JPS5999242A - Production of gas sensitive element - Google Patents

Production of gas sensitive element

Info

Publication number
JPS5999242A
JPS5999242A JP20770482A JP20770482A JPS5999242A JP S5999242 A JPS5999242 A JP S5999242A JP 20770482 A JP20770482 A JP 20770482A JP 20770482 A JP20770482 A JP 20770482A JP S5999242 A JPS5999242 A JP S5999242A
Authority
JP
Japan
Prior art keywords
gas
catalyst layer
sensitive
sensitive element
org
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20770482A
Other languages
Japanese (ja)
Other versions
JPS6152423B2 (en
Inventor
Masayuki Shiratori
白鳥 昌之
Masaki Katsura
桂 正樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20770482A priority Critical patent/JPS5999242A/en
Publication of JPS5999242A publication Critical patent/JPS5999242A/en
Publication of JPS6152423B2 publication Critical patent/JPS6152423B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To obtain a gas sensitive element having excellent responsiveness by forming a film consisting of an org. compd. contg. Pt, etc. and Al, etc. on the surface of a gas sensitive body, then heating the same to decompose the org. compd. thereby forming a catalyst layer consisting of a catalyst metal such as Pd or the like and a carrier such as Al2O3 or the like. CONSTITUTION:A pair of electrodes 2 consisting of Au, etc. are provided on the surface of a cylindrical substrate consisting of Al2O3 as an insulating substrate 1. An n-butanol soln. contg. tin octylate is coated on the surface of the substrate 1 and the electrodes 2 and is dried to evaporate n-butanol. The substrate is then subjected to a heat treatment to decompose the tin octylate and to oxidize the same to form a thin SnO2 film as a gas sensitive body 3. A raw material soln. formed by mixing an org. soln. prepd. by dissolving Pd resinate in n-butanol and an org. soln. prepd. by dissolving Al naphthenate in toluene is coated on the surface of the body 3 and is then dried to evaporate the org. solvent. The sensitive body is then subjected to a heat treatment to decompose the Pd sesinate and Al naphthenate and to oxidize Al thereby forming a catalyst layer 4.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は感ガス素子、特に触媒層を有する感ガス素子の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a gas-sensitive element, and particularly to a method for manufacturing a gas-sensitive element having a catalyst layer.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来から、各種のガス(二接触して抵抗値の変化する例
えば5n02系酸化物半導体等のガス感応体を用いた感
ガス素子について各種の研究がなされている。このよう
な感ガス素子においては、カスに対する検出感度をあげ
るため等の目的で触媒を用いるが、この触媒を用いる感
ガス素子の一つの構造として、ガス感応体上(二触媒層
を設けたものがある。
Conventionally, various studies have been conducted on gas-sensitive elements using gas-sensitive materials such as 5N02-based oxide semiconductors whose resistance changes upon contact with various gases. A catalyst is used for the purpose of increasing detection sensitivity for dregs, etc., and one structure of a gas-sensitive element using this catalyst is one in which two catalyst layers are provided on a gas-sensitive member.

このような触媒層としては一般にA120s等の担体C
二pt等の触媒金属を混入した厚膜が用いられている。
Such a catalyst layer is generally made of a carrier C such as A120s.
A thick film mixed with a catalytic metal such as 2pt is used.

しかしながら厚膜はペースト状の原料の塗布・焼結工程
を経て形成されるため、非常に再現性が悪く感ガス素子
の特性のバラツキが大きいという問題点があった。さら
にこの厚膜は厚さが102μm程度のオーダーとなって
しまうため、ガス検出の際の応答速度が遅いという欠点
があった。また通常感ガス素子はヒータを具備し、ガス
感応体を加熱しながらガス検出を行なうが、この様に膜
厚が大きいと触媒層内に温度勾配が生じ熱応力が発生し
やすく、これ(二伴ない触媒層(ニクラツク等の生ずる
恐れがあった。さら(:触媒層の膜厚が大きいとガス感
応体の正確な温度設定が困難であり、感ガス素子の特性
にバラツキが生じてしまうという問題点もあった。
However, since the thick film is formed through a process of applying and sintering a paste-like raw material, there is a problem in that the reproducibility is very poor and the characteristics of the gas-sensitive element vary widely. Furthermore, since the thickness of this thick film is on the order of 102 μm, there is a drawback that the response speed during gas detection is slow. In addition, gas-sensitive elements are usually equipped with a heater, and gas detection is performed while heating the gas-sensitive element. However, when the film thickness is large, a temperature gradient occurs within the catalyst layer, which tends to generate thermal stress. In addition, if the thickness of the catalyst layer is large, it is difficult to accurately set the temperature of the gas-sensitive element, which may cause variations in the characteristics of the gas-sensitive element. There were also problems.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点を考慮してなされたもので、応答性(
二優れた感ガス素子の製造方法を提供することを目的と
する。
The present invention has been made in consideration of the above points, and has responsiveness (
Second, the present invention aims to provide an excellent method for manufacturing a gas-sensitive element.

〔発明のg要〕[Key points of invention]

本発明は、基板と、この基板上(二設けられた測定対象
ガス(二接触して抵抗値の変化するガス感応体と、この
ガス感応体(−設けられた一対の電極と、このガス感応
体表面(−設けられた触媒層とを具備した感ガス素子の
製造方法において、前記ガス感応体底面(二、Pd、P
t、Rhのうち少なくとも一種とAl、Zr+Siのう
ち少なくとも一種とを含む金属の有機化合物からなる膜
を形成した後、加熱しこの有機化合物を分解し、Pd、
Pt、Rh のうち少なくとも一種の触媒金属と、A4
03 HZrO2+5i02のうち少なくとも一種の担
体とからなる触媒層を形成する感ガス素子の製造方法で
ある。
The present invention relates to a substrate, a gas sensitive body provided on the substrate, a gas sensitive body whose resistance changes upon contact with the gas sensitive body, a pair of electrodes provided on the gas sensitive body, and a gas sensitive body provided on the substrate. In the method for manufacturing a gas-sensitive element comprising a body surface (-a catalyst layer provided), the gas-sensor bottom surface (2, Pd, P
After forming a film made of a metal organic compound containing at least one of Pd, Rh and at least one of Al, Zr+Si, heating is performed to decompose this organic compound, and Pd,
at least one catalyst metal among Pt and Rh; and A4
This is a method for manufacturing a gas-sensitive element in which a catalyst layer is formed of at least one type of carrier among 03 HZrO2+5i02.

なお本発明(二おける基板としてはA40s 、 5i
sN++BN、5i02等の耐熱絶縁性のセラミック基
板等が用いられ、ガス感応体としては5nOz系r Z
nO糸。
In addition, the present invention (the substrates in the two cases are A40s and 5i)
Heat-resistant insulating ceramic substrates such as sN++BN and 5i02 are used, and 5nOz series r Z is used as the gas sensitive body.
nO yarn.

Fe2 Os系等の測定対象ガス(二接触して抵抗値の
変化する酸化物半導体が用いられる。測定対象ガスはC
O,メタン等の炭化水素等の還元性カスである。
Gas to be measured such as Fe2Os (an oxide semiconductor whose resistance value changes upon contact with the other is used).The gas to be measured is C
These are reducing scum such as O and hydrocarbons such as methane.

5nu2系、 ZnO系、 Fe2O,系の酸化物半導
体は、それぞれ5n02+ ZnO+ Fe20gを主
成分とし、必要(二応じSb 、 Nb等の添加物を含
むものである。
The 5nu2-based, ZnO-based, and Fe2O-based oxide semiconductors each contain 20 g of 5n02+ ZnO+ Fe as a main component, and optionally contain additives such as Sb and Nb.

このガス感応体は、蒸着法、スパッタリング法。This gas sensitive material can be produced using vapor deposition or sputtering methods.

金属の有機化合物の熱分解法等(二よ膜形成された薄膜
、塗布・焼結等により形成された厚膜が用いられるが、
特(二100 nm−1000mm程度の薄膜が好まし
い。
Thermal decomposition of organic compounds of metals, etc. (Thin films formed in two layers, thick films formed by coating, sintering, etc. are used, but
In particular, a thin film of about 2100 nm to 1000 mm is preferable.

このガス感応体(二は抵抗値を検出するため一対の電極
が設けられるが、この電極は絶縁性基板上(二設け、こ
の上(−ガス感応体を設けても良いし、ガス感応体上(
−設けても良い。電極としてはPt。
A pair of electrodes are provided to detect the resistance value of this gas sensitive body (2), but these electrodes may be placed on an insulating substrate (2 provided, and above this (2) a gas sensitive body may be provided, or on top of the gas sensitive body (
- May be provided. The electrode is Pt.

Au等が用いられ、蒸着法、スパッタリング法、スクリ
ーン印刷法等(二より形成される。
Au or the like is used, and it is formed by a vapor deposition method, a sputtering method, a screen printing method, etc.

次に触媒層について述べる。Next, the catalyst layer will be described.

触媒層はPt、Pd、Rhのうち少なくとも一種の触媒
金属と、AA!20s + Zr0215iftのうち
少なくとも一種の担体とからなシ、この触媒層は金属の
有機化合物の熱分解法を用いて形成する。この触媒金属
は、ガス応答性、ガス選択性等の感ガス特性を向上する
ため(二用いられるものであシ、担体は感ガス素子使用
時(=おける触媒金属の凝集等(−よる感ガス特性の低
下を防止するため(−用いられるものである。
The catalyst layer contains at least one catalyst metal among Pt, Pd, and Rh, and AA! This catalyst layer is formed using a thermal decomposition method of an organic compound of a metal and at least one kind of carrier among 20s + Zr0215ift. This catalytic metal is used to improve gas-sensitive characteristics such as gas responsiveness and gas selectivity. In order to prevent deterioration of characteristics (-).

本発明(二用いられる金属の有機化合物としては、Pt
s Pd、 Rh、 A7. Zrs Stの金属アル
コール化物、金属石けん、樹脂塩その他加熱(=よシ分
解し金属又は金属酸化物を生ずる一般(二用いられる有
機化合物を用いる。
The present invention (2) The organic compound of the metal used is Pt
s Pd, Rh, A7. Metal alcoholides, metal soaps, resin salts, and other organic compounds of Zrs St that are commonly used (= generally decomposed to produce metals or metal oxides) by heating are used.

この金属の有機化合物は例えばラベンダーオイル* 石
油工 フル、ヘキサン、トルエン等の有機溶剤(−混合
した溶液をガス感応体底面に塗布し膜を形成する。触媒
層の組成比はこの溶液中の金属の有機化合物の量を変え
ること(二より容易(二制御できる。また膜形成後室温
1時間程度、100〜150″01時間程度の乾繰処理
を施し、有機溶剤を蒸発させ、金属の有機化合物をガス
感応体上(二定着させることが好ましい。
The organic compound of this metal is, for example, lavender oil*, hexane, toluene, and other organic solvents (-).A mixed solution is applied to the bottom of the gas sensor to form a film.The composition ratio of the catalyst layer is determined by the amount of metal in this solution. The amount of the organic compound of the metal can be changed (easier to control).After the film is formed, drying treatment is performed for about 1 hour at room temperature and from 100 to 150 mm for about 1 hour to evaporate the organic solvent and remove the metal organic compound. is preferably fixed on the gas sensitive member.

この金属の有機化合物は加熱すること(−より、簡単C
二熱分解し、金属又は金属酸化物となる。このときAZ
 + Zr + Slのうち少なくとも一種は、有機化
合物中の酸素原子と反応することにより、又は敵素存在
雰囲気下での加熱によシ酸化されA120B。
The organic compound of this metal can be heated (from -, simple C
Decomposes bithermally to form metals or metal oxides. At this time, AZ
At least one of + Zr + Sl is oxidized by reacting with an oxygen atom in an organic compound or by heating in an atmosphere in the presence of nitrogen, resulting in A120B.

ZrO□二!102となる。このよう(二金属の有機化
合物を加  分解すること(二よ、!17. Pt、 
Pd、 Rh のうち少なくとも一種の触媒金属と、A
40a w ZrO2。
ZrO□2! It becomes 102. In this way (hydrolysis of bimetallic organic compounds (2!17. Pt,
At least one catalytic metal selected from Pd and Rh, and A
40a w ZrO2.

5102のうち少なくとも一種の担体とからなる触媒層
を形成することができる。
A catalyst layer consisting of at least one type of carrier among 5102 can be formed.

このよう(二金属の有機化合物の熱分解法により形成さ
れた触媒層を用いた不発明(=係る感ガス素子(二おい
ては、測定対象ガスに対する応答性が非常(=優れてい
る。これは、このような方法で形成された触媒層でポー
ラスな状態が良好に実現されているためと考えられる。
In this way, the gas-sensitive element (2) using a catalyst layer formed by the thermal decomposition method of a bimetallic organic compound has very high responsiveness to the gas to be measured. This is considered to be because a porous state is well realized in the catalyst layer formed by such a method.

すなわち触媒層はガス感応体と測定対象ガスとの接触を
さまたげないようにポーラスな状態が要求されるが、こ
の有機化合物の熱分解法によれば、あらかじめ金属が分
散された状態から有機物が除去されること(−なり、こ
の部分(1空孔ができるためと考えられる。
In other words, the catalyst layer is required to be in a porous state so as not to interfere with the contact between the gas sensitive body and the gas to be measured, but according to this method of thermal decomposition of organic compounds, organic matter is removed from a state in which metals are dispersed in advance. This is thought to be due to the formation of one vacancy in this part.

またこの有機化合物の熱分解法によれば、有機浴媒中の
金属の有機化合物の量を調整することにより容易に所望
の組成比の触媒層を得ることができる。さら(二有機溶
媒中(=おいて金属の有機化合物は均一に分散し、形成
された触媒層中においても均一な組成が再現性良く実現
されるので、感ガス素子を量産する場合等の信頼性(1
浚れている。
Further, according to this thermal decomposition method of organic compounds, a catalyst layer having a desired composition ratio can be easily obtained by adjusting the amount of the metal organic compound in the organic bath medium. In addition, the organic compound of the metal is uniformly dispersed in the organic solvent (=), and a uniform composition is achieved with good reproducibility even in the formed catalyst layer, so it is highly reliable when mass-producing gas-sensitive elements. Gender (1
It's dredged.

さら(−絶縁性基板の形状(二関係なく、平板状9円筒
状等いずれの場合(−も均質な膜を形成することができ
る。
Furthermore, a homogeneous film can be formed in any case (- regardless of the shape of the insulating substrate, such as a flat plate, 9, a cylinder, etc.).

この触媒金属の触媒層中の重量比であるが、1〜90重
量%程度が好ましい。1重量%未満では触媒層の触媒能
力が充分(二は発揮されず、90重量%を越えると触媒
層が絶縁性を十分には保てなくなる恐れがあるからであ
る。また90重量%を越えると経時特性が特(二初期段
階で損なわれる恐れがある。ガス検出は、ガス感応体の
抵抗値の変化を測定して行なうが、ガス感応体上(−設
けられる触媒層の絶縁性が保たれていないと、ガス感応
体自体の抵抗値のみではなく、ガス感応体と触媒層との
抵抗値を測定すること(−なシ、ガス検出の精度が低下
する。また触媒層の抵抗値がガス感応体の抵抗値よシ小
となると、ガス感応体の抵抗値の測定が困難となp実質
的にガス検出が不可能となってしまう。
The weight ratio of this catalyst metal in the catalyst layer is preferably about 1 to 90% by weight. If it is less than 1% by weight, the catalyst layer will not have sufficient catalytic ability (2), and if it exceeds 90% by weight, the catalyst layer may not be able to maintain sufficient insulation properties. Gas detection is performed by measuring the change in resistance of the gas sensitive body, but the insulation properties of the catalyst layer provided on the gas sensitive body (-) may be damaged. If not, the resistance value of the gas sensitive body and the catalyst layer will be measured, not just the resistance value of the gas sensitive body itself. When the resistance value of the gas sensitive body becomes smaller, it becomes difficult to measure the resistance value of the gas sensitive body, and gas detection becomes virtually impossible.

このような触媒層を設けた不発明の感ガス素子において
は、触媒層とガス感応体を別々に製造するため、それぞ
れ(−最適の製造条件を設定することができ、感ガス素
子製造時の自由度が増す。また、ガス感応体中(−触媒
金属を混入した場合は、感ガス素子の使用につれその分
散状態が変化し、ガス感応体の抵抗値等の特性が変化し
てしまう恐れがあるが、担体(二触媒金属を混入した触
媒層を設けた本発明の場合この恐れはない。
In the uninvented gas-sensitive element provided with such a catalyst layer, since the catalyst layer and the gas-sensitive element are manufactured separately, it is possible to set the optimum manufacturing conditions for each (-), and the process of manufacturing the gas-sensitive element is The degree of freedom increases.Also, if a catalyst metal is mixed into the gas-sensitive element, its dispersion state will change as the gas-sensitive element is used, and there is a risk that the resistance value and other characteristics of the gas-sensitive element may change. However, in the case of the present invention in which a catalyst layer containing a carrier (two catalyst metals) is provided, this fear does not exist.

また触媒層の膜厚であるが、50〜1000 nm程度
が好ましい。
The thickness of the catalyst layer is preferably about 50 to 1000 nm.

膜厚が50 nm未満では触媒層の触媒能力が充分(二
は発揮されず1000 nmを越えると測定対象ガスに
対する応答速度が遅くなってしまう恐れがあるからであ
る。この応答速度には、測定対象ガスに接触した場合の
立ちあがシ速度と、測定対象ガスが除去された場合の復
帰速度とがあるが、膜厚が1000 nmを越えると両
者とも(−遅くなってしまう。
If the film thickness is less than 50 nm, the catalytic ability of the catalyst layer will not be fully demonstrated, and if it exceeds 1000 nm, the response speed to the gas to be measured may become slow. There is a rising speed when it comes into contact with the target gas, and a recovery speed when the target gas is removed, but both become slower (-) when the film thickness exceeds 1000 nm.

特(二COを測定対象とするような危険を知らせる装置
(−用いるような場合、応答速度、%(=立ちあがシ速
度が遅いとガス検出が遅れてしまい非常(二′危険であ
る。
In particular, when using a device (-) to notify a danger that measures CO2, if the response speed is slow, gas detection will be delayed and it is very dangerous (2').

〔発明の効果〕〔Effect of the invention〕

以上説明したよう(二本発明(−よれば応答性(二浚れ
た感ガス素子を得ることができる。
As explained above, according to the present invention, a gas-sensitive element with excellent responsiveness can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の詳細な説明する。 The present invention will be explained in detail below.

第1図及び第2図は本発明(=係る感ガス素子を示す図
であり、第1図は斜視図、第2図は断面図である。
FIGS. 1 and 2 are views showing a gas-sensitive element according to the present invention. FIG. 1 is a perspective view, and FIG. 2 is a sectional view.

絶縁性基板(1)としてA4o3からなる円筒状基板の
表面にAuからなる一対の電極(2]を  忰→→設け
る。この絶縁性基板(1)表面及びこの電極(2)上に
オクチル厳スズ102 ft%を含むn−ブタノール浴
液を塗布し、空気中約30分間の乾燥の後、約120’
030分間乾燥しn−ブタノールを蒸発する。続いて4
00〜700°CT:30分間空気中で熱処理し、オク
チル酸スズを分解しかつ酸化し、ガス感応体(3Jとし
てのSnO,薄膜を形成する。この熱処理はクラックの
発生防止等のため急熱・急冷が好ましく、また感度、ガ
ス応答性等の関係でioo nm〜1000 nm程度
の膜厚が好ましい。との膜厚はオクチル酸スズの濃度を
変えること、塗布・熱処理を数回くり返すことにより制
御することができる。
A pair of electrodes (2) made of Au are provided on the surface of a cylindrical substrate made of A4O3 as an insulating substrate (1). Octyl tin is coated on the surface of this insulating substrate (1) and this electrode (2). After applying an n-butanol bath solution containing 102 ft% and drying in the air for about 30 minutes,
Dry for 0.30 minutes and evaporate the n-butanol. followed by 4
00~700°CT: Heat treatment in air for 30 minutes to decompose and oxidize tin octylate to form a thin film of gas sensitive material (SnO as 3J).・Rapid cooling is preferable, and a film thickness of about 100 nm to 1000 nm is preferable in terms of sensitivity, gas response, etc. The film thickness can be determined by changing the concentration of tin octylate or by repeating coating and heat treatment several times. It can be controlled by

続いてガス感応体(3)表面(二触媒層(4)を形成す
る。
Subsequently, two catalyst layers (4) are formed on the surface of the gas sensitive body (3).

Pdの樹脂塩例えばパラジウム・レジネート (ENG
ELIiARD社:gりをn−ブタノール(1溶%した
有機溶液と、ナフテン酸アルミニウムをトルエン(二溶
解した有機溶液とを所望比で混合した原料溶液をガス感
応体(3)上(−塗布し、空気中約30分間就床の後、
約120″030分間乾録し、有機溶媒であるn−ブタ
ノール、トルエンを蒸発させる。次(二400〜700
’0で約加分間空気中で熱処理し、Pd1l脂塩。
Pd resin salts such as palladium resinate (ENG
ELIiARD Co.: A raw material solution prepared by mixing an organic solution containing glyph in n-butanol (1% dissolved) and an organic solution containing aluminum naphthenate dissolved in toluene (2%) in the desired ratio was coated on the gas sensitive member (3). , after sleeping in the air for about 30 minutes,
Dry recording for about 120"030 minutes to evaporate the organic solvents n-butanol and toluene.
Heat-treated in air for about 0 minutes to form a Pd1l fat salt.

ナフテン酸アルミニウムを分解しAAを酸化してPd及
びA120 Bとからなる触媒層(4)を形成する。ガ
ス感応体(3)の場合と同様(′−この熱処理はクラッ
クの発生を防止する等のため急熱・急冷が好ましく、ま
た触媒効力、ガス応答性等の関係から50〜1000 
nm程度の膜厚が好ましい。との膜厚は原料温液の塗布
・熱処理工程を繰9返すこと、Pd 樹脂塩、す7テン
酸アルミニウムの童を変えること(=よp制御すること
ができる。塗布・熱処理工程は1〜4回程度が好ましく
、あま9多数回繰り返すと、ヒビ割れ等が生じてしまう
恐れがある。
Aluminum naphthenate is decomposed and AA is oxidized to form a catalyst layer (4) consisting of Pd and A120B. As in the case of the gas sensitive member (3) ('-This heat treatment is preferably carried out by rapid heating and cooling in order to prevent the occurrence of cracks, etc., and from the viewpoint of catalytic efficacy, gas response, etc.
A film thickness of approximately nm is preferable. The film thickness can be controlled by repeating the coating and heat treatment process of the raw material hot liquid, and by changing the thickness of the Pd resin salt and aluminum sulfate. Approximately 4 times is preferable, and if repeated too many times, cracks etc. may occur.

以上のようにして電極(2)、ガス感応体(3)、触媒
層(4)が形成された絶縁性基板(1)を、電極(2)
に接続したリード線をステム(5)のピン(6)(二固
着することにより懸架する。また円筒状の絶縁性基板(
1)の内部(二はガス感応体(3)加熱用のヒータ(7
)を挿入する。
The insulating substrate (1) on which the electrode (2), the gas sensitive body (3), and the catalyst layer (4) were formed as described above was transferred to the electrode (2).
The lead wire connected to the stem (5) is suspended by fixing the pin (6) (2) to the stem (5).
1) (2 is a heater (7) for heating the gas sensitive body (3)
).

この実施例では円筒状の基板を用いたが平板状の基板を
用いても同様であり、ヒータも基板上(二Ru 02ペ
ースト等を用い形成しても良い。またリード線(二よる
懸架(−よらなくても、例えばケーシング(二直接固着
しても良い。
Although a cylindrical substrate was used in this embodiment, the same effect can be achieved by using a flat substrate, and the heater may also be formed on the substrate (using 2 Ru 02 paste, etc.). - For example, the casing may be fixed directly to the casing.

以上のように構成された本発明に係る感ガス素子(二お
ける応答・復帰特性を調べた。その結果を第1表に示す
。第1表においては前記実施例のPd −Al2O,系
の触媒層以外で、A40gを担体としまた比較例として
前述の実施例と同様の構成で触媒層をA40gと触媒金
属の混合物ペーストの塗布・焼結(二よシ設けた厚膜と
したものについても応答・復帰特性を調べた。
The response and recovery characteristics of the gas-sensitive element (2) according to the present invention constructed as described above were investigated. The results are shown in Table 1. In addition to the layer, as a comparative example, A40g was used as a carrier, and the catalyst layer was coated and sintered with a paste of a mixture of A40g and catalyst metal (a thick film with a diagonal was provided). -Recovery characteristics were investigated.

応答・復帰特性は、約301の測定槽中で行ないCOガ
ス200 ppm 雰囲気中(ユおける抵抗値が一定と
なるまでに要した時間(応答時間)、およびCOガスを
排気し大気中の抵抗値に復帰するまで(1要した時間(
復帰時間)をそれぞれ測定した。なお応答時間はCOガ
ス注入時からの時間であυCOガス濃度ガ200 pp
mとなるまでの所要時間(約5秒)を、復帰時間はCO
ガス排気時からの時間であp新鮮な空気といれかわるの
(1要した時間(約15秒)をそれぞれ含む。
The response and recovery characteristics were measured in a 200 ppm CO gas atmosphere (response time), and the resistance value in the atmosphere after exhausting the CO gas. Until it returns to (1 time required (
The recovery time) was measured. Note that the response time is the time from the time of CO gas injection. υCO gas concentration is 200 pp.
The time required to reach m (about 5 seconds) and the recovery time are CO
The time from when the gas is exhausted, including the time required for it to be replaced with fresh air (approximately 15 seconds).

第1表から明らかなように本発明の実施例においては応
答は3o sec程度復帰は1分程就と短時間なの(′
″−比べ、比較例の場合はいずれの応答時間が100秒
前後と長時間を要し、さら(二復帰時間においては20
0秒前後となり、本発明の方が応答・復帰特性、特(二
復帰特性(1優れていることがわかる。
As is clear from Table 1, in the embodiment of the present invention, the response time is about 3 o sec, and the recovery time is about 1 minute ('
''-In comparison, in the case of the comparative example, the response time for each case is around 100 seconds, which takes a long time,
It is around 0 seconds, and it can be seen that the present invention is superior in response and recovery characteristics, especially (second recovery characteristics).

第1表中のPd  A4Os系の触媒層を用いた本発明
の実施例(実線)とPd −A7203系のペーストの
塗布・焼結(二よる厚膜触媒層を用いた比較例(破線)
との応答・復帰特性を第3図にて比較した。
Examples of the present invention using a Pd A4Os based catalyst layer (solid line) and comparative example using a thick film catalyst layer (broken line) by coating and sintering a Pd-A7203 based paste in Table 1
The response and recovery characteristics are compared in Figure 3.

本発明の実施例ではCOガス注入fal後速やか(二抵
抗値が飽和しCOガス排気tbJ後速やか(=抵抗値が
復帰するの(二対し、比較例では両者ともなだらか(1
変化していることがわかる。
In the example of the present invention, the resistance value is saturated immediately after CO gas injection fal (=2), and the resistance value returns quickly after CO gas exhaust tbJ (=2), whereas in the comparative example, both are gradual (1
You can see that things are changing.

また゛第2表において集子温度の違いによる感度の違い
を示す。感ガス素子は第1表(1示した実施例と同様と
しCo 、 H2、CaHa 、CH4、C2H50H
(二ついてその感度を調べた。     以下余白第2
表から明らかなよう(二素子温度によシガス選択性が異
なシ、低温(100°C)においてはCOガス感度が尚
く、高温になる(二つれC5Hs、CH4の感度が増大
する。従って素子温度を変えることによp同じ感ガス素
子で各種の測定対象ガスを測定できる。
Furthermore, Table 2 shows the difference in sensitivity due to the difference in collector temperature. The gas-sensitive elements were the same as the examples shown in Table 1 (1).Co, H2, CaHa, CH4, C2H50H
(I investigated the sensitivity using two. Below is the second margin.
As is clear from the table (the gas selectivity differs depending on the element temperature), the CO gas sensitivity is even higher at low temperatures (100°C), and the sensitivity for CH4 increases at low temperatures (100°C). By changing the temperature, various target gases can be measured using the same gas-sensitive element.

以上説明した実施例においてはAa2osを担体として
用いたが5ins + 1ro2を用いても同様である
In the embodiments described above, Aa2os was used as the carrier, but the same effect can be obtained by using 5ins + 1ro2.

この場合有機化合物として例えばシリコン、ジルコニウ
ムのアルコキシド、ナフテン酸ジルコニウム等を用いる
ことができる。
In this case, for example, silicon, zirconium alkoxide, zirconium naphthenate, etc. can be used as the organic compound.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明(=係る感ガス素子の斜視図、第2図は
本発明に係る感ガス素子の断面図、第3図は感ガス素子
の応答・復帰特性 1・・・基板       2・・・電極3・・・ガス
感応体    4・・・触媒層代理人 弁理士 則 近
 憲 佑(ほか1名)第を図 第3図 晴間(1シ)
FIG. 1 is a perspective view of a gas-sensitive element according to the present invention, FIG. 2 is a sectional view of a gas-sensitive element according to the present invention, and FIG. 3 is a response/return characteristic of the gas-sensitive element 1... Substrate 2. ...Electrode 3...Gas sensitive body 4...Catalyst layer representative Patent attorney Noriyuki Chika (and one other person) Figure 3 Haruma (1)

Claims (1)

【特許請求の範囲】 基板と、この基板上に設けられた測定対象ガスに接触し
て抵抗値の変化するガス感応体と、このガス感応体(=
設けられた一対の電極と、このガス感応体表面に設けら
れた触媒層とを具備した感ガス素子の製造方法において
、前記ガス感応体表面(=、Pd 、 Pt 、 Rh
のうち少なくとも一種とAl 。 Zr + Stのうち少なくとも一種とを含む金属の有
機化合物からなる膜を形成した後、この有機化合物を加
熱分解し、Pd、Pt、Rhのうち少なくとも一種の触
媒金属と、A40a l ZrO2+ 5i02のうち
少なくとも一種の担体とからなる触媒層を形成したこと
を特徴とする感ガス素子の製造方法。
[Claims] A substrate, a gas sensitive member provided on the substrate whose resistance value changes upon contact with a gas to be measured, and this gas sensitive member (=
In the method for manufacturing a gas-sensitive element comprising a pair of electrodes provided on the surface of the gas-sensitive member and a catalyst layer provided on the surface of the gas-sensitive member, the surface of the gas-sensitive member (=, Pd , Pt , Rh
At least one of the following and Al. After forming a film made of a metal organic compound containing at least one of Zr + St, this organic compound is thermally decomposed to produce at least one catalytic metal of Pd, Pt, and Rh, and at least one of A40a l ZrO2+ 5i02. 1. A method for producing a gas-sensitive element, comprising forming a catalyst layer comprising at least one type of carrier.
JP20770482A 1982-11-29 1982-11-29 Production of gas sensitive element Granted JPS5999242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20770482A JPS5999242A (en) 1982-11-29 1982-11-29 Production of gas sensitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20770482A JPS5999242A (en) 1982-11-29 1982-11-29 Production of gas sensitive element

Publications (2)

Publication Number Publication Date
JPS5999242A true JPS5999242A (en) 1984-06-07
JPS6152423B2 JPS6152423B2 (en) 1986-11-13

Family

ID=16544180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20770482A Granted JPS5999242A (en) 1982-11-29 1982-11-29 Production of gas sensitive element

Country Status (1)

Country Link
JP (1) JPS5999242A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09269306A (en) * 1996-04-02 1997-10-14 New Cosmos Electric Corp Heat ray type semiconductor gas detection element and gas detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09269306A (en) * 1996-04-02 1997-10-14 New Cosmos Electric Corp Heat ray type semiconductor gas detection element and gas detector

Also Published As

Publication number Publication date
JPS6152423B2 (en) 1986-11-13

Similar Documents

Publication Publication Date Title
US5813764A (en) Catalytic differential calorimetric gas sensor
EP0722565B1 (en) A catalytic gas sensor
JP2829416B2 (en) Gas sensing element
US4504522A (en) Method of making a titanium dioxide oxygen sensor element by chemical vapor deposition
Luo et al. Nanocrystalline SnO2 film prepared by the aqueous sol–gel method and its application as sensing films of the resistance and SAW H2S sensor
JP2542643B2 (en) Sensor manufacturing method
JPH0769285B2 (en) Semiconductor for resistive gas sensor with high response speed
JPS5999242A (en) Production of gas sensitive element
KR890000390B1 (en) Gas detecting apparatus
Kawahara et al. Gas-sensing properties of semiconductor heterolayers fabricated by a slide-off transfer printing method
Garje et al. Effect of firing temperature on electrical and gas‐sensing properties of nano‐SnO2‐based thick‐film resistors
JPS6366448A (en) Gas detector
US5969232A (en) Catalytic layer system
JPS5999243A (en) Gas sensitive element
Shihabudeen et al. Ethanol sensing properties of nitrogen doped In 2 O 3 thin films
JPH0531104B2 (en)
JPH04269650A (en) Oxide semiconductor gas sensor
JP2922264B2 (en) Gas sensor
JPS6410774B2 (en)
JPS607352A (en) Gas sensitive element
JPH0315976B2 (en)
SU1485115A1 (en) Method of manufacturing of thermocatalytic transducer sensor
JPH07104309B2 (en) Gas sensor manufacturing method
JPH051419B2 (en)
JPH04279853A (en) Gas sensor