JPS5997002A - Shape detector - Google Patents

Shape detector

Info

Publication number
JPS5997002A
JPS5997002A JP20610182A JP20610182A JPS5997002A JP S5997002 A JPS5997002 A JP S5997002A JP 20610182 A JP20610182 A JP 20610182A JP 20610182 A JP20610182 A JP 20610182A JP S5997002 A JPS5997002 A JP S5997002A
Authority
JP
Japan
Prior art keywords
vibration
shape
frequency
signal
random
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20610182A
Other languages
Japanese (ja)
Inventor
Masaaki Nakajima
正明 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20610182A priority Critical patent/JPS5997002A/en
Publication of JPS5997002A publication Critical patent/JPS5997002A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/06Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To enable a better detection of a shape detecting a vibration frequency resonating with a metal material by applying a random vibration to a strip- shaped metal material with a random signal generator as vibrating means. CONSTITUTION:A pink noise of 5-50Hz is generated with a random signal generator 10 and amplified with a power amplifier 11 to be fed to a vibrator 12, which utilizes an AC magnet or the like. Vibration of a strip-shaped metal plate 2 is detected with a displacement detector 13 and converted into an electrical signal with signal processing circuit 14. A complicated waveform is converted into a square wave with a limiter circuit 16 passing a BPF15 and a fundamental wave extracted with an LPF17. As in noway affected by the amplitude component of vibration, this system can detect changes in the frequency as voltage change simply by setting an LPF17 and a shield frequency near the center of the detection frequency beforehand. The output thereof can be translated to steepness as normal shape signal with a shape converter 18 to extract a shape signal.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、帯状の金属材料の平坦度検出法に係り、特に
、非接触振動方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a flatness detection method for a strip-shaped metal material, and particularly to a non-contact vibration method.

〔従来技術〕[Prior art]

圧延ラインに於ける形状検出法には、非接触方式と、接
触方式がある。非接触方式の中には板の内部応力の分布
を透磁率の変化として検出する磁歪方式、板の自励振動
の振幅、振動数から、内部応力の分布を測定する方式、
及び、加圧により、振幅変化を検出する方式、その他レ
ーザー光等光を利用したものがある。磁歪方式では、透
磁率の変化が、材質により異なるため、校正に多大の時
間を要すること、振幅方式では、板の幅方向でのバラツ
キがあること等の欠点があった。又、光方式では、圧延
張力が大きい場合は、形状が顕在化せず、精度が低下す
る難点があった、 〔発明の目的〕 本発明の目的は、非接触式で高精度の帯状金属材料の平
坦度検出装置を提供するにある。
Shape detection methods in rolling lines include non-contact methods and contact methods. Among the non-contact methods, there is a magnetostrictive method that detects the internal stress distribution of the plate as a change in magnetic permeability, a method that measures the internal stress distribution from the amplitude and frequency of the self-excited vibration of the plate,
There are also methods that detect amplitude changes by applying pressure, and other methods that utilize light such as laser light. In the magnetostrictive method, changes in magnetic permeability vary depending on the material, so calibration requires a lot of time, and in the amplitude method, there are disadvantages such as variations in the width direction of the plate. In addition, in the optical method, when the rolling tension is large, the shape does not become apparent and the precision decreases. To provide a flatness detection device.

〔発明の概要〕[Summary of the invention]

一般に、圧延材料の平坦度を圧延中に検出する手段は、
内部応力の分布を検出することが基本となる。従来方式
は、圧延鋼板を電磁力により吸引し、その変位が内部応
力に反比例していることを利用している。しかし、変位
は、鋼板と、検出器とのギャップ変化に過敏であり、鋼
板エツジ部での変位が大きく、検出器と鋼板が接触する
等、実用上での問題点があった。本発明者は、第5図(
、lo(b)(C)に示すように圧延材料の振動、振幅
と、形状の関係を種々実験し、振動方式が、振幅方式に
比べ、非常に安定した対応力特性があることを発見し、
これを利用したものである。この場合、振動数方式は、
従来も考えられてはいたが、自励振動に頼っていたため
、振動が発生しないと、感度が大幅に低下する欠点があ
った。又、振幅併用方式では、加圧吸引を行なわない限
り、精度的な限界がある。本発明は、加振手段として、
ランダム信号発生器を用い金属材料に、ランダムな振動
を与え、金属材料と共振する振動周波数を検出しようと
するものである。この場合、ランダム信号は10〜10
0Hz程度まで、パワースペクトラムが、一様なものを
使用する。又、加振された金属材料の共振振動周波数を
検出する際、振幅成分は、形状以外のノイズ成分が多い
ため、共振周波数のみを検出することにより、良好な形
状検出装置を発明するに至った。
Generally, the means for detecting the flatness of rolled material during rolling is as follows:
The basic idea is to detect the distribution of internal stress. The conventional method utilizes the fact that a rolled steel plate is attracted by electromagnetic force and the displacement thereof is inversely proportional to internal stress. However, the displacement is sensitive to changes in the gap between the steel plate and the detector, and there are practical problems such as large displacement at the edge of the steel plate and contact between the detector and the steel plate. The inventor of the present invention has shown that FIG. 5 (
As shown in ,lo(b)(C), we conducted various experiments on the relationship between vibration, amplitude, and shape of rolled materials, and discovered that the vibration method has very stable response force characteristics compared to the amplitude method. ,
This is what is used. In this case, the frequency method is
This has been considered in the past, but because it relied on self-excited vibrations, it had the disadvantage that sensitivity would drop significantly if vibrations did not occur. Further, in the combined amplitude method, there is a limit in accuracy unless pressurized suction is performed. The present invention provides, as an excitation means,
This method uses a random signal generator to apply random vibrations to a metal material, and attempts to detect the vibration frequency that resonates with the metal material. In this case, the random signal is 10 to 10
A device with a uniform power spectrum up to about 0 Hz is used. In addition, when detecting the resonant vibration frequency of an excited metal material, the amplitude component contains many noise components other than the shape, so by detecting only the resonant frequency, we were able to invent a good shape detection device. .

圧延金属材料の内部応力による振動周波数は基本波で次
式で近似される。
The vibration frequency due to internal stress of rolled metal material is a fundamental wave and is approximated by the following equation.

但し、f:基本振動周波数、t:支点間長さr:線密度
     g:重カ加速度 σ0=引はり応力 今、t=1m、6゜= 5 kg 7mm2とした場合
は、撮動周波数は約40H2となり、周波数は内部応力
の平方根に比例し、加振方には無関係であることが分る
However, f: fundamental vibration frequency, t: length between fulcrums r: linear density g: gravity acceleration σ0 = tensile stress Now, when t = 1 m, 6° = 5 kg 7 mm2, the imaging frequency is approximately 40H2, and it can be seen that the frequency is proportional to the square root of the internal stress and is unrelated to the method of excitation.

〔発明の実施例〕[Embodiments of the invention]

形状検出器は、通常冷間圧延機の出側に設置される。そ
の検出信号は、形状表示され、圧延操作のガイド及び、
自動形状制御信号として、利用さAる。第1図は、冷間
圧延機の概要を示した図である。
A shape detector is usually installed on the exit side of a cold rolling mill. The detection signal is displayed in the shape, guides the rolling operation, and
It is used as an automatic shape control signal. FIG. 1 is a diagram showing an outline of a cold rolling mill.

帯状金属板2は、圧延機1により圧延され、デフレクタ
ロール4を経て、巻取りリール5に巻取られる。本発明
の形状検出器3は、圧延機1とデフレクタロール4の間
に設置される。帯状金属板2と形状検出器3とは、5〜
7謳程度離し、なるべく平行になるように設置される。
The strip metal plate 2 is rolled by a rolling mill 1, passes through a deflector roll 4, and is wound onto a take-up reel 5. The shape detector 3 of the present invention is installed between the rolling mill 1 and the deflector roll 4. The band-shaped metal plate 2 and the shape detector 3 are
They are placed about 7 songs apart and parallel to each other as much as possible.

形状検出器3は、振幅方向の形状分布を測定するため、
多数の検出端より構成される。通常10〜40ケ程度が
実用範囲である。第2図は、その設置状態を示す図であ
る。帯状金属板2.Vi、加振装置6にエリ、ランダム
に加振される。このランダム信号は、20〜100 H
2にわたって均一なスペクトラムを持つピンクノイズを
信号源としている。このランダム信号による加振は、重
要である。例えば、ステップ的に加振した場合は、スペ
クトラムが不均一であり、加振した時点の信号は、検出
信号として使用できず、連続検出が不可能となる。又、
単一周波で加振した場合は、帯状金属板は、内部応力に
無関係な、加担周波数又はその2倍の周波数で振動する
ことになるため意味がない。加振袋@は、電磁コイルに
よる電磁吸引力であっても、又、空気圧による、押上げ
力であってもかまわない。これは、電磁力が使用できな
い、アルミ等の非磁性体でも使用できることになる。第
3図は、本発明の回路構成を示す図である。ランダム信
号発生器により、5〜50 H,zのピンクノイズを発
生させる。このランダム信号をパワー増幅器11により
増幅し、加振機12に送る。加振機12は、交流磁石を
利用して簡単に構成可能である。又、空気圧を利用する
場合は、サーボ弁により、空気量を制御する。帯状金属
板2の振動は、変位検出器13により検出する。これは
通常非接触のギャップセンサが用いられる。よって振動
信号は信号処理回路14により容易に電気信号に変換さ
れる。振動信号は多数の周波数成分を含むため、通常の
応力範囲で発生する周波数のみを検出するため、帯域通
過フィルタ15を通す。パワースペクトラムの最大の周
波数を検知する手段は、いくつかあるが、簡単な一例と
して、リミッタ方式を用いる。リミッタ回路16にエリ
、複雑な波形は矩形波に変換される。この矩形波は、次
の低域通過フィルタ17により、基本波が抽出される。
The shape detector 3 measures the shape distribution in the amplitude direction,
Consists of a large number of detection ends. The practical range is usually about 10 to 40 pieces. FIG. 2 is a diagram showing the installed state. Band-shaped metal plate 2. Vi is randomly excited by the vibration device 6. This random signal is 20~100H
The signal source is pink noise with a uniform spectrum over 2. This excitation by random signals is important. For example, when vibration is applied in steps, the spectrum is non-uniform, and the signal at the time of vibration cannot be used as a detection signal, making continuous detection impossible. or,
If it is vibrated with a single frequency, it is meaningless because the band-shaped metal plate will vibrate at the contributing frequency or twice its frequency, which is unrelated to the internal stress. The vibration bag @ may be an electromagnetic attraction force generated by an electromagnetic coil, or may be an upward force generated by air pressure. This means that non-magnetic materials such as aluminum, which cannot be used with electromagnetic force, can also be used. FIG. 3 is a diagram showing the circuit configuration of the present invention. A random signal generator generates pink noise of 5-50 H,z. This random signal is amplified by a power amplifier 11 and sent to a vibrator 12. The vibrator 12 can be easily configured using an AC magnet. Furthermore, when using air pressure, the amount of air is controlled by a servo valve. The vibration of the band-shaped metal plate 2 is detected by a displacement detector 13. A non-contact gap sensor is usually used for this purpose. Therefore, the vibration signal is easily converted into an electrical signal by the signal processing circuit 14. Since the vibration signal includes many frequency components, it is passed through a bandpass filter 15 in order to detect only frequencies that occur within a normal stress range. There are several ways to detect the maximum frequency of the power spectrum, but a limiter method is used as a simple example. The limiter circuit 16 converts the complex waveform into a rectangular wave. The fundamental wave of this rectangular wave is extracted by the next low-pass filter 17.

この方式は、振動の振幅弁に影響されないため、単に、
低域通過フィルタ7、カットオフ周波数を検出周波数の
中央付近に設定しておくことにより、周波数変化を電圧
変化として検出できる。この出力を、形状変換器18に
より、通常形状信号としている急峻度換算を行なう。
This method is not affected by the vibration amplitude valve, so it simply
By setting the cutoff frequency of the low-pass filter 7 near the center of the detection frequency, frequency changes can be detected as voltage changes. This output is subjected to steepness conversion using a shape converter 18 as a normal shape signal.

第4図は、形状検出器の全体構成を示す図である。多数
の変位検出器13は、第3図における破線部即ち、周波
数検出回路19により、直流電圧に変換され、板の幅方
向分布検出回路20により、形状を幅方向にノルマライ
ズ化し、形状表示器2′1に表示を行なう。第6図は、
ランダム信号発生器より出力される信号波形の一例であ
る。この信号のパワースペクトラムを第7図に示す。実
際には、全く均一なものは、得られないが、実用上は、
問題ない。第8図は、帯状金属板の振動の周波数スペク
トラムの一例である。この信号を第3図に示すようなフ
ィルタ回路を通すと、第9図に示すようなスペクトラム
が分離される。この振動の振幅は一定になっているため
、第10図に示す工うな低域通過フィルタにより、カッ
トオフ周波数fc’c設定することにより、形状信号を
抽出できる。
FIG. 4 is a diagram showing the overall configuration of the shape detector. A large number of displacement detectors 13 are converted into DC voltage by the broken line part in FIG. 2'1 is displayed. Figure 6 shows
This is an example of a signal waveform output from a random signal generator. The power spectrum of this signal is shown in FIG. In reality, it is not possible to obtain a completely uniform product, but in practice,
no problem. FIG. 8 is an example of a frequency spectrum of vibration of a band-shaped metal plate. When this signal is passed through a filter circuit as shown in FIG. 3, a spectrum as shown in FIG. 9 is separated. Since the amplitude of this vibration is constant, the shape signal can be extracted by setting the cutoff frequency fc'c using the sophisticated low-pass filter shown in FIG.

なお、図中10はランダム信号発生器である。Note that 10 in the figure is a random signal generator.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、加振装置と振動周波数の検出の組合わ
せにより、 (1)連続振動周波数検出が可能となる。
According to the present invention, by combining the vibration excitation device and the detection of the vibration frequency, (1) continuous vibration frequency detection becomes possible.

(2)加振パワーに影響されない。(2) Not affected by excitation power.

(3)加振位置による影響が少ない。(3) There is little influence from the position of vibration.

(4)空気源による加振は一定パワーである必要はない
(4) The excitation by the air source does not need to have constant power.

(5)エツジ部、腹部に分割して加振することも可能で
ある。
(5) It is also possible to vibrate separately at the edge and abdomen.

(6)加振方式なので、帯状金属体と、変位検出器が接
触することが少なくなる。
(6) Since the vibration method is used, there is less contact between the band-shaped metal body and the displacement detector.

等の効果がある。There are other effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は冷間圧延機の斜視図、第2図は形状検出器と圧
延機の関係図、第3図は本発明の回路ブロック図、第4
図は本発明の構成図、第5図(a)。 (b)、 (C)は本発明に至った実験データを示す図
、第6図、第7図はランダム信号発生器の特性図、第8
図は金属材料の振動分析図、第9図はフィルタリング後
の振動分析図、第10図は低域通過フィルタの特性図を
示す。 2・・・帯状金属板、3・・・形状検出器、10・・・
ランダム信号発生器、12・・・加振機、15・・・帯
域通過フィルタ、17・・・低域通過フィルタ。 第  l  凶 第 2 ロ 第 3 目 第 4 凹 第5図 Co−) 応力  玄9.    丸〃  嘴領2第 6 目 早 7 口 第to 目
Fig. 1 is a perspective view of a cold rolling mill, Fig. 2 is a relationship diagram between a shape detector and the rolling mill, Fig. 3 is a circuit block diagram of the present invention, and Fig. 4 is a perspective view of a cold rolling mill.
The figure is a block diagram of the present invention, FIG. 5(a). (b) and (C) are diagrams showing experimental data that led to the present invention, Figures 6 and 7 are characteristic diagrams of the random signal generator, and Figure 8 is a diagram showing the experimental data that led to the present invention.
9 shows a vibration analysis diagram of a metal material, FIG. 9 shows a vibration analysis diagram after filtering, and FIG. 10 shows a characteristic diagram of a low-pass filter. 2... Band-shaped metal plate, 3... Shape detector, 10...
Random signal generator, 12... vibrator, 15... band pass filter, 17... low pass filter. 1st bad 2nd b 3rd 4th concave 5th Co-) Stress Xu9. Maru〃 Beak area 2nd 6th eye early 7th mouth to eye

Claims (1)

【特許請求の範囲】 1、帯状金属板の形状検出器に於いて、金属板にランダ
ムな振動を与えるランダム信号発生器及び加振機と、そ
の信号により前記帯状金属板の振動を検知する手段と、
その振動信号より、形状に起因する周波数成分のみを抽
出するフィルター回路とよりなることを特徴とする形状
検出装置。 2、特許請求の範囲第1項に於いて、加振機として、電
磁石を利用したことを特徴とする形状検出装置。 3、特許請求の範囲第1項に於いて、加振機として、空
気圧を利用したことを特徴とする形状検出装置。
[Claims] 1. In a shape detector for a band-shaped metal plate, a random signal generator and an exciter that give random vibrations to the metal plate, and means for detecting vibrations of the band-shaped metal plate using the signals. and,
A shape detection device comprising a filter circuit that extracts only frequency components caused by shape from the vibration signal. 2. A shape detection device according to claim 1, characterized in that an electromagnet is used as the vibrator. 3. A shape detection device according to claim 1, characterized in that air pressure is used as the vibrator.
JP20610182A 1982-11-26 1982-11-26 Shape detector Pending JPS5997002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20610182A JPS5997002A (en) 1982-11-26 1982-11-26 Shape detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20610182A JPS5997002A (en) 1982-11-26 1982-11-26 Shape detector

Publications (1)

Publication Number Publication Date
JPS5997002A true JPS5997002A (en) 1984-06-04

Family

ID=16517816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20610182A Pending JPS5997002A (en) 1982-11-26 1982-11-26 Shape detector

Country Status (1)

Country Link
JP (1) JPS5997002A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187606A (en) * 1985-02-15 1986-08-21 Mitsui Miike Mach Co Ltd Shape confirming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187606A (en) * 1985-02-15 1986-08-21 Mitsui Miike Mach Co Ltd Shape confirming apparatus
JPH0347682B2 (en) * 1985-02-15 1991-07-22 Mitsui Miike Machinery Co Ltd

Similar Documents

Publication Publication Date Title
US3850031A (en) Process and apparatus for determining the variation of tensile stresses in cold-rolled strip over the width thereof
JP2002030644A (en) Method and apparatus for measuring of compaction degree
US3623358A (en) Method of non-destructive examination of specimens
JP3076889B2 (en) Magnetic force microscope
US6448764B2 (en) Method of and apparatus for contactless planarity measurements on ferromagnetic metal strip
JPS5997002A (en) Shape detector
Birsan et al. Magnetic Barkhausen noise study of domain wall dynamics in grain oriented 3% Si-Fe
US3433058A (en) Acoustic flatness measurement device
CN100489471C (en) Sensor
JPS60118328A (en) Shape detecting device
JPS60146105A (en) Shape detecting method
JPH10111363A (en) Metal detector
JP2003121419A (en) Permeability measuring method
JPH11142492A (en) Magnetometric sensor
SU1100556A1 (en) Method of magnetic material non-destructive checking
JPH04283659A (en) Noncontact method and device for detecting abnormal adhesion of metal plate without any contact
SU1642362A1 (en) Device for comprehensive non-destructive testing of ferromagnetic items
JPS613007A (en) Configuration detector
JPS61201126A (en) Electromagnetic stress measuring instrument
Zinke Dynamic Strain Measurements on a Complex Freeway Bridge
RU2031404C1 (en) Ultrasonic device for inspection of ferromagnetic articles
JPH04353758A (en) Method and equipment for on-line detection of damping characteristic of laminated damping steel sheet
SU1280524A1 (en) Electromagnetic-acoustic method of checking ferromagnetic articles
AU2003238987B2 (en) Sensor
JPH05107162A (en) Fineness measuring instrument