JPS5998575A - Connecting method for lead wirings of high molecular element - Google Patents

Connecting method for lead wirings of high molecular element

Info

Publication number
JPS5998575A
JPS5998575A JP57206914A JP20691482A JPS5998575A JP S5998575 A JPS5998575 A JP S5998575A JP 57206914 A JP57206914 A JP 57206914A JP 20691482 A JP20691482 A JP 20691482A JP S5998575 A JPS5998575 A JP S5998575A
Authority
JP
Japan
Prior art keywords
conductive rubber
wirings
polymer
electrode
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57206914A
Other languages
Japanese (ja)
Inventor
Kiyoko Ikeuchi
池内 潔子
Nagao Kaneko
金子 長雄
Yoshinori Fujimori
藤森 良経
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57206914A priority Critical patent/JPS5998575A/en
Publication of JPS5998575A publication Critical patent/JPS5998575A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits
    • H05K3/365Assembling flexible printed circuits with other printed circuits by abutting, i.e. without alloying process

Landscapes

  • Combinations Of Printed Boards (AREA)

Abstract

PURPOSE:To enable to utilize the characteristic of a high molecular element by interposing an anisotropic conductive rubber or pressure conductive rubber between the electrodes and lead wirings of high molecular substrate, and lightly applying pressure thereto, thereby electrically connecting reliably the lead wirings to the high molecule. CONSTITUTION:An anisotropic conductive rubber 5 or pressure conductive rubber 5 is installed on a necessary electrode 2a which is provided on a high molecular substrate 1, lead wirings 4 formed of so-called flexible printed board such as glass epoxy resin is matched, and pressure is lightly applied from above. In this manner, the electrode 2a provided on the substrate is electrically connected to the wirings 4 through the anisotropic rubber 5 or the pressure rubber 5. In this case, the other of the wirings 4 provided on the substrate can be connected to the wirings by normal soldering or connector, and lead wirings may be mounted on the wirings 4 in advance as required.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、高分子基板上に電極が設けられた圧電性高分
子素子、焦電性高分子素子、エレクトレット素子などの
高分子素子からリード線を電気的に接続する方法に関し
、更に換言すればパターン認識センサに有効となるリー
ド線の接続方法に関す従来高分子素子の電極とリード線
とを電気的に接続する方法としては、導電性高分子や銀
ベース等の接着剤を用いて、リード線を電極に接着させ
ることが知られている。しかし、この方法は、接着力が
弱く、剥離しやすいという欠点の他に接着力低下、抵抗
値上昇という経時変化を伴う。また素子の振動や熱サイ
クルなどによっても剥離しやすく、圧電素子の如く振動
を伴う使い方や焦電素子などの熱サイクルを伴う素子に
は使用できない。
[Detailed Description of the Invention] [Technical Field to which the Invention Pertains] The present invention relates to a polymer element that has an electrode on a polymer substrate, such as a piezoelectric polymer element, a pyroelectric polymer element, or an electret element. Regarding the method of electrically connecting wires, or in other words, the method of connecting lead wires that is effective for pattern recognition sensors, conventional methods for electrically connecting the electrodes of polymer elements and lead wires are conductive. It is known to adhere lead wires to electrodes using adhesives such as polymeric or silver-based adhesives. However, this method has the drawbacks of weak adhesive strength and easy peeling, as well as changes over time such as a decrease in adhesive strength and an increase in resistance. Furthermore, it is easily peeled off due to vibration or thermal cycling of the element, and cannot be used in devices that involve vibration, such as piezoelectric elements, or elements that involve thermal cycling, such as pyroelectric elements.

更に接着剤に流動性があるため電極が小さい時にはこの
方法を使用できないという欠点がある。上配欠漬を克服
する方法として超音波ボンディング法、溶融ボンディン
グ法なども知られている。これらの方法では、リード線
と電極とを強固に接続することができるが高分子素子と
電極との密着力が低下したり素子の振動やヒートショッ
ク々どによって剥離や電極とリード線との脱離などが生
じやすいという欠点がある。まだこの方法では一般的に
高分子素子の電極部分の全面もしくは一部を加熱するこ
とが必要であり、圧電性高分子素子、焦電性高分子、エ
レクトレット素子などでは変形や脱分極を生じこの結果
特性の低下を招くなどの欠点が生じやすい。また、光導
電性高分子素子では加熱による分解や劣化などを招きや
すく同様に特性の低下を招やすく実用的とは言えない。
Furthermore, since the adhesive has fluidity, this method cannot be used when the electrode is small. Ultrasonic bonding methods, melt bonding methods, and the like are also known as methods for overcoming the problem of top bonding. With these methods, it is possible to firmly connect the lead wire and the electrode, but the adhesion between the polymer element and the electrode decreases, and vibration of the element, heat shock, etc. can cause peeling or detachment of the electrode and lead wire. The disadvantage is that separation is likely to occur. However, this method generally requires heating the entire surface or part of the electrode part of the polymer element, which may cause deformation or depolarization in piezoelectric polymer elements, pyroelectric polymers, electret elements, etc. As a result, disadvantages such as deterioration of characteristics are likely to occur. In addition, photoconductive polymer elements are susceptible to decomposition and deterioration due to heating, and are similarly susceptible to deterioration of characteristics, making them impractical.

〔発明の目的〕[Purpose of the invention]

本発明は、かかる従来技術の欠点を解消するため釦なさ
れたもので高分子素子の特性を変えることなく電極の面
積、形状にかかわりなく、リード線を確実にかつ簡単に
、信頼性、再現性良く電気的に高分子素子と、リード線
とを接続する方法を提供することを目的とするものであ
る。
The present invention has been devised to eliminate the drawbacks of the prior art, and allows lead wires to be connected reliably and easily, with reliability and reproducibility, without changing the characteristics of the polymer element and regardless of the area and shape of the electrode. The object of the present invention is to provide a method for electrically connecting a polymer element and a lead wire.

〔発明の概要〕[Summary of the invention]

本発明は、高分子基板上に電極が設置された高分子素子
の電杉とリード線とを電気的に接続する方法において高
分子素子の電極面とリード線との間に異方導電性ゴムも
しくは、加圧4市性ゴムを挾持し、かつ電極面とリード
糾問を加圧することを特徴とする高分子素子のり一ド綜
接続方法である。以下本発明の詳細な説明する。
The present invention provides an anisotropic conductive rubber between an electrode surface of a polymer element and a lead wire in a method for electrically connecting a lead wire to an electric cedar of a polymer element in which an electrode is installed on a polymer substrate. Alternatively, there is a method for connecting a polymer element with glue and helix, which is characterized by sandwiching pressurized rubber and applying pressure to the electrode surface and the lead interlayer. The present invention will be explained in detail below.

第1図は、リード線接続以前の両分子素子を示す断面図
であり、第2図は、リード線接続後の高分子素子を示す
断面図である。図において(1)は、高分子基板、(2
a)(2b)は、高分子基板(1)に設けられた1[!
極を示j−14は、リード線本しくけ、ポリエステル、
ポリイミド、ガラスエポキシ樹脂(3a)、(3b)な
どの表面に電極(4)を配置したいわゆるプリント基板
のリード線部分である。
FIG. 1 is a sectional view showing both molecular elements before lead wires are connected, and FIG. 2 is a sectional view showing the polymer element after lead wires are connected. In the figure, (1) is a polymer substrate, (2
a) (2b) is 1[!] provided on the polymer substrate (1).
Indicates the pole J-14, lead wire mount, polyester,
This is a so-called lead wire portion of a printed circuit board in which electrodes (4) are arranged on the surface of polyimide, glass epoxy resin (3a), (3b), etc.

次に図によって本発明に係る概要を説明する。Next, an overview of the present invention will be explained with reference to figures.

先ず、高分子基板1上に設けた必要箇所電極(2a)の
上に異方導電性ゴム(5)もしくは加圧導電性ゴム(5
)を設置し、ガラスエポキシ樹脂などの、いわゆるフレ
キシブルプリント基板などから々るリード線(4)を合
せ、炉にその上から軽く圧力を加える。
First, an anisotropic conductive rubber (5) or a pressurized conductive rubber (5) is placed on the electrodes (2a) at required locations provided on the polymer substrate 1.
), connect the lead wire (4) from a so-called flexible printed circuit board made of glass epoxy resin, etc., and apply light pressure to the furnace from above.

これによシ高分子基板上に設けた電極2aは異方導電ゴ
ム(5)もしくけ、加圧導電性ゴム(5)を通じて、リ
ード線(4)と電気的に接続する。この場合において、
例えば、フレキシブルプリント基板上に設けた、リード
線部分(4)の他方は通常の半田付けや、コネクターな
どによるリード線の接続が可能で、必要に応じ、予めリ
ード線部分0)にリード線を取りつけておいてもよい。
Accordingly, the electrode 2a provided on the polymer substrate is also connected to the lead wire (4) through the anisotropically conductive rubber (5) and the pressurized conductive rubber (5). In this case,
For example, the other lead wire part (4) provided on the flexible printed circuit board can be connected by normal soldering or a connector, and if necessary, the lead wire can be connected to the lead wire part 0) in advance. You can leave it attached.

本発明において、異方導電性ゴム(5)もしくは、加圧
導電性ゴム(5)を用いて高分子基板1に設けたー 電
極2aとリード線4との電気的接続を良好に維持しかつ
、再現性、信頼性を高めるためには、リード線4と高分
子基板1との間に一定の圧力を加えることが望ましい。
In the present invention, an anisotropic conductive rubber (5) or a pressurized conductive rubber (5) is used to maintain good electrical connection between the electrode 2a and the lead wire 4 provided on the polymer substrate 1. In order to improve reproducibility and reliability, it is desirable to apply a certain pressure between the lead wire 4 and the polymer substrate 1.

即ち、異方導電性ゴム(5)もしくは、加圧導電性ゴム
(5)は一般的に加圧により電気抵抗が急激に減少しこ
の結果良好な導通が得られる。このためには、上述した
ように高分子基板IK設けた電幾2aとリード線4との
間に異方導電性ゴム(5)屯しくけ、加圧導電性ゴム(
5)を挾持し、高分子基板1もしくは、リード線4のい
ずれか側から圧力を加えることで達成できる。
That is, the electrical resistance of the anisotropically conductive rubber (5) or the pressurized conductive rubber (5) generally rapidly decreases when pressurized, resulting in good conductivity. For this purpose, as described above, an anisotropic conductive rubber (5) is installed between the electrical wire 2a provided on the polymer substrate IK and the lead wire 4, and a pressurized conductive rubber (
5) and applying pressure from either side of the polymer substrate 1 or the lead wire 4.

本発明における異方導電性ゴム(5)もしくは、加圧導
電性ゴム(5)とは一般にシリコンゴムなどの高分子マ
トリックス中にカーボンブラック、金属をどの導電性微
粉末や、金属細線を分散した亀のの中から、面方向と面
に直交する方向での導電性の異なる本の(異方導電性ゴ
ム)や加圧することにより、加圧部分のみが圧力と同じ
方向に導電性を生じる。
In the present invention, the anisotropic conductive rubber (5) or pressurized conductive rubber (5) is generally made by dispersing carbon black, metal, conductive fine powder, or thin metal wire in a polymer matrix such as silicone rubber. Inside the tortoise, by applying pressure to a book (anisotropically conductive rubber) that has different conductivity in the plane direction and in the direction perpendicular to the plane, only the pressed part becomes conductive in the same direction as the pressure.

〔発明の効果〕〔Effect of the invention〕

本発明による高分子素子のリード線接続方法は、高分子
基板に設けた電極とリード線との間に異方導電性ゴムも
しくけ、加圧導電性ゴムを挾持し軽く圧力を加えること
によシ確実に筒分子素子にリード線を電機的接続するこ
とができる。従って、高分子素子の加熱手段が全く入っ
ていないために1高分子基板の熱変形防止は勿論脱分極
や熱劣化などの障害をひき起すことは、絶無となり初期
の高分子素子の特性を生かすことができる。
The method for connecting lead wires of a polymer element according to the present invention is to install an anisotropically conductive rubber between an electrode provided on a polymer substrate and a lead wire, and to apply light pressure by sandwiching a pressurized conductive rubber. The lead wire can be reliably electrically connected to the cylindrical molecular element. Therefore, since there is no heating means for the polymer element, it is impossible to prevent thermal deformation of the polymer substrate, and it is absolutely impossible to cause problems such as depolarization and thermal deterioration, making the best use of the characteristics of the initial polymer element. be able to.

一般に異方導電性ゴムもしくは、加圧導電性ゴムは一般
にシリコンゴムなどが基材となっておシ、弾力性に富ん
でいる。振動や曲げに強く長期間高分子素子の電極とリ
ード線との電気的接続を維持し、高分子素子の電極剥離
防止効果ももたらす。
Generally, anisotropically conductive rubber or pressurized conductive rubber is generally made of silicone rubber or the like as a base material and is highly elastic. It is resistant to vibration and bending, maintains electrical connection between the electrodes of polymer elements and lead wires for a long period of time, and has the effect of preventing electrode peeling of polymer elements.

また、異方導電性ゴムもしくは、加圧導電性ゴムは、耐
温度変化耐候性、耐食性、耐薬品性などに優れているた
め、高分子素子とリード線との接続はほとんどの還境条
件下において適用するととができる。
In addition, anisotropic conductive rubber or pressurized conductive rubber has excellent resistance to temperature changes, weather resistance, corrosion resistance, and chemical resistance, so connections between polymer elements and lead wires can be made under most ambient conditions. When applied in

他の効果は高分子素子の電柱形状や大きさによらずに確
実にリード線との電気的接続が可能となするばかりでな
く場合によっては、円形の電柱形状や湾曲した電柱形状
においても確実にリード線との接続が可能となる。
Another effect is that it not only enables a reliable electrical connection with the lead wire regardless of the shape or size of the polymer element's utility pole, but also ensures reliable electrical connection with a circular or curved utility pole in some cases. connection with lead wires is possible.

〔発明の実施例〕[Embodiments of the invention]

次に本発明に係わる方法の具体的な実施例について説明
する。
Next, specific examples of the method according to the present invention will be described.

実施例1 厚さ50mμのポリフッ化ビニリデンフィルムヲ高分子
基板(1)とl−第3図に示す様に単位素子の幅0.9
tnm長さ13m単位素子間隔0.1+mの短冊状の電
極2aをエツチング操作により64素子の圧電フィルム
を形成した。この場合上記短冊状電極を形成した面と反
対側の電極面2bは一部短冊状電極と対応する形でパタ
ーン状に形成されている。
Example 1 A polyvinylidene fluoride film with a thickness of 50 mμ is used as a polymer substrate (1) and the width of the unit element is 0.9 as shown in Fig. 3.
A piezoelectric film with 64 elements was formed by etching strip-shaped electrodes 2a having a length of 13 m and a unit element interval of 0.1+m. In this case, the electrode surface 2b, which is opposite to the surface on which the strip-shaped electrodes are formed, is partially formed in a pattern corresponding to the strip-shaped electrodes.

とのPvF2圧電膜を折シ重ねるように三層に積層し積
層にあたっては短冊状電極が上下に正しく重なる様にし
た。この積層型PVF2圧電膜を第4図に示す。λ/4
板に相当し、かつ背面電極兼用の厚さ400μmのCu
板(6)を予め設置した厚さ3■のガラスエポキシ板(
7)に接着剤で貼付した。PvF2フィルムの上部電極
面2aに多数の金属細線(金メツキワイヤー)をシリ・
コンゴムの厚み方向に埋め込んだ加圧導電性ゴム(5)
(東し製エラスチックコネクターwsタイプ)を幅5f
i長す70+mに切断して設置し、さらにこの上に予め
電極リード面をPV1!″2圧電膜と同じ形状にパター
ン化したポリイミド系フレキシブルプリント基板(3)
の電極面(4)を加圧導電性ゴムに設置した。
The PvF2 piezoelectric films were stacked in three layers in a folded manner, and the strip-shaped electrodes were stacked correctly vertically. This laminated PVF2 piezoelectric film is shown in FIG. λ/4
A Cu plate with a thickness of 400 μm that corresponds to a plate and also serves as a back electrode.
A glass epoxy board with a thickness of 3 cm (6) was installed in advance (
7) was attached with adhesive. A large number of thin metal wires (gold-plated wires) are placed on the upper electrode surface 2a of the PvF2 film.
Pressure conductive rubber embedded in the thickness direction of Con rubber (5)
(Toshi elastic connector ws type) width 5f
i Cut it to a length of 70+m and install it, and then attach the electrode lead surface on top of it in advance with PV1! ``2 Polyimide flexible printed circuit board patterned in the same shape as the piezoelectric film (3)
The electrode surface (4) was placed on a pressurized conductive rubber.

ポリイミド系フレキシブルプリント基板(3)の背面(
絶縁性乍]1)にけPVF2//7In電導電性ゴム/
ポリイはド系フレキシブルプリント基板を平均に圧着さ
せるための加圧板(8)(幅7■長さ75日厚さ2簡の
ガラス板)を置きとの上から5にg/crl程度の圧力
を加える。
Back side of polyimide flexible printed circuit board (3) (
Insulating properties] 1) PVF2//7In conductive rubber/
Place the pressure plate (8) (a glass plate with a width of 7 x length and 75 days and thickness of 2) to evenly press the flexible printed circuit board and apply pressure of about g/crl to the top of the plate. Add.

この様にして得た高分子素子電極面2aとポリイミド系
フレキシブルプリント基板(3)の電極面(4)との接
続低抗は、10刈o2Ωmでありさらにこの状態におい
て、50℃90%FLHの環境試験を行ったところ50
0H経過後においても接続低抗は1.5X10 ’Ω鋸
であり安定に作動することを認めた。
The connection resistance between the electrode surface 2a of the polymer element obtained in this way and the electrode surface (4) of the polyimide flexible printed circuit board (3) was 10Ωm, and in this state, at 50°C and 90% FLH. After conducting an environmental test, the result was 50.
Even after 0H had passed, the connection resistance was 1.5 x 10' Ω, and stable operation was confirmed.

比較例1 実施例1で用いたPVF2圧電膜を同様々方法によシ高
分子基板上に導電性樹脂材料であるドータイトペイント
(藤倉化成製D−7s3)をスポット的に塗布した後直
径50mμの金ワイヤを置き乾燥させて高分子基板上の
電極とリード線とを電気的に接続した。接続箇所は約1
.0〜1.5mgとカリ短冊状素子間は、短絡するもの
が多かった。この場合の高分子素子電極とリード線との
接触抵抗は、6,5Ω^であったが01〜0.25Kg
重でリード線が剥離した。
Comparative Example 1 The PVF2 piezoelectric film used in Example 1 was coated with a conductive resin material, Dotite Paint (D-7s3, manufactured by Fujikura Kasei), on a polymer substrate in the same manner as above, and then a film with a diameter of 50 mμ was applied. A gold wire was placed and dried to electrically connect the electrode on the polymer substrate and the lead wire. Approximately 1 connection point
.. There were many short-circuits between 0 to 1.5 mg and the potash strip-shaped elements. In this case, the contact resistance between the polymer element electrode and the lead wire was 6.5Ω^, but it was 01 to 0.25Kg.
The lead wire came off due to the heavy load.

また、この高分子素子JR極とリード線との接触抵抗は
、50℃90%RHの環境試験で接続直後65Ω2に1
であったものが1週間経過後において、58Q/1−r
Rに変化し以降接触抵抗は急激に増大した。
In addition, the contact resistance between this polymer element JR pole and the lead wire was 1 to 65Ω2 immediately after connection in an environmental test at 50°C and 90%RH.
After one week, 58Q/1-r
After changing to R, the contact resistance increased rapidly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明の詳細な説明するための高分子
基板並びに高分子基板とリード線を電気的に接続する方
法例を示す高分子素子の断面図である。 第3図は、本発明の実施例に用いた高分子基板の斜視図
、第4図は、実施例により得た高分子素子の断面図を示
す。 1・・・高分子基板 2.2a、 2b ・・・電極 3.3a、3b・・・プリント板基板 4・・・リード線あるいは電極面 5・・・異方導電性ゴムあるいは加圧導電性ゴム6・・
・銅板 7・・・基板 8・・・加圧板 代理人弁理士 則近憲佑(ほか1名) 第3図 第4図
FIGS. 1 and 2 are cross-sectional views of a polymer substrate and a polymer element showing an example of a method for electrically connecting the polymer substrate and lead wires for explaining the present invention in detail. FIG. 3 is a perspective view of a polymer substrate used in an example of the present invention, and FIG. 4 is a sectional view of a polymer element obtained in the example. 1... Polymer substrate 2.2a, 2b... Electrode 3.3a, 3b... Printed board substrate 4... Lead wire or electrode surface 5... Anisotropically conductive rubber or pressurized conductive material Rubber 6...
・Copper plate 7... Board 8... Pressure plate attorney Kensuke Norichika (and 1 other person) Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 高分子基板上に電極が設置された高分子素子の電極とリ
ード線とを電気的に接続する方法において、高分子素子
の電極面とリード線との間に異方導電性ゴムもしくは加
圧導電性ゴムを挾持しかつ、電極面とリード線間を加圧
することを特徴とする高分子素子のリード線接続方法。
In a method of electrically connecting the electrodes and lead wires of a polymer element with electrodes installed on a polymer substrate, anisotropically conductive rubber or pressurized conductive material is used between the electrode surface of the polymer element and the lead wires. 1. A method for connecting lead wires of a polymer element, which is characterized by sandwiching rubber and applying pressure between an electrode surface and the lead wires.
JP57206914A 1982-11-27 1982-11-27 Connecting method for lead wirings of high molecular element Pending JPS5998575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57206914A JPS5998575A (en) 1982-11-27 1982-11-27 Connecting method for lead wirings of high molecular element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57206914A JPS5998575A (en) 1982-11-27 1982-11-27 Connecting method for lead wirings of high molecular element

Publications (1)

Publication Number Publication Date
JPS5998575A true JPS5998575A (en) 1984-06-06

Family

ID=16531165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57206914A Pending JPS5998575A (en) 1982-11-27 1982-11-27 Connecting method for lead wirings of high molecular element

Country Status (1)

Country Link
JP (1) JPS5998575A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313329A (en) * 1986-07-04 1988-01-20 Canon Inc Exposure device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313329A (en) * 1986-07-04 1988-01-20 Canon Inc Exposure device

Similar Documents

Publication Publication Date Title
KR920004280Y1 (en) Connection structure of electronic parts
US5799392A (en) Method of manufacturing a connecting structure of printed wiring boards
US4295711A (en) Liquid crystal display device
JPS61173471A (en) Heat compressed connector
GB2064233A (en) Liquid crystal display device
JP2598030B2 (en) Liquid crystal display
JPS5998575A (en) Connecting method for lead wirings of high molecular element
JPS6054486A (en) Lead wire connecting portion of polymer element
JPH0521157B2 (en)
JPH09148378A (en) Ic module for ic card, manufacture thereof, and ic card using the ic module
JPH058831B2 (en)
JPH07287081A (en) Connection structure for solar cell
JPS6072237A (en) Connecting method for lead wire of polymer element
JPH1116946A (en) Mounting method of semiconductor device
JPH01194209A (en) Thermoadherent flexible wiring member
JPS6140071A (en) Flexible piezoelectric element
JP3229902B2 (en) Liquid crystal display device connection method and liquid crystal display device manufacturing apparatus
JPS6215777A (en) Film-like connector and manufacture thereof
JPS61166876A (en) Anisotropically electrically-conductive adhesive
JPH0618909A (en) Flexible circuit board with electric conductive anisotropic film
JPS61195568A (en) Film connector
EP0215953A1 (en) Film connector and method of manufacturing same
JPS61193492A (en) Piezoelectric element
JPS60154232A (en) Liquid crystal display device
JPH03149792A (en) Formation of electric device and electric connection to filmy track of its device