JPS5996945A - Stratiform work material with function layer executed on substrate and its manufacture - Google Patents

Stratiform work material with function layer executed on substrate and its manufacture

Info

Publication number
JPS5996945A
JPS5996945A JP58154235A JP15423583A JPS5996945A JP S5996945 A JPS5996945 A JP S5996945A JP 58154235 A JP58154235 A JP 58154235A JP 15423583 A JP15423583 A JP 15423583A JP S5996945 A JPS5996945 A JP S5996945A
Authority
JP
Japan
Prior art keywords
functional layer
layer
proportion
support layer
substances
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58154235A
Other languages
Japanese (ja)
Inventor
エ−リツヒ・ホ−デス
ヴアルタ−・シユナイダ−
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GLYCO METALL WERKE
GURIKO METARU UERUKE DEEREN UNTO RUUSU GmbH
Original Assignee
GLYCO METALL WERKE
GURIKO METARU UERUKE DEEREN UNTO RUUSU GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GLYCO METALL WERKE, GURIKO METARU UERUKE DEEREN UNTO RUUSU GmbH filed Critical GLYCO METALL WERKE
Publication of JPS5996945A publication Critical patent/JPS5996945A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/122Multilayer structures of sleeves, washers or liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/20Alloys based on aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/20Alloys based on aluminium
    • F16C2204/24Alloys based on aluminium with lead as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、支持層上に施した、少なくとも2種の異なる
物質から構成されている機能層を備えた層状工材並びに
その製法に関し、その際に機能層はそれを構成する物質
の粉末混合物のプラズマ感射により施す。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a layered construction material provided with a functional layer made of at least two different materials applied on a support layer, and a method for manufacturing the same. It is applied by plasma exposure of a powder mixture of the constituent substances.

11’に定の目的、たいていの場合11)j食並びに補
11z処理のために高温加熱した金属又は他の4414
’l、例えばプラスチックを線材又は粉末から出発して
支持工材上に吹き付ける多数の方法が公知になっている
。これは例えば火炎溶射、プラズマ溶射又はアーク溶射
のような公知の溶射装置を用いて行なう。
4414 metal or other metal heated to a high temperature for the purpose specified in 11', in most cases 11) and supplementary 11z processing.
A number of methods are known, for example for spraying plastic starting from wire or powder onto supporting materials. This is carried out using known thermal spraying equipment, such as flame spraying, plasma spraying or arc spraying.

英国特許第1083003号明細書から、軸受材料、即
ち層状工材を、機能層を形成する材料を支持体上に高温
で吹き付けることにより製造することが公知である。比
重が著しく異なる金属、例えばアルミニウム及び鉛から
機能層を構成する際に、それらの成分を別個の溶射装置
を用いて支持体表面の被覆区域又は少なくとも交錯区域
に吹き付ける。この際に、溶射装置のそばを動(帯状支
持体上に吹き付ける際に異なる金属を溶射する溶射装置
に対して溶射区域を組成変化方向において最初の平面区
域に低い比重の金属、例えばアルミニウムだけが溶射さ
れるように配置することができる。全区域の主要部分を
占める中間平面区域において軽量材料と高重量旧料、従
ってアルミニウム及び鉛の溶射区域が交錯する。組成変
化方向において最後の薄い平面区域において高重量利料
、例えば鉛を溶射する。これにより、機能層は支持体表
面のその隣接区域では主として軽量金属、例えばアルミ
−ラムから成り、自由表面近くでは高重量金属、例えば
鉛が著しく高い含量で存在する。
It is known from GB 1,083,003 to produce bearing materials, ie layered materials, by spraying the material forming the functional layer onto the support at high temperature. When constructing functional layers from metals with significantly different specific gravities, such as aluminum and lead, these components are sprayed onto the coated areas or at least the intersecting areas of the support surface using separate thermal spraying equipment. In this case, the thermal spraying device is moved by the thermal spraying device (for thermal spraying devices that spray different metals when spraying onto the strip-shaped support, the thermal spraying zone is moved in the direction of composition change so that only metals with low specific gravity, e.g. aluminum, are present in the first planar area). The sprayed area can be arranged to be thermally sprayed.In the intermediate planar area which occupies the main part of the total area, the light material intersects with the sprayed area of heavy weight old material, thus aluminum and lead.The last thin planar area in the direction of composition change. A high weight metal, e.g. lead, is sprayed at the substrate surface, so that the functional layer consists mainly of light metals, e.g. Exists in a certain amount.

(・ずれにせよ純粋な鉛層は形成されない。(・Regardless of the deviation, a pure lead layer is not formed.

この公知の作業法では機能層の両端の区域において、あ
る一定の組成の変動が可能であるに過ぎない。本来の機
能層内で全厚にわたって実質的に同一の組成が得られる
ことになる。
This known method of operation allows only certain composition variations in the end regions of the functional layer. Substantially the same composition will be obtained throughout the entire thickness within the actual functional layer.

米国特許第2233304号明細書から、種々の材料の
混合物、例えば銅又はアルミニウムと溶融鉛の混合物を
基材上に溶射することのできる溶射装置が公知である。
From US Pat. No. 2,233,304 a thermal spraying device is known which is capable of spraying mixtures of various materials, for example mixtures of copper or aluminum and molten lead, onto substrates.

しかしこの装置を用いて機能層の組成をその厚さにわた
って変化させることはできない。
However, this device cannot be used to vary the composition of the functional layer over its thickness.

西Pイツ国特許公開第2509109号明細書から、機
能層の厚さにわたって区切られてより高い銅含量の区域
が形成されている特に複合すべり軸受用の層状工材が知
られている。そのような機能層は電着法により施される
。しかしそのような機能層の製造に使われる金属の数は
電着法故に極めて僅かである。更に、そのような電着法
は十分に制御することができないので、該方法を用いて
明確に規定された区域ごとの層組成の変動を必要な再現
性をもって達成し得な()。
From EP 2 509 109 A1 a layered material is known, in particular for composite plain bearings, in which regions of higher copper content are delimited over the thickness of the functional layer. Such functional layers are applied by electrodeposition. However, the number of metals used in the production of such functional layers is extremely small due to the electrodeposition method. Moreover, such electrodeposition methods cannot be well controlled, so that variations in the layer composition from well-defined areas cannot be achieved with the required reproducibility ().

本発明の課題は、良好に制御することができかつ層厚に
わたって正確に再現可能な区域ごとの層組成の変動を実
質的に任意の層構造において可能にする冒頭に記載した
種類の層状工材の製法を開示することである。
The object of the invention is to create a layered construction material of the type mentioned at the outset, which allows in virtually any layer structure a well-controlled and precisely reproducible variation of the layer composition from zone to zone over the layer thickness. The purpose is to disclose the manufacturing method of

本発明により、この課題は機能層を形成する物質数種か
らの粉末混合物かあるいは機能層を形成する物質数種を
含有する複合材料組成を種々に変化させて複数個のプラ
ズマ溶射工程を時間的連続的に実施して機能層を施すこ
とにより解決される。
According to the invention, this problem is solved by temporally performing several plasma spraying steps by varying the composition of a powder mixture of several substances forming the functional layer or of a composite material containing several substances forming the functional layer. The solution is to apply the functional layers in a continuous manner.

複数個のプラズマ溶射工程の時間的に連続的な実施は経
費がかかるように思われる。しかし本発明により行なう
複数個のプラズマ溶射工程を通して必要な工業的経費は
公知の粉末冶金法の場合よりも低いことが明らかになっ
た。とりわけ本発明により粉末組合せ物の脱混合の危険
が回避され、これは機能層中で合すべき物質がこれらの
比重において大きな差を有する場合に特に重要である。
Performing several plasma spray steps sequentially in time appears to be expensive. However, it has been found that the industrial outlay required through the multiple plasma spraying steps carried out according to the invention is lower than in the case of known powder metallurgy processes. In particular, the invention avoids the risk of demixing of the powder combination, which is particularly important if the substances to be combined in the functional layer have large differences in their specific gravities.

本発明により、異なる組成の区域間で連続的に移行して
特に高い均質性を有する層状構造が達成される。
According to the invention, a layered structure with particularly high homogeneity is achieved with continuous transitions between zones of different composition.

本発明方法をほとんどすべての工材組合せ物に適用する
ことができる。例えば、ある物質100%で密着型下塗
を吹き付けることができ、その際に一定回数の溶射工程
後に、密着型下塗の割合は機能層の割合が例えば酸化物
セラミック10θ係から成る機能層になるように複数工
程で変化させることができる。この密着型下塗から機能
層への移行は連続的にあるいは段階的に又は単一工程で
行なうことができる。はとんど無孔である層を吹き付け
ることができもしくは温度>3500℃を必要とする工
材を加工することができる熱動力学的被覆法により行な
うコーティングが本発明方法では特に有利である。
The method of the invention can be applied to almost all combinations of materials. For example, a 100% adhesive base coat can be sprayed with a certain substance, and after a certain number of thermal spraying steps, the proportion of the adhesive base coat is such that the proportion of the functional layer becomes, for example, a functional layer consisting of an oxide ceramic 10θ group. can be changed in multiple steps. The transition from the adhesive basecoat to the functional layer can take place continuously or in stages or in a single step. Particularly advantageous in the process of the invention are coatings carried out by thermodynamic coating methods, which make it possible to spray on layers that are virtually non-porous or to process materials requiring temperatures >3500.degree.

そのような温度の達成は本発明により行なわれるプラズ
マ溶射で達成することができる。プラズマ火炎の高温度
によりほとんどすべての金属性及び非金属性の工材を粉
末形で加工することができる。
Achievement of such temperatures can be achieved with plasma spraying performed in accordance with the present invention. Due to the high temperature of the plasma flame, almost all metallic and non-metallic materials can be processed in powder form.

プラズマガスの選択と共に、例えば溶射距離等のような
選択される溶射/8ラメ−タが層品質を広範に変動させ
かつ所望の用途に正確に適合させる。プラズマ火炎中へ
の粉末供給の方法及びその量により後の層品質に付加的
影響を与えることができる。
The selected thermal spray parameters, such as the spray distance, together with the selection of the plasma gas, allow the layer quality to vary widely and be precisely matched to the desired application. The method and amount of powder feeding into the plasma flame can have an additional influence on the subsequent layer quality.

本発明方法では広範な変更が可能である。例えば機能層
を形成する物質のうちの1物質又は1物質群を高し・開
始割合、場合により100%で及び後のプラズマ溶射工
程では低い割合で供給することができ、他方第2物質も
しくは第2物質群は低い開始割合で及び後のプラズマ溶
射工程では場合により100係までの高い割合で供給す
る。その際に、機能層を形成する物質のうちの第3物質
又は第3物質群をすべてのプラズマ溶射工程で実質的に
同一の混合割合で供給する。単数又は複数の最終のプラ
ズマ溶射工程で1物質もしくは1物質群の割合を混合物
中でゼロに低下させる。他方、単数又は複数の最初のプ
ラズマ溶射工程で第2の物質又は第2の物質群を開始割
合ゼロで供給することができる。
A wide range of variations are possible in the method of the invention. For example, one substance or one group of substances forming the functional layer can be supplied in a high starting proportion, possibly 100%, and in a subsequent plasma spraying step in a lower proportion, while the second substance or The two material groups are supplied in low starting proportions and in subsequent plasma spraying steps in high proportions, possibly up to 100 parts. At this time, the third material or third material group among the materials forming the functional layer is supplied at substantially the same mixing ratio in all plasma spraying steps. In one or more final plasma spraying steps, the proportion of one substance or one group of substances is reduced to zero in the mixture. On the other hand, the second material or the second group of materials can be provided with a starting proportion of zero in the first plasma spraying step or steps.

本発明方法において低い蒸発温度を有する物質を高(・
蒸発温度を有する物質よりも大きい粒径で粉末混合物中
に導入すると優れている。
In the method of the present invention, substances with a low evaporation temperature are
It is advantageous to introduce it into the powder mixture with a particle size larger than that of the substance with the vaporization temperature.

アルミニウム/鉛−懸濁合金からのすべり一もしくは摩
擦層を有するすべり一又は摩擦部材の製造に使用される
層状工材の製造に特に好適である本発明の1実施例は、
粉末鉛を、プラズマ溶射工程を通して施すべき粉末混合
物中で開始割合ゼロ及び最終割合15〜40重量%、殊
に20重量%で供給することである。その際に、アルミ
ニウム粉末は粒径く100μm、殊K 50〜100μ
mで及び鉛粉末は粒径〉4oIim、殊に80〜100
μmで供給することができる。本発明による構造をもた
らす低温溶融工材アルミニウム及び鉛の加工の際にプラ
ズマ溶射法を火炎溶射又はアーク溶射のような熱力学的
被覆法の代りに選択することは、アルミニウム又は鉛の
ような低温溶融金属をプラズマ溶射で加工する際に著し
く緊密なかつほとんど無孔の層が得られるという事実に
より明らかとなり、このことは溶射層の強度に有利に作
用する。
An embodiment of the invention which is particularly suitable for the production of layered materials used for the production of sliding elements or friction elements having sliding elements or friction layers from aluminum/lead suspension alloys is:
Powdered lead is supplied in the powder mixture to be applied through the plasma spraying process in a starting proportion of zero and a final proportion of 15 to 40% by weight, in particular 20% by weight. At that time, the particle size of aluminum powder is 100 μm, especially K is 50 to 100 μm.
m and the lead powder has a particle size > 4 oIm, in particular 80 to 100 m.
Can be supplied in μm. The choice of plasma spraying instead of thermodynamic coating methods such as flame spraying or arc spraying in the processing of low melting materials aluminum and lead resulting in structures according to the present invention makes it possible to This is evidenced by the fact that when processing molten metal by plasma spraying, an extremely tight and almost pore-free layer is obtained, which has an advantageous effect on the strength of the sprayed layer.

アルミニウムの場合約2060°Cの蒸発温度で及び鉛
の場合1740°Cの蒸発温度で温度、>15000°
Cであってよい火炎中へのアルミニウム及び鉛の粉末供
給は滞留時間が短く、それ故これらの粉末粒子が加速さ
れかっ溶射距離の選択に応じて高エネルギーで融液で又
は泥状物状態で基材に衝突する場合にのみ有意である。
Temperature >15000° with an evaporation temperature of about 2060°C for aluminum and 1740°C for lead
The feeding of aluminum and lead powder into the flame, which may be C, has a short residence time and therefore these powder particles are not accelerated, but can be deposited in the melt or in the slurry state at high energy depending on the choice of spray distance. Significant only when impinging on the substrate.

基材上で、機械的固着に加えて張力な溶射粒子中で惹起
する急速な冷却が起り、これによって密着機構をほとん
ど説明することができる。
On the substrate, in addition to mechanical adhesion, rapid cooling occurs in the tensile spray particles, which can largely explain the adhesion mechanism.

本発明の目的の層構造は、プラズマ火炎により基材表面
を予熱した後で本来の層構造物を施すことにより達成さ
外る。これは、基材表面の予熱後に初めて1物質又は1
物質群、例えばアルミニウムを単位時間当り一定量で火
炎に供給する形で行なう。複数回の溶射工程及び所望の
層厚の達成後に、第1物質の割合又は粉末量を減少させ
るか又は一定に保持することができ、同時に他方では第
2の物質、例えば鉛を単位時間当り一定量でプラズマ火
炎に供給する。この場合過程は任意の回数の溶射工程後
に、例えば軸受片にはアルミニウム80重量部及び鉛2
0重量部を含有する全厚に達するときの層構造もしくは
最終層まで第1物質分を第2物質分により補充又は添加
することにより繰返すことができる。より高い割合の他
の工材成分へ連続的に移行する同様の層状構造物は潤滑
工学的条件下に使用するのに有利でありかつ従来の公知
方法により製造することはできない。
The layer structure for the purpose of the invention is achieved by applying the actual layer structure after preheating the substrate surface by means of a plasma flame. This is the first time that one substance or one
This is carried out in such a way that a substance group, for example aluminum, is supplied to the flame in a constant amount per unit time. After several thermal spraying steps and the achievement of the desired layer thickness, the proportion or powder amount of the first substance can be reduced or kept constant, while at the same time the second substance, for example lead, is applied at a constant rate per unit time. feed the plasma flame in quantity. In this case, after an arbitrary number of thermal spraying steps, the bearing piece is coated with 80 parts by weight of aluminum and 2 parts by weight of lead.
It can be repeated by supplementing or adding the first substance portion with a second substance portion until the layer structure or the final layer reaches a total thickness containing 0 parts by weight. Similar layered structures with a continuous transition to higher proportions of other materials components are advantageous for use under lubrication conditions and cannot be produced by conventionally known methods.

更に本発明は、本発明方法で製造した、金属支持層と金
属合金から成る機能層とを備えた層状工材に関する。本
発明による層状工材は、機能層内の合金成分の少なくと
も1種の割合が支持層の隣接部の割合゛°ぜ口″であり
、支持層からの距離が増加するに伴って、所定の最大割
合まで実質的に連続的に増大していることを特徴とする
Furthermore, the present invention relates to a layered construction material produced by the method of the present invention, comprising a metal support layer and a functional layer made of a metal alloy. In the layered material according to the present invention, the ratio of at least one alloy component in the functional layer is the same as that of the adjacent part of the support layer, and as the distance from the support layer increases, It is characterized by a substantially continuous increase up to a maximum percentage.

その際に、支持層から遠ざかるにつれて増大している割
合の合金成分は支持層から離れた機能層の側で実質的に
100%の最大割合に移行する。これはアルミニウム及
び鉛を含有する懸濁合金の例では、その組成が開始時に
アルミニウム100%で最後に鉛100%で皮膜として
存在することを意味する。そのような構造は例えばすべ
り軸受のような構造部材として使用するには不適当なは
ずである。このためには、機能層を主にアルミニウム/
鉛懸濁合金から成るすべり層として、その層が支持層の
隣接部で純粋なアルミニウムから成りかつ支持層から離
れた機能層の側で鉛15〜40重量係、殊に2゜重量%
を含有するように構成すると優れている。
In this case, the proportion of the alloy component, which increases with distance from the support layer, passes to a maximum proportion of essentially 100% on the side of the functional layer remote from the support layer. In the example of a suspension alloy containing aluminum and lead, this means that the composition is initially 100% aluminum and finally 100% lead present as a coating. Such a structure would be unsuitable for use as a structural member, such as a plain bearing, for example. For this purpose, the functional layer should mainly be made of aluminum/
As a sliding layer consisting of a lead-suspended alloy, which layer is made of pure aluminum in the vicinity of the support layer and on the side of the functional layer remote from the support layer, it contains 15 to 40% by weight of lead, in particular 2% by weight.
It is advantageous to configure the structure so that it contains the following.

しかしながら、自由表面で鉛100係からの皮膜に移行
している機能層は、しばしば化学的工場で起る技術的課
題である構造部材を耐食性にすることが問題である場合
に非常に重要である。
However, the functional layer transitioning to a coating from Pb 100 on the free surface is of great importance when it is a question of making structural components corrosion resistant, a technical problem that often occurs in chemical plants. .

本発明による層状構造の達成には次のように作動する粉
末供給装置が特に有利である:粉末は機械的に例えば羽
根車により接続部を通してプラズマ火炎に供給され、そ
の際機械的作動はキャリアガスにより支持される。この
キャリアガスが所定のガス圧及びガス流量下に粉末粒子
を一緒に火炎に運ぶ。処理すべき粉末に関しては、プラ
ズマ溶射により同時に加工処理すべき粉末の量が使用す
る供給装置の数に左右されるような装置が必要であり、
その際本発明方法の別法は粉末又はすべての加工すべき
粉末をその加工前に他のものと混合する、即ち供給装置
に装入する前に混合することである。更に、粉末混合物
ばかりでなく、合金粉末を加工することも明らかに可能
である。例えばアルミニウムに、アルミニウムに代表的
な合金成分を供給することができる。同様に合金されて
いてよい鉛も同様である。
Particularly advantageous for achieving the layered structure according to the invention are powder feeding devices that operate as follows: the powder is fed mechanically, for example by an impeller, through a connection to the plasma flame, the mechanical actuation being controlled by the carrier gas. Supported by This carrier gas carries the powder particles together into the flame under a predetermined gas pressure and gas flow rate. Regarding the powder to be processed, equipment is required such that the amount of powder to be simultaneously processed by plasma spraying depends on the number of feed devices used;
An alternative to the process according to the invention is to mix the powder or all the powders to be processed with the others before processing, that is to say before charging the feed device. Furthermore, it is clearly possible to process not only powder mixtures but also alloy powders. For example, aluminum can be supplied with alloying components typical of aluminum. The same applies to lead, which may be similarly alloyed.

本発明範囲で熱力学的被覆に使用する混合物もしくは合
金又は粉末の粒子の形状は球状であると優れている。そ
のような球状の粒子は異形又は種棒状の粒子に比べて有
利である。
The shape of the particles of the mixture or alloy or powder used for the thermodynamic coating within the scope of the invention is preferably spherical. Such spherical particles are advantageous over irregularly shaped or seed rod-shaped particles.

熱的溶射工程のプラズマガスとしては窒素かつアルゴン
を使用することができ、その際二次ガスとしてはその都
度水素を使用する。
Nitrogen and argon can be used as plasma gases in the thermal spraying process, with hydrogen in each case being used as secondary gas.

ノズルとコーティングすべき基材との間の溶射距離は1
00〜150 +nm、殊に125±5 mmである。
The spraying distance between the nozzle and the substrate to be coated is 1
00 to 150 + nm, in particular 125 ± 5 mm.

僅かな距離の差でも−その他は一定の・ξラメータで一
層品質は著しく影響を受ける。
Even a small difference in distance - even with an otherwise constant ξ parameter - can significantly affect the quality.

本発明方法により、所望の組成の最終層、即ち機能層の
表面層に到るまで連続的に移行して℃・る溶射層の選択
された支持工拐上の最適な結合が達成されろ。
By means of the method of the invention, an optimum bonding of the thermally sprayed layer at 0.degree.

暴利の連続的なコーティング過程は、プラズマガスに所
定量のそれぞれの粉末を供給しかつ予熱した被覆すべき
基材を、それを横切るように移動するプラズマ火炎によ
り被覆して行なう。
The continuous coating process is carried out by feeding a plasma gas with a predetermined amount of the respective powder and coating the preheated substrate to be coated with a plasma flame moving across it.

更に、同様にプラズマ溶射機を停止させかつ基材をプラ
ズマ火炎に対して移動することにより実施することがで
きる。
Additionally, it can be similarly carried out by stopping the plasma spray machine and moving the substrate relative to the plasma flame.

被覆すべき全基材表面に対して、一定の垂直−及び水平
方向速度500 mm / Sでプラズマ火炎を横切る
ように動かす。この際に所望の溶射層厚が達成されるま
で溶射工程、つまりサイクルを行なうことができる。そ
れぞれの工程後に、溶射層の1姐成はプラズマ火炎中に
供給する粉末量を変えることにより変化させることがで
きる。
The plasma flame is moved across the entire substrate surface to be coated at a constant vertical and horizontal speed of 500 mm/S. Thermal spraying steps or cycles can then be carried out until the desired sprayed layer thickness is achieved. After each step, the composition of the sprayed layer can be varied by varying the amount of powder fed into the plasma flame.

このように製造した層状工材はコーティング工程後に付
加的な圧縮を必要としない。それというのもプラズマ火
炎溶射法により得られた溶射層はほとんど無孔だからで
ある(間隙率〈5条)。
Layered materials produced in this way do not require additional compaction after the coating process. This is because the sprayed layer obtained by plasma flame spraying is almost non-porous (porosity <5).

本発明方法の変更は、プラズマ火炎中に装入すべき粉末
をその混合後に固体に圧縮成形しかつ圧縮成形した固体
の形、例えば線状成形体の複合材料としてプラズマ火炎
中に導入して行なうことができる。
A modification of the process according to the invention is carried out in that the powder to be introduced into the plasma flame is compression-molded into a solid after its mixing and introduced into the plasma flame in the form of a compression-molded solid, for example a composite material in a linear shaped body. be able to.

次に、本発明により製造した層状工材の1実施例を添付
図面につき詳説する。
Next, one embodiment of the layered material manufactured according to the present invention will be described in detail with reference to the accompanying drawings.

添付図面は鋼からの支持層及びAl−Pb懸濁合金から
の機能層を有する本発明による層状工材の拡大断面図で
あり、その際所望の組成のアルミニウムからAl−Pb
懸濁合金への移行部は連続的である。
The accompanying drawing shows an enlarged sectional view of a layered material according to the invention with a support layer made of steel and a functional layer made of an Al-Pb suspension alloy, with the desired composition of aluminum to Al-Pb suspension alloys.
The transition to suspension alloy is continuous.

銅帯材1はその被覆すべき表面を照射により前処理して
、施すべき機能層に、その形状に基づいて部分的に機械
的固着を促す汚れを含まない表面を与える。
The surface of the copper strip 1 to be coated is pretreated by irradiation to provide the functional layer to be applied with a dirt-free surface which promotes mechanical adhesion in parts due to its shape.

複数回のプラズマ溶射工程により、主にアルミニウム成
分4と鉛成分5とより成る皮膜3を施した。支持体工材
としてはDIN 1623による厚さ1.5 mmの鋼
を使用した。グランド溶射層6はA199.5から成る
。更にその上に施された溶射層7はアルミニウム80重
量饅及び鉛20重量係の割合まで連続的に増加する割合
の鉛を陰有する。
A coating 3 mainly consisting of an aluminum component 4 and a lead component 5 was applied by multiple plasma spraying steps. Steel with a thickness of 1.5 mm according to DIN 1623 was used as the support material. The ground sprayed layer 6 is made of A199.5. Furthermore, the sprayed layer 7 applied thereon contains a proportion of lead that increases continuously up to a proportion of 80 parts by weight aluminum and 20 parts by weight lead.

例  1 主に、使用したアルミニウム粉末は100係が粒径〉4
0μmの球形を有していた。使用した鉛の粒径範囲は同
様に優れた球形粒子で100係が〉50μmであった。
Example 1 Mainly, the aluminum powder used has a particle size of 100>4
It had a spherical shape of 0 μm. The particle size range of the lead used was similarly excellent spherical particles with a factor of 100>50 μm.

−次ガスとして窒素を圧力35・ζ−ル及びガス流量1
50A!/分で使用した。二次ガスとして水素を圧力3
5パール及び流量10で使用した。プラズマ装置の出力
は30kWで一定に保持した。溶射工程を開始するに当
りアルミニウム40g/分で作業した。
-Nitrogen as the next gas at a pressure of 35 x 1 and a gas flow rate of 1
50A! /min. Hydrogen as a secondary gas at a pressure of 3
It was used at 5 pars and a flow rate of 10. The output of the plasma device was kept constant at 30 kW. The thermal spray process was started at 40 g/min of aluminum.

第3溶射工程の終結後、鉛をアルミニウムと共にプラズ
マ火炎に別々に、所望の厚さに達した際に鉛の割合が2
0重量係に達するまで供給した。
After the conclusion of the third thermal spraying step, the lead is placed separately into the plasma flame together with the aluminum, and when the desired thickness is reached, the proportion of lead is 2.
It was fed until it reached zero weight.

例  2 例1と同様に実施したが、プラズマガス、つまり一層ガ
スとしてアルゴンを使用した。−次ガス圧は69パール
であった。ガス流量は150であった。二次ガスとして
水素を圧力35パール、ガス流量51/分で使用した。
Example 2 The procedure was as in Example 1, but using argon as the plasma gas, i.e. as the gas. -The gas pressure was 69 par. The gas flow rate was 150. Hydrogen was used as the secondary gas at a pressure of 35 par and a gas flow rate of 51/min.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は本発明による層状工材の拡大断面図である。 1・・・鋼帯材、2・・・鋼表面、3・・・皮膜、4・
・・アルミニウム成分、5・・・鉛成分、6・・・グラ
ンド溶射層、7・・・溶射層
The accompanying drawing is an enlarged sectional view of a layered construction material according to the present invention. DESCRIPTION OF SYMBOLS 1... Steel strip material, 2... Steel surface, 3... Film, 4...
...Aluminum component, 5...Lead component, 6...Ground sprayed layer, 7...Thermal sprayed layer

Claims (1)

【特許請求の範囲】 1、金属支持層と金属/合金より成る機能層とを備えた
層状工材において、機能層(3)内の合金成分の少なく
とも1種の割合が支持層(1)の隣接部でゼロであり、
支持層(3)から遠ざかるにつれて所定の最大割合まで
実質的に連続的に増大していることを特徴とする、支持
層上に施された機能層を備えた層状工材。 2 支持層(1)から遠ざかるにつれて増大している割
合の合金成分が支持層から離れた機能層(3)の側で実
質的に100係の最大割合に移行する特許請求の範囲第
1項記載の玉料。 3 機能層(3)が、支持層(1)の隣接部で純粋なア
ルミニウムより成りかつ支持層(1)から離れた側で鉛
 15〜40重量係、殊に20重量%を含有する主にア
ルミニウム/鉛懸濁合金から成るすべり層である特許請
求の範囲第1項記載の工材。 4 機能層(3)が、支持層(1)の隣接部で純粋なア
ルミニウムだけから形成されておりかつ支持層(1)か
ら離れた側で鉛だけから形成された表面層に移行してい
る腐食保護層である特許請求の範囲第1項又は第2項記
載の工材。 5 機能層を形成する物質数種から成る粉末混合物か又
は機能層を形成する物質数種を含有する複合材料をプラ
ズマ溶射することにより支持層上に施す形式の、少なく
とも2種の異なる物質から成る機能層を備えた層状工材
を製造する方法において、機能層を形成する物質数種か
ら粉末混合物かあるいは機能層を形成する物質数種を含
有する複合材料の組成を種々に変化させて、複数個のプ
ラズマ溶射工程を時間的連続的に実施して機能層を施す
ことを特徴とする、支持層上に施された機能層を備えた
層状工材の製法。 6、 機能層を形成する物質のうちの1物質又は1物質
群を高い開始割合でかつ後のプラズマ溶射工程では低い
割合で供給し、他方第2の物質又は第2の物質群を低い
開始割合でかつ後のプラズマ工程では高い割合で供給す
る特許請求の範囲第5項記載の方法。 7 機能層を形成する物質のうちの第3の物質又は第3
の物質群をすべてのプラズマ溶射工程で実質的に同一の
混合割合で供給する特許請求の範囲第6項記載の方法。 8、単数又は複数個の最終プラズマ溶射工程では1物質
もしくは1物質群の割合を混合物中でゼrJに低下させ
る特許請求の範囲第6項又は第7項記載の方法。 9 単数又は複数個の最初のプラズマ溶射工程では第2
の物質もしくは第2の物質群を開始割合ゼロで供給する
特許請求の範囲第6項〜第8項の℃・ずれか1項に記載
の方法。 JO低い蒸発温度を有する物質を扁℃・蒸発温度をイ」
する物q11よりも大きい粒径で粉末混合物中に導入す
る特W(−請求の範囲第5項〜第9項のいずれか1項に
記載の方法。 11  アルミニウム/鉛−懸濁合金からのすぺり一も
しくは摩擦層を有するすベリー又は摩擦部材の製造に使
用する層状工材を、粉末鉛を、プラズマ溶射工程を通し
て施すべき粉末混合物中で開始割合ゼロ及び最終割合1
5〜40重量係で供給して製造する特許請求の範囲第5
項〜第10項のいずれか1項記載の方法。 12  粒径く100μm、殊に50〜100μmのア
ルミニウム粉末及び粒径〉40μm、殊に80〜100
μmの鉛粉末を供給する特許請求の範囲第10項又は第
11項記載の方法。
[Claims] 1. In a layered material comprising a metal support layer and a functional layer made of a metal/alloy, a proportion of at least one alloy component in the functional layer (3) is equal to that of the support layer (1). zero in the adjacent part,
Layered construction material with a functional layer applied on a support layer, characterized in that the functional layer increases substantially continuously away from the support layer (3) up to a predetermined maximum proportion. 2. Claim 1, in which the proportion of the alloy component increasing with distance from the support layer (1) shifts to a maximum proportion of substantially 100 on the side of the functional layer (3) remote from the support layer. The ball fee. 3. The functional layer (3) consists of pure aluminum in the vicinity of the support layer (1) and, on the side remote from the support layer (1), mainly contains 15 to 40% by weight, in particular 20% by weight, of lead. The material according to claim 1, which is a sliding layer made of an aluminum/lead suspension alloy. 4. The functional layer (3) is formed only of pure aluminum adjacent to the support layer (1) and transitions to a surface layer formed only of lead on the side remote from the support layer (1). The workpiece according to claim 1 or 2, which is a corrosion protection layer. 5. Consisting of at least two different substances, in the form of a powder mixture of several substances forming the functional layer or a composite material containing several substances forming the functional layer applied onto the support layer by plasma spraying. In a method for producing a layered material having a functional layer, the composition of a powder mixture of several substances forming the functional layer or a composite material containing several substances forming the functional layer is varied. 1. A method for manufacturing a layered material having a functional layer applied on a support layer, characterized in that the functional layer is applied by sequentially performing plasma spraying processes over time. 6. Supplying one substance or one group of substances forming the functional layer in a high starting proportion and in a subsequent plasma spraying step in a low proportion, while the second substance or second group of substances is supplied in a low starting proportion. 6. The method according to claim 5, wherein the plasma is supplied at a high rate in a subsequent plasma step. 7 Third substance or third substance among the substances forming the functional layer
7. A method according to claim 6, wherein said group of substances are supplied in substantially the same mixing ratio in all plasma spraying steps. 8. The method according to claim 6 or 7, wherein in the final plasma spraying step or steps, the proportion of one substance or one group of substances is reduced to zero in the mixture. 9 In the first plasma spraying step or steps, the second
A method according to any one of claims 6 to 8, characterized in that the substance or the second group of substances is supplied at a starting rate of zero. JO: Substances with a low evaporation temperature are
11. A process according to any one of claims 5 to 9. The layered material used in the production of friction elements or materials with a friction layer is coated with powdered lead in a powder mixture to be applied through a plasma spraying process with a starting proportion of 0 and a final proportion of 1.
Claim 5: Supplied and manufactured in a weight range of 5 to 40
The method according to any one of Items 1 to 10. 12 Aluminum powder with particle size > 100 μm, especially 50 to 100 μm and particle size > 40 μm, especially 80 to 100 μm
12. A method according to claim 10 or claim 11 for supplying lead powder of .mu.m.
JP58154235A 1982-11-18 1983-08-25 Stratiform work material with function layer executed on substrate and its manufacture Pending JPS5996945A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE32425430 1982-11-18
DE3242543A DE3242543C2 (en) 1982-11-18 1982-11-18 Layer material with a functional layer made of a metallic suspension alloy applied to a metallic carrier layer and a method for its production

Publications (1)

Publication Number Publication Date
JPS5996945A true JPS5996945A (en) 1984-06-04

Family

ID=6178380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58154235A Pending JPS5996945A (en) 1982-11-18 1983-08-25 Stratiform work material with function layer executed on substrate and its manufacture

Country Status (5)

Country Link
JP (1) JPS5996945A (en)
BR (1) BR8305987A (en)
DE (1) DE3242543C2 (en)
FR (1) FR2536309B1 (en)
GB (1) GB2130250B (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3421569C1 (en) * 1984-06-09 1985-06-27 Goetze Ag, 5093 Burscheid Wear-resistant coating
NO850403L (en) * 1985-02-01 1986-08-04 Ingard Kvernes ALUMINUM BASED ARTICLE WITH PROTECTIVE COATS AND PROCEDURES FOR PRODUCING THEREOF.
ATA110186A (en) * 1986-04-24 1989-01-15 Austria Metall COMPOSITE SLIDING BEARING AND METHOD FOR PRODUCING THE SAME
DE3621184A1 (en) * 1986-06-25 1988-01-07 Glyco Metall Werke LAYERING MATERIAL AND METHOD FOR ITS PRODUCTION BY VACUUM PLASMA SPRAYING
DE3715323A1 (en) * 1987-05-08 1988-12-01 Castolin Sa Method for coating a sliding bearing consisting of part-shells, especially of two bearing half-shells
US4788077A (en) * 1987-06-22 1988-11-29 Union Carbide Corporation Thermal spray coating having improved addherence, low residual stress and improved resistance to spalling and methods for producing same
GB8915254D0 (en) * 1989-07-03 1989-08-23 T & N Technology Ltd Bearings
US5371937A (en) * 1990-07-02 1994-12-13 Olin Corporation Method for producing a composite material
JPH0771744B2 (en) * 1990-12-27 1995-08-02 大同メタル工業株式会社 Composite sliding material and manufacturing method thereof
DE4118469A1 (en) * 1991-06-05 1992-12-10 Linde Ag METHOD FOR PRODUCING SLIDING BEARING SURFACE LAYERS AND CORRESPONDING LAYERS FROM BEARING METAL
WO1993005194A1 (en) * 1991-09-05 1993-03-18 Technalum Research, Inc. Method for the production of compositionally graded coatings
DE4220937A1 (en) * 1992-06-26 1994-01-05 Glyco Metall Werke Layered material - has a fused bonding layer between porous, sintered carrier and solid function layers
TW383233B (en) * 1995-01-31 2000-03-01 Rieter Ag Maschf Thread guiding elements
DE19731625A1 (en) 1997-03-04 1998-09-10 Volkswagen Ag Bearing material in a connecting rod eye
US6329025B1 (en) * 1997-06-20 2001-12-11 University Of Texas System Board Of Regents Method and apparatus for electromagnetic powder deposition
US6329022B1 (en) * 1997-07-28 2001-12-11 Volkswagen Ag Connecting rod with a high strength bearing layer
ATE221929T1 (en) 1998-03-14 2002-08-15 Dana Corp METHOD FOR PRODUCING A PLAIN BEARING COATING
DE19824308C1 (en) * 1998-06-02 1999-09-09 Fraunhofer Ges Forschung Plain bearing shell especially a steel-backed bearing shell with an aluminum-tin alloy running-in layer
US6503575B1 (en) * 2000-05-22 2003-01-07 Praxair S.T. Technology, Inc. Process for producing graded coated articles
DE10035031A1 (en) * 2000-07-19 2001-11-15 Daimler Chrysler Ag Lubricating surface coating for wearing surfaces of e.g. connecting rods
BRPI0903741A2 (en) 2009-06-17 2011-03-01 Mahle Metal Leve Sa slip bearing, manufacturing process and internal combustion engine
GB2487532A (en) 2011-01-21 2012-08-01 Mahle Int Gmbh Bearing linings
ITMI20131907A1 (en) * 2013-11-18 2015-05-19 Cave S R L STRIPE BEARING FOR STRUCTURAL ENGINEERING

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354214A (en) * 1976-10-27 1978-05-17 Mitsubishi Heavy Ind Ltd Ceramics coating method
JPS5665982A (en) * 1979-10-30 1981-06-04 Mitsubishi Heavy Ind Ltd Surface treating method of metal material

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3091548A (en) * 1959-12-15 1963-05-28 Union Carbide Corp High temperature coatings
FR1467716A (en) * 1965-02-10 1967-01-27 Avco Corp Spray coating
DE1281769B (en) * 1966-12-30 1968-10-31 Messer Griesheim Gmbh Method and device for feeding a powder into the plasma jet during plasma spraying
CA1004964A (en) * 1972-05-30 1977-02-08 Union Carbide Corporation Corrosion resistant coatings and process for making the same
IT1087793B (en) * 1976-12-11 1985-06-04 Glyco Metall Werke LAYERED MATERIAL AND PROCEDURE FOR ITS MANUFACTURE THROUGH THE THERMOCINETIC PLATING
CS197698B1 (en) * 1977-11-22 1980-05-30 Vaclav Pilous Double course protective coat of heat stressed components
CS197697B1 (en) * 1977-11-22 1980-05-30 Vaclav Pilous Double course protective coat of heat stressed components
JPS54103752A (en) * 1978-02-02 1979-08-15 Toyota Motor Corp Production of aluminum-lead base alloy bearing
US4284688A (en) * 1978-12-21 1981-08-18 Bbc Brown, Boveri & Company Limited Multi-layer, high-temperature corrosion protection coating
GB2082203B (en) * 1980-08-18 1984-09-12 Ramsey Corp Iron/silicon extended molybdenum plasma spray powder
JPS5771671A (en) * 1980-10-20 1982-05-04 Kyushu Refract Co Ltd Ceramic coating method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354214A (en) * 1976-10-27 1978-05-17 Mitsubishi Heavy Ind Ltd Ceramics coating method
JPS5665982A (en) * 1979-10-30 1981-06-04 Mitsubishi Heavy Ind Ltd Surface treating method of metal material

Also Published As

Publication number Publication date
FR2536309B1 (en) 1988-09-02
BR8305987A (en) 1984-07-10
GB8326428D0 (en) 1983-11-02
GB2130250B (en) 1986-09-10
FR2536309A1 (en) 1984-05-25
DE3242543A1 (en) 1984-05-24
GB2130250A (en) 1984-05-31
DE3242543C2 (en) 1985-09-19

Similar Documents

Publication Publication Date Title
JPS5996945A (en) Stratiform work material with function layer executed on substrate and its manufacture
US3775156A (en) Method of forming composite metal strip
US4900639A (en) Cladding of bearing metal and process for production thereof
US3075066A (en) Article of manufacture and method of making same
Oberländer et al. Comparison of properties of coatings produced by laser cladding and conventional methods
EP1440752B1 (en) Fabrication of a metallic powder prepared without melting
US4911987A (en) Metal/ceramic or ceramic/ceramic bonded structure
JPH09509985A (en) Oriented ultrafine grain sputtering target and method of manufacturing the same
KR20000005817A (en) Half bearing and method for the production there of
US11008645B2 (en) Wear-resistant Cu—Ni—Sn coating
JP2010509502A (en) Substrate coating method and coated product
US6416877B1 (en) Forming a plain bearing lining
EP0270265B1 (en) Making composite metal deposit by spray casting
JPH10204601A (en) Method for coating carbon base material of carbon-containing nonmetallic base material
US4562090A (en) Method for improving the density, strength and bonding of coatings
US8573283B2 (en) Method for producing two bonded-together layers and functional component that can be produced by the method
US4308321A (en) Laminated bearing material produced by thermokinetic plating
JP2005126795A (en) Method for forming amorphous film
JPH03162564A (en) Manufacture of reflection article
JP3354377B2 (en) Fabrication method of high corrosion resistance modified layer by laser spraying method
KR20080076431A (en) Method for manufacturing diamond tool using hybrid spray process
US4332617A (en) Method of fabricating thin-walled articles of tungsten-nickel-iron alloy
EP0911423A1 (en) Method for joining workpieces
JP2919301B2 (en) Method of forming gradient composition film by thermal spraying
Roh et al. Direct energy Deposition of Mo powDer prepareD by electroDe inDuction Melting gas atoMization