JPS5999231A - Pressure replacing device for high temperature - Google Patents

Pressure replacing device for high temperature

Info

Publication number
JPS5999231A
JPS5999231A JP20819382A JP20819382A JPS5999231A JP S5999231 A JPS5999231 A JP S5999231A JP 20819382 A JP20819382 A JP 20819382A JP 20819382 A JP20819382 A JP 20819382A JP S5999231 A JPS5999231 A JP S5999231A
Authority
JP
Japan
Prior art keywords
pressure
fluid
measured
cooling
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20819382A
Other languages
Japanese (ja)
Inventor
Masaichi Kikushima
菊島 政一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP20819382A priority Critical patent/JPS5999231A/en
Publication of JPS5999231A publication Critical patent/JPS5999231A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • G01L19/0681Protection against excessive heat
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0007Fluidic connecting means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To allow use even for fluid of about 450 deg.C by coupling the 1st pressure diaphragm which is displaced by the pressure of fluid to be measured and the 2nd pressure diaphragm which replaces external force with the pressure of a pressure transmitting medium, through a cooling system. CONSTITUTION:A pressure regulator 7 consists of the 1st pressure diaphragm 22 which is attached to the flange 71 of the high-pressure side pressure outlet of a hermetically sealed tank and displaced by the pressure of fluid 30 to be measured and the 2nd pressure diaphragm 23 provided in a recessed part 21. The pressure diaphragms 22 and 23 are coupled together by the stem for cooling 26 having a cooling fin 26, so the pressure of the fluid 30 applied to the pressure diaphragm 22 is tansmitted to the pressure transmitting medium 13 through the pressure diaphragm 23 and measured. A cooling medium 29 having constant pressure is flowed through the recessed part 24 between the pressure diaphragms 22 and 23 through a piping connection port 28, so the fluid 30 to be measured is cooled even when having >=about 450 deg.C and the characterstics of the pressure transmitting medium 13 never deteriorate.

Description

【発明の詳細な説明】 本発明は、たとえば圧力測定システムや差圧測定システ
ム等に使用するものであって、高温流体の圧力を、圧力
伝達媒体の圧力伝達特性を損うことなく、該媒体の圧力
に置換する高温用圧力置換器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is used, for example, in a pressure measurement system or a differential pressure measurement system, and is capable of controlling the pressure of a high-temperature fluid without impairing the pressure transmission characteristics of the pressure transmission medium. This invention relates to a high-temperature pressure replacer that replaces the pressure to

次に従来の圧力置換器を図面にもとづいて説明する。Next, a conventional pressure displacement device will be explained based on the drawings.

第1図は従来の圧力置換器を用いた液位測定システムの
構成図、第2図は第1図における要部Sの拡大縦断面図
である。第1図および第2図において同一の部分には同
一の符号が付しである。
FIG. 1 is a block diagram of a liquid level measuring system using a conventional pressure displacement device, and FIG. 2 is an enlarged longitudinal cross-sectional view of a main part S in FIG. 1. Identical parts in FIG. 1 and FIG. 2 are given the same reference numerals.

第1図において、1は被測定液体2を収納した密閉タン
ク、3は被測定液体2傭面上の蒸気等の気体、4および
5はそれぞれ低圧側および高圧側の圧力取出口、Peは
気体3の圧力、Phは圧力取出口5における圧力、Hは
液体2の液面から圧力取出口5までの液柱の高さである
。したがって液体2の密度をrとすると(1)式の関係
がある。
In Fig. 1, 1 is a sealed tank containing the liquid to be measured 2, 3 is a gas such as steam on the surface of the liquid to be measured 2, 4 and 5 are pressure outlets on the low pressure side and high pressure side, respectively, and Pe is a gas. 3, Ph is the pressure at the pressure outlet 5, and H is the height of the liquid column from the liquid level of the liquid 2 to the pressure outlet 5. Therefore, if the density of the liquid 2 is r, then there is a relationship expressed by equation (1).

Ph −Pe = r −H・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・(
1)6および7はそれぞれ低圧側および高圧側の圧力置
換器であって、それぞれは低圧側および高圧側の各導圧
管8および9に流体密に接続されておシ、さらに圧力取
出口4,5はそれぞれ圧力置換器6.7と流体密にフラ
ンジ結合されている。10は変換部10aと伝送部10
bとからなる差圧変換器であって、導圧管8.9の圧力
置換器6,7に接続された端とは反対側の端が差圧変換
器10の変換部10aに液密に接続されている。
Ph −Pe = r −H・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・(
1) 6 and 7 are pressure replacers on the low pressure side and high pressure side, respectively, which are fluid-tightly connected to the respective pressure impulse pipes 8 and 9 on the low pressure side and the high pressure side, and furthermore, pressure displacement ports 4, 5 are each flanged in a fluid-tight manner with a pressure displacement device 6.7. 10 is a conversion section 10a and a transmission section 10
b, the end of the impulse tube 8.9 opposite to the end connected to the pressure replacers 6, 7 is connected liquid-tightly to the conversion part 10a of the differential pressure converter 10. has been done.

第2図において、51は圧力取出口5のフランジであっ
て、圧力置換器7は凹部71aとその凹部71aのt1
ホ中央附近に設けられた貫通孔71bとを有するフラン
ジ71と、凹部71aにふたをするようにかぶせた受圧
膜72とからなっている。受圧膜72は周縁がフランジ
71に流体密に接合されており、フランジ71はパツキ
ン11を介してボルト12.12で7ランジ51に流体
密に結合されている。導圧管9はフランジ71に接続さ
れ、該導圧管9の内部は貫通孔71bと連通している。
In FIG. 2, 51 is a flange of the pressure outlet 5, and the pressure replacer 7 includes a recess 71a and a t1 of the recess 71a.
It consists of a flange 71 having a through hole 71b provided near the center, and a pressure receiving membrane 72 that covers the recess 71a. The pressure-receiving membrane 72 has its peripheral edge fluid-tightly joined to the flange 71, and the flange 71 is fluid-tightly joined to the seven flange 51 via the packing 11 with bolts 12.12. The impulse tube 9 is connected to the flange 71, and the inside of the impulse tube 9 communicates with the through hole 71b.

13は導圧管9の内部と貫通孔71bと受圧膜72でお
おわれた凹部71Bとからなる一連の空所に封入された
圧力伝達媒体としてのシリコンオイルである。第2図は
第1図における高圧側圧力取出口5および高圧側圧力置
換器7の構成を示したものであるが、第1図における低
圧側圧力取出口4および低圧側圧力置換器6の構成も第
2図と同様である。
Reference numeral 13 denotes silicone oil as a pressure transmission medium sealed in a series of cavities consisting of the inside of the impulse pipe 9, the through hole 71b, and the recess 71B covered with the pressure receiving membrane 72. FIG. 2 shows the configuration of the high-pressure side pressure outlet 5 and the high-pressure side pressure replacer 7 in FIG. 1, but the configuration of the low-pressure side pressure outlet 4 and the low-pressure side pressure replacer 6 in FIG. is also the same as in FIG.

第1図の液位測定システムは以上に説明したように構成
されているので、液柱Hの底面の圧力phが受圧膜72
および圧力伝達媒体13ヲ介して差圧変換器10の変換
部10aに伝達され、気体の圧力Peが低圧側圧力置換
器6内の図示されていない受圧膜62および圧力伝達媒
体13を介して同様に変換部10aに伝達される。変換
部10aでは前記の伝達された両正力Ph、PeO差の
圧力Ph −Peが、たとえば電気信号に変換されるの
で、この電気信号は(1)式によって液柱の高さHに相
当した信号であり、この信号は伝送部10bを経て差圧
変換器10の外部へ伝送される。したがってこの外部へ
伝送される信号によって被測定液体2の液位が測定でき
ることになる。
Since the liquid level measuring system shown in FIG. 1 is configured as explained above, the pressure ph at the bottom of the liquid column H is
The gas pressure Pe is transmitted to the converting section 10a of the differential pressure converter 10 via the pressure transmitting medium 13, and the gas pressure Pe is similarly transmitted via the pressure receiving membrane 62 (not shown) in the low pressure side pressure replacer 6 and the pressure transmitting medium 13. is transmitted to the converter 10a. In the converter 10a, the transmitted positive force Ph and the pressure difference Ph - Pe of PeO are converted into, for example, an electric signal, and this electric signal corresponds to the height H of the liquid column according to equation (1). This signal is transmitted to the outside of the differential pressure converter 10 via the transmission section 10b. Therefore, the liquid level of the liquid to be measured 2 can be measured by this signal transmitted to the outside.

第1図の液位測定システムにおいて、高圧側および低圧
側の各EFjE M換器7,6内の受圧膜72.62お
よび圧力伝達媒体13.13を省き、被測定液体2およ
び気体奪をそれぞれ導圧管9,8を介して直接差圧変換
器10に導いて液位測定を行なうことも原理的に可能で
ある。しかしながらこのような場合、気体3に圧力変化
が起こると、導圧管8内の気体3と導圧管9内の液体2
とでは圧力変化の伝播速度が異なるkめに、前記圧力変
化が同時に差圧変換器10の変換部108 K到達しな
いので、結局変換部10aの検出したPh−PeはrH
に等しくならず、このため液位測定値に誤差が発生する
。また変換部108に4かれる気体3や被測定液体2が
変換部1゜aを腐食するような場合も当然測定誤差が発
生する。さらにまた一般に変換部10aは100 ”O
程度以上の温度には耐えられないので、気体3や被測定
液体2が高温でかつ導圧管8.9が短い場合は変換部1
(Mlが100°0以上となりこの場合もまた測定誤差
が発生する。第1図の液位測定システムにおける受圧膜
72 、62および圧力伝達媒体13.13は上述のよ
うな測定誤差の発生を防止するためのものであって、被
測定液体2や気体3が高温である場合、該液体2や気体
3が変換部10aを腐食する場合、導圧管8.9を長く
敷設する必要のある場合などの場合に受圧膜72.62
および圧力伝達媒体13.13を使用すると、液体2や
気体3が高温であっても導圧管8,9を長くすればこの
部分での放熱によって変換部10aの温度を100°C
以下にすることかで(5) き、またこの場合導圧管8,9が長くなっても該導圧管
8,9内は共に圧力伝達用媒体13としてのシリコンオ
イルで満たされているので、両溝圧管で圧力伝達に時間
差が生じることはない。また受圧膜72.62をそれぞ
れ液体2.気体3およびシリコンオイル13によって腐
食されないような材料で形成しておけば、変換部10a
はシリコンオイルによっては腐食されないように形成さ
れているので変換部10aが液体2や気体3によって腐
食されることもない。
In the liquid level measurement system shown in FIG. 1, the pressure receiving membrane 72.62 and the pressure transmission medium 13.13 in each of the EFjE M exchangers 7, 6 on the high pressure side and the low pressure side are omitted, and the liquid to be measured 2 and the gas deprived are removed, respectively. In principle, it is also possible to directly lead the liquid to the differential pressure converter 10 via the pressure conduits 9 and 8 to measure the liquid level. However, in such a case, when a pressure change occurs in the gas 3, the gas 3 in the impulse tube 8 and the liquid 2 in the impulse tube 9
Since the propagation speed of the pressure change is different between the two, the pressure change does not reach the converter 108K of the differential pressure converter 10 at the same time, so the Ph-Pe detected by the converter 10a is rH
, which causes an error in the measured liquid level. Naturally, measurement errors also occur when the gas 3 or the liquid 2 to be measured that is introduced into the converting section 108 corrodes the converting section 1a. Furthermore, generally the converter 10a is 100"O
Converter 1 cannot withstand temperatures higher than 100°C, so if gas 3 or liquid 2 to be measured is high temperature and impulse pipe 8.9 is short, converter 1
(If Ml exceeds 100°0, a measurement error will also occur in this case. The pressure receiving membranes 72, 62 and the pressure transmission medium 13, 13 in the liquid level measuring system shown in Fig. 1 prevent the occurrence of measurement errors as described above. When the liquid 2 or gas 3 to be measured is at a high temperature, when the liquid 2 or gas 3 corrodes the conversion part 10a, or when it is necessary to install a long impulse pipe 8.9, etc. In the case of pressure-receiving membrane 72.62
If pressure transmission medium 13.13 is used, even if the liquid 2 or gas 3 is at a high temperature, if the impulse tubes 8 and 9 are made long, the temperature of the converter 10a can be reduced to 100°C by heat dissipation in these parts.
(5) In this case, even if the impulse tubes 8 and 9 become longer, the insides of the impulse tubes 8 and 9 are both filled with silicone oil as the pressure transmission medium 13. There is no time difference in pressure transmission in the groove pressure pipe. In addition, the pressure receiving membranes 72 and 62 are connected to liquids 2 and 62, respectively. If it is made of a material that is not corroded by the gas 3 and the silicone oil 13, the conversion part 10a
is formed so as not to be corroded by silicone oil, so that the converting portion 10a is not corroded by liquid 2 or gas 3.

第1図および第2図に示した従来の圧力置換器は、以上
に説明したような機能を有するものであって、圧力伝達
用媒体としては通常シリコンオイルが使用されるのが一
般的である。ところがとのシリコンオイルは耐熱限界が
普通密閉系で350〜400℃程度であって、この温度
以上になると変質して圧力伝達特性が極度に低下する特
性がある。
The conventional pressure displacement device shown in FIGS. 1 and 2 has the functions described above, and silicone oil is generally used as the pressure transmission medium. . However, the heat resistance limit of silicone oil is usually about 350 to 400°C in a closed system, and when the temperature exceeds this temperature, the quality deteriorates and the pressure transmission characteristics are extremely deteriorated.

すなわちシリコンオイルを圧力伝達用砂体として用いた
従来の圧力置換器には、こ九を350〜400’O程度
の温度以上の流体に対しては使用することかで(6) きないという欠点があった。
In other words, conventional pressure displacement devices that use silicone oil as a pressure transmitting sand body have the disadvantage that they cannot be used for fluids with temperatures above about 350 to 400 degrees (6). was there.

本発明は、被測定流体の圧力を受圧膜を介して圧力伝達
媒体に伝達する圧力置換器において、該圧力置換器の受
圧膜を被測定流体の圧力によって変位する第1受圧膜と
外力を圧力伝達媒体の圧力に置換する第2受圧膜とで構
成し、前記第1受圧膜と前記第2受圧膜とを冷却用ステ
ムで連結し、さらに前記第1受圧膜と前記第2受圧膜と
の間の前記冷却用ステムで連結された空所と、前記圧力
置換器の外部とを連通ずる冷却媒体用の複数の連通孔を
、前記圧力置換器のフランジに設けることによって、シ
リコンオイルを圧力伝達媒体として用いても350〜4
50℃程度舎以上の温度の流体に対して使用できる高温
用圧力置換器をうることを目的とするものである。
The present invention provides a pressure displacer that transmits the pressure of a fluid to be measured to a pressure transmission medium via a pressure-receiving membrane, and a first pressure-receiving membrane that displaces the pressure-receiving membrane of the pressure transducer by the pressure of the fluid to be measured, and a first pressure-receiving membrane that transfers an external force to the pressure. a second pressure-receiving film that replaces the pressure of the transmission medium, the first pressure-receiving film and the second pressure-receiving film are connected by a cooling stem, and the first pressure-receiving film and the second pressure-receiving film are By providing a plurality of communication holes for a cooling medium in the flange of the pressure replacer, which communicate the space connected by the cooling stem between the two and the outside of the pressure replacer, the pressure of silicone oil can be transmitted. 350-4 even when used as a medium
The purpose of this invention is to provide a high-temperature pressure displacement device that can be used for fluids at temperatures above about 50°C.

次に本発明を図面を参照して説明する。Next, the present invention will be explained with reference to the drawings.

第3図は本発明による高温用圧力置換器の一実施例の構
成図であって、同図(A)は縦断面図、同図(B)は同
図(八における冷却用ステム26の拡大側面図である。
FIG. 3 is a block diagram of an embodiment of a high-temperature pressure displacement device according to the present invention, in which (A) is a longitudinal sectional view, and (B) is an enlarged view of the cooling stem 26 in FIG. FIG.

第3図(71!においては圧力置換器7に、説明の便宜
上導圧管9を接続した状態が示しである。
In FIG. 3 (71!), the pressure displacement device 7 is shown connected to the pressure guiding pipe 9 for convenience of explanation.

なお第3図において第1図および第2図と同一の部分ま
たは同一の機能を有する部分には同一の符号が付しであ
る。
In FIG. 3, the same parts or parts having the same functions as in FIGS. 1 and 2 are given the same reference numerals.

第3図において、71cはフランジ71に設けたボルト
用貫通孔、21はフランジ71の筒状凹部、22は筒状
凹部21にふたをするようにした第1受圧膜である。第
1受圧膜22はその周縁においてフランジ71と流体密
に接合されている。23は第1受圧膜22によってふた
をされた筒状凹部21′(i−1その軸に対してほぼ垂
直方向に部分して空所24および25を形成するように
した第2受圧膜で、第2受圧膜23はその周縁でフラン
ジ71に流体密に接合されている。空所24は第1受圧
膜22と筒状凹部21の側面と第2受圧膜23とでとり
囲まれた部分であり、空所25は第2受圧膜23と筒状
凹部21の底面とでとり四重れた部分である。26は軸
26Bを一枚また複数枚の冷却用フィン26bに貫通さ
せて、該軸26aと該フィン26bとを固定した冷却用
ステムであって、冷却用ステム26の軸26aの両端は
それぞれ第1受圧膜22.第2受圧膜23のそれぞれの
ほぼ中央部に熔接等によって固定されている。27 、
27は空所24とフランジ71の外部とを連通するフラ
ンジ71に設けた冷却媒体29用の二個の連通孔、28
.28は連通孔27.27のフランジ71の表面におけ
る開口部に熔接等によって固定した配管接続口である。
In FIG. 3, 71c is a bolt through hole provided in the flange 71, 21 is a cylindrical recess of the flange 71, and 22 is a first pressure receiving membrane that covers the cylindrical recess 21. The first pressure-receiving membrane 22 is fluid-tightly joined to the flange 71 at its peripheral edge. 23 is a cylindrical recess 21' (i-1) covered by the first pressure-receiving membrane 22; a second pressure-receiving membrane formed in a direction substantially perpendicular to the axis thereof to form cavities 24 and 25; The second pressure-receiving membrane 23 is fluid-tightly joined to the flange 71 at its peripheral edge.The space 24 is a portion surrounded by the first pressure-receiving membrane 22, the side surface of the cylindrical recess 21, and the second pressure-receiving membrane 23. The space 25 is a quadruple area formed by the second pressure-receiving membrane 23 and the bottom surface of the cylindrical recess 21.The space 26 is a quadruple area formed by the second pressure-receiving membrane 23 and the bottom surface of the cylindrical recess 21.The shaft 26B is passed through one or more cooling fins 26b, and It is a cooling stem in which a shaft 26a and the fins 26b are fixed, and both ends of the shaft 26a of the cooling stem 26 are fixed to substantially central portions of the first pressure-receiving film 22 and the second pressure-receiving film 23 by welding or the like. 27,
27 are two communication holes for the cooling medium 29 provided in the flange 71 that communicate the cavity 24 with the outside of the flange 71; 28;
.. 28 is a pipe connection port fixed to the opening in the surface of the flange 71 of the communication hole 27.27 by welding or the like.

フランジ710貫通孔71bは空所25に開口している
ので該空力125と貫通孔71bと導圧管9の内部とで
形成された一連の空所に圧力伝達媒体13が満たされて
いる。したがってこの場合圧力置換器7はフランジ71
と泥1受圧膜22と冷却用ステム26と第2受圧膜23
とで形成されている。30は被測定流体である。
Since the through hole 71b of the flange 710 opens into the cavity 25, a series of cavities formed by the aerodynamic force 125, the through hole 71b, and the inside of the pressure pipe 9 are filled with the pressure transmission medium 13. Therefore, in this case, the pressure replacer 7 has a flange 71
, the mud 1 pressure receiving membrane 22 , the cooling stem 26 and the second pressure receiving membrane 23
It is formed by. 30 is a fluid to be measured.

第3図の圧力置換器は上述の構成を有しているので、今
、被測定流体30の圧力P1が有効面積S!を有する第
1受圧膜に加わると、空所24内の流体の圧力をPOと
して冷却用ステム26の軸方向にF=(Ps−Po)・
Stの力が発生し、この力Fが該ステム26ヲ介して第
2受圧膜23に伝わるので圧力伝達媒体13には第2受
圧膜23の有効面積を82としてpg=P+・−8l/
32 +PO(1−8t/SR) (r)圧力力発生f
 ル。こ(9) のSl/S2は圧力置換器7固有の定数であるので、P
Oが一定であれば被測定流体30の圧力P+Fi該圧力
P!に応じた圧力P2として圧力伝達媒体13に伝達さ
れることになる。なおSl:S2であればPoの如何に
かかわらずP2=Plとなることは明らかである。配管
接続口28 、28には図示していないがポンプ、フィ
ルタ、熱交換器および圧力調節装置等からなる冷却媒体
29用の循環装置が接続されているので、該冷却媒体2
9が一定圧力POで空所247に貫流している。このた
め第1受圧膜22.該[22に接する被測定流体30.
第2受圧膜23および該膜23に接する圧力伝達媒体1
3の各々は冷却媒体29によって冷却されている。
Since the pressure displacement device shown in FIG. 3 has the above-described configuration, the pressure P1 of the fluid 30 to be measured is now equal to the effective area S! When applied to the first pressure-receiving membrane having a pressure of F=(Ps-Po)・
A force St is generated, and this force F is transmitted to the second pressure receiving membrane 23 through the stem 26, so that the pressure transmitting medium 13 has pg=P+・-8l/, where the effective area of the second pressure receiving membrane 23 is 82.
32 +PO (1-8t/SR) (r) Pressure force generation f
Le. Since Sl/S2 in (9) is a constant specific to the pressure replacer 7, P
If O is constant, the pressure P+Fi of the fluid 30 to be measured is the pressure P! The pressure is transmitted to the pressure transmission medium 13 as a pressure P2 corresponding to the pressure P2. Note that if Sl:S2, it is clear that P2=Pl regardless of Po. Although not shown, a circulation device for the cooling medium 29 consisting of a pump, a filter, a heat exchanger, a pressure regulating device, etc. is connected to the piping connections 28 and 28, so that the cooling medium 2
9 flows through the cavity 247 at a constant pressure PO. For this reason, the first pressure receiving membrane 22. The fluid to be measured 30. in contact with the [22.
The second pressure receiving membrane 23 and the pressure transmission medium 1 in contact with the membrane 23
3 are cooled by a cooling medium 29.

上述の実施例の説明においては、二個の配管接続口28
 、28の双方が冷却媒体29の循環装置に接続される
ものとしたが、要は低温でごみなどのない清浄な冷却媒
体29が゛空所24を貫流すれはよいので、−個の配管
接続口28は大気開放となっていてもよいし、このよう
な場合該接続口28はなくてもよい。
In the above embodiment description, two pipe connections 28
. The port 28 may be open to the atmosphere, and in such a case, the connection port 28 may not be provided.

また冷却媒体29としては空気、水等の気体または(1
0) 液体を使用することができるが空所別の部分における圧
力POの変動はできるだけ小さいものであることが望ま
しい。なお、以上の説明では連通孔27を二個として説
明したが、この連通孔270機能を考慮すると、個数か
二個以上の複数個であることは本発明の目的上なんら差
し支えない。
The cooling medium 29 may be a gas such as air or water, or (1
0) Although liquid can be used, it is desirable that the fluctuations in pressure PO in different parts of the cavity be as small as possible. In the above description, the number of communication holes 27 has been described as two, but considering the function of the communication holes 270, there is no problem with the number of communication holes 27 being two or more for the purpose of the present invention.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

すなわち、本発明においては第3図で説明したように、
圧力置換器7の受圧膜を被測定流体30の圧力りによっ
て変位する第1受圧膜22と、外力を圧力伝達媒体13
の圧力P2に置換する第2受圧膜23とで構成し、第1
受圧膜22と詑2受圧膜23とを冷却用ステム26で連
結し、さらに冷却用スデム拠で連結された第1受圧膜2
2と第2受圧膜23との間の空所24と、フランジ71
の外部すなわち圧力置換器7の外部とを連通ずる複数の
連通孔27をフランジ71に設け、該連通孔27に接続
した配管接続口あを介して圧カ一定の冷却媒体29を前
記空所U内に貫流させるようにしたので、第1受圧膜2
2.該層22に接する被測定流体30.第2受圧膜23
および該層23に接する圧力伝達媒体13のそれぞれの
有する熱が冷却用ステム26のフィン26bから空F9
:24内を流動する冷却妹体29には制約に放熱させら
れる結果、受圧[22,23およびこれらに接する流体
30.媒体13の温度が低下し、このため圧力伝達媒体
13がたとえばシリコンオイルである場合、被測定流体
30の温度が350〜450’O私阪以上であっても該
シリコンオイルの変質に起因する圧力伝達特性の劣化が
防止される。したがってこのような構成の圧力置換器は
、圧力伝達媒体の耐熱限界以上の温匿を有する被測定流
体に対して、圧力伝達媒体の圧力伝達特性を劣化さぜる
ことなく被孔定訛体の圧力を該圧力伝達媒体の圧力に置
換することができるという効呆がある。
That is, in the present invention, as explained in FIG.
A first pressure receiving film 22 displaces the pressure receiving film of the pressure displacement device 7 by the pressure of the fluid to be measured 30, and a pressure transmitting medium 13 that transfers external force.
a second pressure-receiving membrane 23 which replaces the pressure P2 of the first pressure P2;
The pressure receiving membrane 22 and the first pressure receiving membrane 23 are connected by a cooling stem 26, and are further connected by a cooling stem base.
2 and the second pressure receiving membrane 23 and the flange 71
A plurality of communication holes 27 are provided in the flange 71 to communicate with the outside of the pressure replacer 7, that is, the outside of the pressure replacer 7, and a cooling medium 29 with a constant pressure is supplied to the space U through a piping connection port connected to the communication holes 27. Since the flow is made to flow through the first pressure receiving membrane 2
2. A fluid to be measured 30 in contact with the layer 22. Second pressure receiving membrane 23
The heat of the pressure transmission medium 13 in contact with the layer 23 is transferred from the fins 26b of the cooling stem 26 to the air F9.
: As a result of heat being radiated by the cooling body 29 flowing inside the cooling body 24, the receiving pressure [22, 23 and the fluid 30 . The temperature of the medium 13 decreases, and therefore, when the pressure transmission medium 13 is silicone oil, for example, even if the temperature of the fluid 30 to be measured is 350-450'O or more, the pressure due to the deterioration of the silicone oil will decrease. Deterioration of transfer characteristics is prevented. Therefore, a pressure replacer with such a configuration can handle a fluid to be measured that has a temperature higher than the heat resistance limit of the pressure transmission medium without deteriorating the pressure transmission characteristics of the pressure transmission medium. It has the advantage that the pressure can be replaced by the pressure of the pressure transmission medium.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従采の圧力置換器金用いた液位概疋システムの
構成凶、拓2図は第1図における要部Sの拡犬綬断面図
、第3図は不発明による高温用圧力置換器の一実施例の
栴成図で、同図(八は縦断面図、同区(B)は同’7 
(A)における冷却用ステム23の拡大側面図である。 各図において、2.3・・・それぞれ被測定流体として
の被測定液体、気体、6,7・・・圧力置換器、13・
・・圧力伝達媒体、22・・・、第1受圧膜、23・・
・第2受圧膜、24・・・空所、26・・・冷却用ステ
ム、27・・・連通孔、30・・・被測定流体、62.
72・・・受圧膜。 (13)
Figure 1 shows the structure of a liquid level system using a secondary pressure displacement device, Figure 2 is an enlarged cross-sectional view of the main part S in Figure 1, and Figure 3 is a high-temperature pressure system according to the invention. This is a drawing of one embodiment of the replacer.
It is an enlarged side view of the cooling stem 23 in (A). In each figure, 2.3... liquid and gas to be measured as the fluid to be measured, 6, 7... pressure displacement device, 13.
...Pressure transmission medium, 22..., first pressure receiving membrane, 23...
- Second pressure-receiving membrane, 24... void, 26... cooling stem, 27... communicating hole, 30... fluid to be measured, 62.
72...Pressure membrane. (13)

Claims (1)

【特許請求の範囲】[Claims] 被測定流体の圧力を受圧膜を介して圧力伝達媒体に伝達
する圧力置換器において、前記被測定流体の圧力によっ
て変位する第1受圧膜と、外力を前記圧力伝達媒体の圧
力に置換する第2受圧膜とを設け、前記第1受圧膜と前
記第2受圧膜とを冷却用ステムで連結し、さらに前記第
1受圧膜と前記第2受圧膜との間の前記冷却用ステムで
連結された空所と、前記圧力置換器の外部とを連通ずる
複数の連通孔を設けたことを特徴とする高温用圧力置換
器。
A pressure displacement device that transmits the pressure of a fluid to be measured to a pressure transmission medium via a pressure-receiving membrane includes a first pressure-receiving membrane that is displaced by the pressure of the fluid to be measured, and a second pressure-receiving membrane that replaces external force with the pressure of the pressure transmission medium. a pressure receiving film, the first pressure receiving film and the second pressure receiving film are connected by a cooling stem, and the first pressure receiving film and the second pressure receiving film are further connected by the cooling stem. A high-temperature pressure replacer, characterized in that a plurality of communication holes are provided to communicate a cavity and the outside of the pressure replacer.
JP20819382A 1982-11-27 1982-11-27 Pressure replacing device for high temperature Pending JPS5999231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20819382A JPS5999231A (en) 1982-11-27 1982-11-27 Pressure replacing device for high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20819382A JPS5999231A (en) 1982-11-27 1982-11-27 Pressure replacing device for high temperature

Publications (1)

Publication Number Publication Date
JPS5999231A true JPS5999231A (en) 1984-06-07

Family

ID=16552198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20819382A Pending JPS5999231A (en) 1982-11-27 1982-11-27 Pressure replacing device for high temperature

Country Status (1)

Country Link
JP (1) JPS5999231A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109655195A (en) * 2019-01-07 2019-04-19 安徽祥君电气有限公司 A kind of high temperature resistant pressure detecting table

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109655195A (en) * 2019-01-07 2019-04-19 安徽祥君电气有限公司 A kind of high temperature resistant pressure detecting table

Similar Documents

Publication Publication Date Title
US4090554A (en) Heat exchanger
US6901803B2 (en) Pressure module
JP3986968B2 (en) Plate type heat exchanger
US4722228A (en) Remote seal-type pressure signal generator
US3986399A (en) Filled-in-fluid and diaphragm type intermediate device for transmitting pressure
CN105865701A (en) High-temperature villiaumite pressure meter
JPS5999231A (en) Pressure replacing device for high temperature
GB785862A (en) Improvements in and relating to heat exchange systems
CN110608841A (en) Remote transmission device for pressure transmitter, remote transmission pressure transmitter and measuring system
US4266600A (en) Heat exchanger with double walled tubes
CN211061103U (en) Remote transmission device for pressure transmitter, remote transmission pressure transmitter and measuring system
US3572430A (en) Floating head heat exchanger
JPS5968636A (en) Pressure substituter for high temperature
JPH09218120A (en) Pressure receiving flange
CN112728115A (en) Self-tightening sealing assembly
US11906377B2 (en) Differential transducer with bellows coupling
CN218210901U (en) Shell-and-tube heat exchanger with tube side and shell side both reaching sanitary level
JP4291049B2 (en) Differential pressure / pressure transmitter
CN217209883U (en) Observation module for a heat exchanger
JPH0323531Y2 (en)
CN214308336U (en) Shell-and-tube multipass heat exchanger
SU988643A2 (en) Inspection window
US20240044733A1 (en) Coplanar differential pressure transducer
JPH0229438Y2 (en)
JP2568173Y2 (en) Liquid contact structure of pressure / differential pressure transmitter