁性膜によつて構成される磁気抵抗効果素子におい
て、上記磁気抵抗効果膜の近傍に非接触で高透磁率磁性
膜を設け、磁気抵抗効果膜の磁圧構造を単磁区化するこ
とを特徴とする磁気抵抗効果素子。
1. In a magnetoresistive element composed of a ferromagnetic film having a magnetoresistive effect and connected to a conductive film at both ends, a high permeability magnetic film is provided in the vicinity of the magnetoresistive film in a non-contact manner, and the magnetoresistive film is A magnetoresistive element characterized in that the magnetic pressure structure of the effect film is made into a single magnetic domain.
JP60078097A 1985-04-12 1985-04-12 Magnetoresistance effect element Pending JPS61236177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60078097A JPS61236177A (en) 1985-04-12 1985-04-12 Magnetoresistance effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60078097A JPS61236177A (en) 1985-04-12 1985-04-12 Magnetoresistance effect element

Publications (1)

Publication Number Publication Date
JPS61236177A true JPS61236177A (en) 1986-10-21

Family

ID=13652359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60078097A Pending JPS61236177A (en) 1985-04-12 1985-04-12 Magnetoresistance effect element

Country Status (1)

Country Link
JP (1) JPS61236177A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015213106A (en) * 2014-05-01 2015-11-26 武次 廣田 Method for decreasing electric resistivity, and low-resistivity material
WO2021059751A1 (en) * 2019-09-26 2021-04-01 Tdk株式会社 Magnetic sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015213106A (en) * 2014-05-01 2015-11-26 武次 廣田 Method for decreasing electric resistivity, and low-resistivity material
WO2021059751A1 (en) * 2019-09-26 2021-04-01 Tdk株式会社 Magnetic sensor
JP2021051055A (en) * 2019-09-26 2021-04-01 Tdk株式会社 Magnetic sensor

Similar Documents

Publication Publication Date Title
US6667862B2 (en) Magnetoresistive read head having permanent magnet on top of magnetoresistive element
US6674618B2 (en) Dual element magnetoresistive read head with integral element stabilization
US5818685A (en) CIP GMR sensor coupled to biasing magnet with spacer therebetween
US7477490B2 (en) Single sensor element that is naturally differentiated
EP0279536A2 (en) Magnetoresistive head and process for its manufacture
US20100001723A1 (en) Bridge type sensor with tunable characteristic
KR940012687A (en) Current Biased Magnetoresistive Spin Valve Sensor
US5260652A (en) Magnetoresistive sensor with electrical contacts having variable resistive regions for enhanced sensor sensitivity
US6097578A (en) Bottom shield design for magnetic read heads
US6256177B1 (en) Giant magnetoresistive sensing element having longitudinally biased free layer with easy axis thereof parallel with signal field
US5835003A (en) Colossal magnetoresistance sensor
US6765770B2 (en) Apparatus and method of making a stabilized MR/GMR spin valve read element using longitudinal ferromagnetic exchange interactions
JP2790811B2 (en) Thin film magnetic head
JPH1196515A (en) Gmr magnetic sensor, its production and magnetic head
US6496004B1 (en) Magnetic field sensor using magneto-resistance of ferromagnetic layers with parallel magnetic axes
US4141051A (en) Variable dynamic range magneto-resistive head
JPH0870149A (en) Magnetoresistance element
US5982177A (en) Magnetoresistive sensor magnetically biased in a region spaced from a sensing region
JP3035836B2 (en) Magnetoresistive element
US6597545B2 (en) Shield design for magnetoresistive sensor
JPS61236177A (en) Magnetoresistance effect element
JP2004340953A (en) Magnetic field sensing element, manufacturing method therefor, and device using them
JP3282444B2 (en) Magnetoresistive element
EP0573149B1 (en) Improved magnetoresistive transducer
US5663644A (en) Magnetoresistive sensor having a bias field applied at approximately 56°