JPS599749B2 - Intake system for fuel-injected internal combustion engines - Google Patents

Intake system for fuel-injected internal combustion engines

Info

Publication number
JPS599749B2
JPS599749B2 JP12726078A JP12726078A JPS599749B2 JP S599749 B2 JPS599749 B2 JP S599749B2 JP 12726078 A JP12726078 A JP 12726078A JP 12726078 A JP12726078 A JP 12726078A JP S599749 B2 JPS599749 B2 JP S599749B2
Authority
JP
Japan
Prior art keywords
fuel
intake port
air
internal combustion
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12726078A
Other languages
Japanese (ja)
Other versions
JPS5554661A (en
Inventor
昭彦 広岡
勝則 川竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP12726078A priority Critical patent/JPS599749B2/en
Publication of JPS5554661A publication Critical patent/JPS5554661A/en
Publication of JPS599749B2 publication Critical patent/JPS599749B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は燃料噴射式内燃機関に関し、特にガソリンを吸
気ポート内に噴射するようにした燃料噴射式内燃機関の
吸気装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel-injected internal combustion engine, and more particularly to an intake system for a fuel-injected internal combustion engine that injects gasoline into an intake port.

ガソリンを吸気ポート内に噴射するようにした燃料噴射
式内燃機関ではガソリンが液滴の状態で吸気ポート内に
噴射されるために特に吸気ポート内を流れる空気の流速
が遅い低速低負荷運転時にはガソリンの霧化並びに空気
との混合作用が十分に促進されず、その結果各気筒内に
供給される混合気の空燃比が大きく変動するために安定
した燃焼が得られないという問題がある。
In a fuel-injected internal combustion engine that injects gasoline into the intake port, the gasoline is injected into the intake port in the form of droplets, so gasoline is injected into the intake port in the form of droplets, especially during low-speed, low-load operation when the air flowing through the intake port is slow. There is a problem in that the atomization and mixing with air are not sufficiently promoted, and as a result, the air-fuel ratio of the air-fuel mixture supplied to each cylinder fluctuates greatly, making it impossible to obtain stable combustion.

本発明は低負荷運転時に吸気ポート下壁面上に形成した
燃料溜りに一時的に貯留された噴射液状燃料を高速度の
噴出空気により微粒化し、燃料の霧化並びに混合を促進
するようにした吸気装置を提供することにある。
The present invention is designed to atomize the injected liquid fuel temporarily stored in the fuel reservoir formed on the lower wall surface of the intake port during low-load operation using high-velocity jetted air, thereby promoting atomization and mixing of the fuel. The goal is to provide equipment.

以下、添附図面を参照して本発明を詳細に説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図を参照すると、1は機関本体、2a t 2 b
y2c ,2dは夫々1番気筒、2番気筒、3番気筒、
4番気筒、3は吸気弁、4は吸気ポート、5は排気弁、
6は排気ポートを夫々示す。
Referring to FIG. 1, 1 is the engine body, 2a t 2 b
y2c and 2d are the 1st cylinder, 2nd cylinder, and 3rd cylinder, respectively.
No. 4 cylinder, 3 is the intake valve, 4 is the intake port, 5 is the exhaust valve,
6 indicates exhaust ports, respectively.

第1図の側面断面図を示す第2図を参照すると、7はシ
リンダブロック、8はシリンダブロック7内で往復動す
るピストン、9はシリンダブロック7上に固定されたシ
リンダヘッド、10はピストン8とシリンダヘッド9間
に形成された燃焼室、11は点火栓を夫々示す。
Referring to FIG. 2 which shows a side sectional view of FIG. 1, 7 is a cylinder block, 8 is a piston that reciprocates within the cylinder block 7, 9 is a cylinder head fixed on the cylinder block 7, and 10 is a piston 8 and a combustion chamber formed between the cylinder head 9 and the cylinder head 9, and 11 represents an ignition plug.

第1図並びに第2図に示されるようにシリンダヘッド9
には4本のマニホルド枝管12を有する吸気マニホルド
13が固締され、これら各マニホルド枝管12内には矢
印に示す如く吸気ポート4内に向けて燃料を噴射するた
めの燃料噴射弁14が設けられる。
As shown in FIGS. 1 and 2, the cylinder head 9
An intake manifold 13 having four manifold branch pipes 12 is fixed, and within each of these manifold branch pipes 12 is a fuel injection valve 14 for injecting fuel into the intake port 4 as shown by the arrow. provided.

吸気マニホルド13内には空気が空気導入管15を介し
て供給され、この空気導入管15内に図示しないアクセ
ルペタルに連結されたスロットル弁16と、吸入空気量
を計測するためのエアフローメータ17とが設けられる
Air is supplied into the intake manifold 13 through an air introduction pipe 15, and within this air introduction pipe 15 are a throttle valve 16 connected to an accelerator pedal (not shown), and an air flow meter 17 for measuring the amount of intake air. is provided.

このエアフローメータ17は図示しない燃料噴射制御用
電子制御回路に接続され、エアフローメータ17の出力
信号に基いて吸入空気量に比例した燃料が燃料噴射弁1
4から噴射される。
This air flow meter 17 is connected to an electronic control circuit for fuel injection control (not shown), and based on the output signal of the air flow meter 17, fuel is supplied to the fuel injection valve 1 in proportion to the amount of intake air.
It is injected from 4.

燃料噴射弁14から噴出した燃料が直接衝突す.る吸気
ポート4の下壁面上には燃料溜めを形成する凹溝18が
形成され、この凹溝18は多数の孔を形成した多孔板2
0により覆われる。
The fuel ejected from the fuel injection valve 14 directly collides with the fuel injector 14. A groove 18 forming a fuel reservoir is formed on the lower wall surface of the intake port 4.
covered by 0.

凹溝18は連通枝路19を介して共通連通路21に連結
され、一方共通連通路21の中央部は副吸気通路22を
介してスロットル弁16とエアフローメータ17間の空
気導入管15内に連結される。
The groove 18 is connected to a common communication passage 21 via a communication branch 19, and the central part of the common communication passage 21 is connected to the air introduction pipe 15 between the throttle valve 16 and the air flow meter 17 via a sub-intake passage 22. Concatenated.

なお、副吸気通路22内には副スロットル弁23が設け
られる。
Note that a sub-throttle valve 23 is provided within the sub-intake passage 22 .

第4図はスロツ.トル弁16と副スロットル弁23の開
度変化を示している。
Figure 4 is a slot. It shows changes in the opening degrees of the torque valve 16 and the sub-throttle valve 23.

第4図において縦軸Pはスロットル開度を示し、横軸D
はアクセルペタルの踏込み量を示す。
In Fig. 4, the vertical axis P shows the throttle opening, and the horizontal axis D
indicates the amount of depression of the accelerator pedal.

なお、第4図において曲線Sは副スロットル弁23を示
し、曲線Tはスロットル弁16を示す。
Note that in FIG. 4, a curve S indicates the sub-throttle valve 23, and a curve T indicates the throttle valve 16.

第4図からアクセルペタルが踏込まれるとスロットル弁
16が全閉状態に保持されたまま副スロットル弁23が
徐々に開弁じ、次いで副スロットル弁23がほゾ全開す
ると副スロットル弁23が全開状態に保持されたままス
ロットル弁16が徐々に開弁ずることがわかる。
As shown in Fig. 4, when the accelerator pedal is depressed, the sub-throttle valve 23 gradually opens while the throttle valve 16 is kept fully closed, and then when the sub-throttle valve 23 is fully opened, the sub-throttle valve 23 is fully open. It can be seen that the throttle valve 16 gradually opens while being held at .

従ってスロットル弁16と副スロットル弁23とは第4
図に示す開度関係を有するように図示しないリンク機構
を介して互いに連結される。
Therefore, the throttle valve 16 and the sub-throttle valve 23 are the fourth
They are connected to each other via a link mechanism (not shown) so as to have the opening relationship shown in the drawing.

機関低負荷運転時には前述したようにスロットル弁16
が全閉状態に保持されているのでエアフローメータ17
を介して吸入された空気は副吸気通路22、共通連通路
21、連通枝路19並びに凹溝18を介して多孔板20
から吸気行程時の気簡の吸気ポート4内に噴出する。
During low-load engine operation, the throttle valve 16
is held in the fully closed state, so the air flow meter 17
The air sucked in through the sub-intake passage 22, the common communication passage 21, the communication branch passage 19, and the groove 18 passes through the perforated plate 20.
The air is blown out into the air intake port 4 during the intake stroke.

一方、燃料噴射弁14からは吸気弁3の開弁動作と特に
同期せずに燃料が噴射され、この噴射燃料の一部が凹溝
18内に一時的に貯留される。
On the other hand, fuel is injected from the fuel injection valve 14 without particular synchronization with the opening operation of the intake valve 3, and a portion of this injected fuel is temporarily stored in the groove 18.

次いで前述したように吸気行程時には凹溝18内から多
孔板20を介して空気が高速度で噴出するがそのとき凹
溝18内に貯留された液状燃料も空気と共に多孔板20
を介して吸気ポート4内に噴出する。
Then, as described above, during the intake stroke, air is ejected at high speed from within the groove 18 through the perforated plate 20, and at this time, the liquid fuel stored in the groove 18 also flows into the perforated plate 20 along with the air.
The air is ejected into the intake port 4 through the air.

従って貯留液状燃料は多孔板20の孔を高速度で通過す
る際にひきちぎられて微粒化すると共にこの燃料粒が吸
気ポート4内において空気と良好に混合する。
Therefore, when the stored liquid fuel passes through the holes of the perforated plate 20 at high speed, it is torn off and atomized, and these fuel particles mix well with the air in the intake port 4.

このように低負荷運転時には燃料の霧化が促進されると
共に空気との混合が促進されるために燃焼室10内に供
給される混合気の空燃比は均一となり、斯くして安定し
た燃焼を得ることができる。
In this way, during low-load operation, fuel atomization is promoted and mixing with air is promoted, so the air-fuel ratio of the mixture supplied into the combustion chamber 10 becomes uniform, thus achieving stable combustion. Obtainable.

一方、高負荷運転時にはスロットル弁16が開弁ずるの
で大部分の空気は吸気マニホルド13を介して吸気ポー
ト4内に供給されるが吸気行程時の吸気ポート4内には
大きな負圧が発生するためにこの負圧によって凹溝18
内に貯留された液状燃料が多孔板20を介して吸気ポー
ト4内に吸出され、その際液状燃料の霧化が促進される
ことになる。
On the other hand, during high-load operation, the throttle valve 16 opens and most of the air is supplied into the intake port 4 via the intake manifold 13, but a large negative pressure is generated within the intake port 4 during the intake stroke. Because of this negative pressure, the concave groove 18
The liquid fuel stored therein is sucked out into the intake port 4 through the perforated plate 20, and atomization of the liquid fuel is promoted at this time.

第5図並びに第6図に別の実施例を示す。Another embodiment is shown in FIGS. 5 and 6.

この実施例では吸気ポート4の底壁面上に皿状の単なる
凹溝24が形成され、更に共通連通路21は連通枝路1
8を介して凹溝24内にのみ連結される。
In this embodiment, a dish-shaped simple groove 24 is formed on the bottom wall surface of the intake port 4, and the common communication path 21 is formed in the communication branch path 1.
It is connected only within the concave groove 24 via 8.

また各マニホルド枝管12内には第2スロットル弁25
が挿入され、これら各第2スロットル弁25は共通のス
ロットル軸26に固定される。
In addition, a second throttle valve 25 is provided in each manifold branch pipe 12.
are inserted, and each of these second throttle valves 25 is fixed to a common throttle shaft 26.

第6図に示すようにこの共通スロットル軸26はマニホ
ルド枝管12の底壁面上に形成された楔形凹所27内に
配置される。
As shown in FIG. 6, this common throttle shaft 26 is disposed within a wedge-shaped recess 27 formed on the bottom wall surface of the manifold branch pipe 12. As shown in FIG.

なお、スロットル弁16と第2スロットル弁25とはス
ロットル弁16が開弁ずるに従って第2スロットル弁2
5が開弁ずるように図示しないリンク機構を介して互い
に連結される。
Note that the throttle valve 16 and the second throttle valve 25 change as the throttle valve 16 opens.
5 are connected to each other via a link mechanism (not shown) so as to open the valve.

第5図に示すような4気筒内燃機関において点火順序が
例えば1−2−4−3の場合、1番気筒2aが吸気行程
時であるとすると2番気筒2bは排気行程にある。
When the ignition order is, for example, 1-2-4-3 in a four-cylinder internal combustion engine as shown in FIG. 5, if the first cylinder 2a is in the intake stroke, the second cylinder 2b is in the exhaust stroke.

通常排気行程末期には吸気弁3と排気弁5とが共に開弁
ずる弁重合時期が存在するがこの排気行程末期の弁重合
時期には比較的高圧の既燃ガスが2番気筒の燃焼室10
内から2番気筒の吸気ポート4内に吹き返し、それによ
って2番気筒2bの吸気ポート4内は一時的に正圧とな
る。
Normally, at the end of the exhaust stroke, there is a valve polymerization period when both the intake valve 3 and the exhaust valve 5 open, but during this valve polymerization period at the end of the exhaust stroke, relatively high pressure burnt gas flows into the combustion chamber of the No. 2 cylinder. 10
The air is blown back from the inside into the intake port 4 of the second cylinder, thereby temporarily creating a positive pressure inside the intake port 4 of the second cylinder 2b.

一方、2番気筒2bが排気行程末期の時には1番気筒2
aの吸気ポート4内には大きな負圧が発生しており、従
ってこのとき2番気筒2bの吸気ポート4内の既燃ガス
或いは空気が2番気筒2bの吸気ポート4に開口する連
通枝路19を介して共通連通路21内に押込まれ、次い
でこの押込まれた既燃ガス或いは空気が1番気筒2aの
吸気ポート4内に開口する連通枝路19を介して1番気
筒2aの吸気ポート4内に高速度で噴出することになる
On the other hand, when the second cylinder 2b is at the end of the exhaust stroke, the first cylinder 2b
A large negative pressure is generated in the intake port 4 of the second cylinder 2b. Therefore, at this time, the burned gas or air in the intake port 4 of the second cylinder 2b is connected to a communication branch that opens to the intake port 4 of the second cylinder 2b. 19 into the common communication passage 21, and then this forced burned gas or air is transferred to the intake port of the first cylinder 2a through the communication branch 19 which opens into the intake port 4 of the first cylinder 2a. It will eject at high speed within 4 hours.

同様にして残りの気簡においても吸気行程時には他の気
筒から共通連通路21内に送り込まれた既燃ガス或いは
空気が連通枝路19から吸気ポート4内に噴出する。
Similarly, in the remaining cylinders, during the intake stroke, the burnt gas or air sent into the common communication passage 21 from other cylinders is ejected from the communication branch passage 19 into the intake port 4.

従って凹溝24内に貯留された液状燃料は連通枝路18
を介して共通連通路21内に押込まれ、次いで共通連通
路21内を流動した後に連通枝路19を介して他の気簡
の吸気ポート4内に噴出する。
Therefore, the liquid fuel stored in the groove 24 is transferred to the communication branch 18.
The air is pushed into the common communication passage 21 through the common communication passage 21, and after flowing through the common communication passage 21, it is ejected into the intake port 4 of another air via the communication branch passage 19.

従ってこの実施例では燃料が共通連通路21内を流動す
る間に液状燃料の気化が促進され、一方連通枝路19か
ら高速度で噴出する際に燃料の微粒化が促進されること
になる。
Therefore, in this embodiment, vaporization of the liquid fuel is promoted while the fuel flows in the common communication path 21, and on the other hand, atomization of the fuel is promoted when it is ejected from the communication branch path 19 at a high velocity.

上述のような連通枝路18からの燃料の噴出作用は第2
スロットル弁25を設けなくても行なわれるが第6図に
示すように第2スロットル弁25を設けて低負荷運転時
に流路断面積を絞るようにすると排気行程末期に吸気ポ
ート4内に発生した正圧を減衰せしみることなく暫くの
間維持できるので連通枝路19から長時間に亘って既燃
ガス或いは空気を噴出できることになる。
The ejection action of fuel from the communication branch 18 as described above is caused by the second
This can be done even if the throttle valve 25 is not provided, but if a second throttle valve 25 is provided as shown in FIG. 6 to narrow down the flow passage cross-sectional area during low-load operation, the problem occurs in the intake port 4 at the end of the exhaust stroke. Since the positive pressure can be maintained for a while without attenuation, burnt gas or air can be ejected from the communication branch 19 for a long time.

また、第6図に示すように第2スロットル弁25を配置
することによって低負荷運転時には第2スロットル弁2
5の上縁部とマニホルド枝管12の土壁面間のみに空気
流通間隙Fが形成されるために空気流通間隙Fを通過し
た空気は吸気ポート4の土壁面に沿って矢印Kで示すよ
うに前進し、次いで燃焼室10内に流入して第5図にお
いて矢印Wで示すような施回流を発生する。
In addition, by arranging the second throttle valve 25 as shown in FIG. 6, the second throttle valve 25 is
Since the air circulation gap F is formed only between the upper edge of the manifold branch pipe 12 and the earth wall surface of the manifold branch pipe 12, the air passing through the air circulation gap F flows along the earth wall surface of the intake port 4 as shown by arrow K. The fuel moves forward and then flows into the combustion chamber 10 to generate a circulating flow as shown by the arrow W in FIG.

その結果燃焼速度が大巾に速められるために安定した燃
焼を確保することができる。
As a result, the combustion speed is greatly increased, making it possible to ensure stable combustion.

以上述べたように本発明によれば特に低負荷運転時にお
いて燃料の霧化並びに空気との混合作用を促進できるの
で低負荷運転時における安定した燃焼を確保することが
できる。
As described above, according to the present invention, the atomization of the fuel and the mixing action with air can be promoted especially during low load operation, so that stable combustion can be ensured during low load operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る内燃機関の平面図、第2図は第1
図の側面断面図、第3図は第2図の■一■線に沿ってみ
た断面図、第4図は第3図のスロットル弁と副スロット
ル弁との開度関係を示すグラフ、第5図は別の実施例の
平面図、第6図は第5図の側面断面図である。 3・・・・・・吸気弁、4・・・・・・吸気ポート、1
3・・・・・・吸気マニホルド、14・・・・・・燃料
噴射弁、16・・・・・・スロットル弁、18,24・
・・・・・凹溝、19・・・・・・連通枝路、20・・
・・・・多孔板、21・・・・・・共通連通路、22・
・・・・・副吸気通路、23・・・・・・副スロットル
弁、25・・・・・・第2スロットル弁。
FIG. 1 is a plan view of an internal combustion engine according to the present invention, and FIG.
Figure 3 is a cross-sectional view taken along line 1 and 2 in Figure 2, Figure 4 is a graph showing the opening relationship between the throttle valve and sub-throttle valve in Figure 3, and Figure 5 The figure is a plan view of another embodiment, and FIG. 6 is a side sectional view of FIG. 5. 3...Intake valve, 4...Intake port, 1
3... Intake manifold, 14... Fuel injection valve, 16... Throttle valve, 18, 24...
... Concave groove, 19 ... Communication branch, 20 ...
... Perforated plate, 21 ... Common communication path, 22.
... Sub-intake passage, 23... Sub-throttle valve, 25... Second throttle valve.

Claims (1)

【特許請求の範囲】 1 機関吸気ポート内に燃料を噴射するための燃料噴射
弁を具えた内燃機関において、各吸気ポート底壁面上に
燃料溜めを形成すると共に各燃料溜めを夫々連通枝路を
介して共通連通路に連結した燃料噴射式内燃機関の吸気
装置。 2 機関吸気ポート内に燃料を噴射するための燃料噴射
弁を具えた内燃機関において、各吸気ポート底壁面上に
燃料溜めを形成すると共に各燃料溜めを夫々連通枝路を
介して共通連通路に連結し、機関負荷が所定負荷以上の
ときに該共通連通路内に空気を供給するための空気供給
制御装置を介して該共通連通路を大気に連結した燃料噴
射式内燃機関の吸気装置。
[Scope of Claims] 1. In an internal combustion engine equipped with a fuel injection valve for injecting fuel into an engine intake port, a fuel reservoir is formed on the bottom wall surface of each intake port, and a branch passage communicating with each fuel reservoir is provided. An intake system for a fuel-injected internal combustion engine that is connected to a common communication passage through a fuel injection type internal combustion engine. 2. In an internal combustion engine equipped with a fuel injection valve for injecting fuel into the engine intake port, a fuel reservoir is formed on the bottom wall surface of each intake port, and each fuel reservoir is connected to a common communication passage through a communication branch. An intake system for a fuel injection internal combustion engine, in which the common communication passage is connected to the atmosphere through an air supply control device for supplying air into the common communication passage when the engine load is equal to or higher than a predetermined load.
JP12726078A 1978-10-18 1978-10-18 Intake system for fuel-injected internal combustion engines Expired JPS599749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12726078A JPS599749B2 (en) 1978-10-18 1978-10-18 Intake system for fuel-injected internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12726078A JPS599749B2 (en) 1978-10-18 1978-10-18 Intake system for fuel-injected internal combustion engines

Publications (2)

Publication Number Publication Date
JPS5554661A JPS5554661A (en) 1980-04-22
JPS599749B2 true JPS599749B2 (en) 1984-03-05

Family

ID=14955632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12726078A Expired JPS599749B2 (en) 1978-10-18 1978-10-18 Intake system for fuel-injected internal combustion engines

Country Status (1)

Country Link
JP (1) JPS599749B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060010B2 (en) * 1980-12-02 1985-12-27 トヨタ自動車株式会社 Intake system for multi-cylinder internal combustion engine

Also Published As

Publication number Publication date
JPS5554661A (en) 1980-04-22

Similar Documents

Publication Publication Date Title
US4779594A (en) Intake system for an internal combustion engine
US5746189A (en) EGR gas assist injection system for internal combustion engine
US20020011223A1 (en) Fuel injection system for a two-stroke engine
JPH076395B2 (en) Internal combustion engine intake system
JPS581654Y2 (en) Intake system for fuel-injected internal combustion engines
JPS6056261B2 (en) Fuel-injected multi-cylinder internal combustion engine
JPS5840647B2 (en) Internal combustion engine intake system
JPS5934850B2 (en) Intake system for multi-cylinder internal combustion engine
JPS599749B2 (en) Intake system for fuel-injected internal combustion engines
JPS59702B2 (en) Intake system for fuel-injected internal combustion engines
JP2513612Y2 (en) Stratified combustion internal combustion engine
JPS5813084Y2 (en) Intake system for multi-cylinder internal combustion engine
JP2581185B2 (en) Fuel injection device for internal combustion engine
JPS608338B2 (en) Fuel injection method for fuel-injected multi-cylinder internal combustion engine
KR200149885Y1 (en) Fuel injection device of an engine
JPS5840648B2 (en) Internal combustion engine intake system
KR100292867B1 (en) Intake port of cylinder head
JP2594992Y2 (en) Engine intake system
JPH0389936U (en)
JP2578472Y2 (en) Multi-injection nozzle for vaporizer
JPS58206815A (en) Controlling of opening and closing of intake ports for double-intake type internal-combustion engine
JPS6322379U (en)
JPS5851375Y2 (en) Internal combustion engine intake system
CN112282998A (en) Fuel injector with split flow path nozzle
KR100230862B1 (en) Fuel injection unit of an engine