CS197697B1 - Double course protective coat of heat stressed components - Google Patents
Double course protective coat of heat stressed components Download PDFInfo
- Publication number
- CS197697B1 CS197697B1 CS777658A CS765877A CS197697B1 CS 197697 B1 CS197697 B1 CS 197697B1 CS 777658 A CS777658 A CS 777658A CS 765877 A CS765877 A CS 765877A CS 197697 B1 CS197697 B1 CS 197697B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- layer
- stressed components
- protective coat
- weight percent
- heat stressed
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B37/00—Component parts or details of steam boilers
- F22B37/02—Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
- F22B37/04—Component parts or details of steam boilers applicable to more than one kind or type of steam boiler and characterised by material, e.g. use of special steel alloy
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/321—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/341—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
- C23C28/3455—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/10—Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
- C23C4/11—Oxides
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Coating By Spraying Or Casting (AREA)
- Laminated Bodies (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
Vynález řeší ochranné povlaky pro použití při ochraně tepelně namáhaných součástí, zejména spalovacích komor parních kotlů plazmovým nebo žárovým nástřikem.The invention solves protective coatings for use in the protection of thermally stressed components, in particular combustion chambers of steam boilers by plasma or heat spraying.
Pro zajištění ochrany stěn spalovacích komor parních kotlů proti korozi jsou na kotlové trubky navařovány trny z nerezavějící oceli, na kterých je keramický omaz. Uvedený způsob ochrany je velice pracný a předpokládá obnovu keramického omazu v pravidelných cyklech.In order to protect the walls of the combustion chambers of the steam boilers against corrosion, stainless steel mandrels are welded onto the boiler tubes on which the ceramic coating is applied. Said method of protection is very laborious and assumes the renewal of ceramic smearing in regular cycles.
Jedním ze známých způsobů ochrany ocelových součástí je podle čs. patentu č. 130001 žárový nástřik vrstvy niklu v tloušťce 50 až 200 μπι, na kterou se musí : nej později do 5 minut nanést žárovým stříkáním vrstva hliníku ve stejné nebo větší tloušťce, než je tloušťka niklové vrstvy. Tento ochranný povlak je použitelný do teploty 1200 °C na vzduchu a v atmosféře obsahující sloučeniny síry.One of the known methods of protection of steel parts is according to MS. No. 130001, a thermal spray of a nickel layer of 50 to 200 μπι, to which an aluminum layer of at least the same thickness as the nickel layer must be applied by hot spraying at the latest within 5 minutes. This protective coating is applicable up to 1200 ° C in air and in an atmosphere containing sulfur compounds.
Pro ochranu kotlových trubek je třeba uvažovat s povlaky, které jsou namáhány vyššími teplotami, než je teplota tavení strusky, která stéká po stěnách spalovacích komor. Ochranné povlaky musí plnit především úlohu tepelné clony a tím snížit tepelné namáhání základního materiálu. Při výrobě ochranných povlaků je však třeba použít takovou technologii, která dovolí nástřik základní a krýcí vrstvy s větším časovým odstupem, než u známých způsobů.In order to protect the boiler pipes, it is necessary to consider coatings subjected to higher temperatures than the melting temperature of the slag which flows down the walls of the combustion chambers. Protective coatings must primarily fulfill the function of a thermal screen and thus reduce the thermal stress of the base material. However, in the manufacture of protective coatings, it is necessary to use a technology which allows the spraying of the base and covering layers over a longer period of time than in the known methods.
Nevýhody stávající ochrany stěn spalovacích komor řeší dvouvrstvý ochranný povlak, podle vynálezu, který obsahuje v první vrstvě 70 až 90 hmotnostních procent niklu a 10 až 30 hmotnostních procent chrómu, v podstatě tím, že druhá vrstva obsahuje stopy až 10 hmotnostních procent kysličníku titaničitého a zbytek kysličníku hlinitého.Disadvantages of the existing combustion chamber wall protection are solved by the two-layer protective coating according to the invention, which contains 70 to 90 weight percent nickel and 10 to 30 weight percent chromium in the first layer, essentially in that the second layer contains traces up to 10 weight percent titanium dioxide and of aluminum oxide.
Použitím ochranných plazmových a žárových nástřiků na tepelně namáhaný materiál, zejména spalovacích komor, dojde k vytvoření vyhovující korozní ochrany na povrchu základního materiálu, přičemž účinná korozní ochrana plazmovým nebo žárovým nástřikem má v rozsahu pracovních teplot ve srovnání s keramickým omazem několikanásobně větší životnost. Použitím uvedené ochrany materiálu spalovacích komor parních kotlů dojde k podstatnému snížení pracnosti při výrobě kotlů, úspoře materiálu trnů, úspoře keramického omazu a odstraní se odstavování parních kotlů z důvodů opravy omazu. Odstraněním výpadků kotlů dojde ke zvýšení výkonu energetických bloků. Snížením tepelné setrvačnosti spalovacích komor je možné dosáhnout rychlejšího najíždění kotlů na plny výkon.The use of protective plasma and heat spray coatings on thermally stressed material, in particular combustion chambers, results in satisfactory corrosion protection on the surface of the base material, while effective corrosion protection by plasma or heat spraying has a several times longer service life compared to ceramic coating. The use of said material protection of the combustion chambers of steam boilers will significantly reduce the workmanship in the manufacture of boilers, saving the material of mandrels, saving ceramic lubrication and eliminating the shutdown of steam boilers due to the repair of the lubrication. The elimination of boiler failures will increase the output of the power units. By reducing the thermal inertia of the combustion chambers, it is possible to achieve faster start-up of boilers to full capacity.
Použitím dvouvrstvého ochranného povlaku dojde v důsledku setrvání na pracovní teplotě k tepelně aktivovaným dějům, které mají za následek zvýšení přilnavosti podkladové vrstvy k základnímu materiálu. Výsledky dlouhodobých zkoušek prokázaly odolnost dvouvrstvého povlaku к cyklickému tepelnému namáhání, zachování celistvosti a požadovanou žáruvzdornost v atmosféře obsahující sloučeniny síry za teplot převyšujících na povrchu ochranného povlaku 1500 °C.The use of a two-layer protective coating results in thermally activated processes resulting in an increase in the adhesion of the base layer to the base material as a result of staying at the working temperature. The results of long-term tests have shown the resistance of the two-layer coating to cyclic thermal stress, integrity and the required heat resistance in an atmosphere containing sulfur compounds at temperatures in excess of 1500 ° C on the surface of the protective coating.
Vynález je blíže objasněn na uvedených příkladech provedení.The invention is illustrated by the following examples.
Příklad 1Example 1
Příkladem použití ochrany tepelně namáhaných materiálů spalovacích komor parních kotlů je plazmový nástřik trubek povrchově zdrsněných tryskáním 0 52 mm tloušťky stěny 4 mm parního kotle. Podkladová vrstva v tloušťce 0,17 mm je tvořena nástřikem, který obsahuje . ..........An example of the use of the protection of thermally stressed materials of combustion chambers of steam boilers is the plasma spraying of tubes surface-roughened by blasting of 52 mm wall thickness of 4 mm steam boiler. The backing layer at a thickness of 0.17 mm is formed by a spray which it contains. ..........
kromě niklu 20,2 hmotnostních procent chrómu. Krycí vrstva v tloušťce 0,45 až 0,60 mm obsahuje kromě kysličníku hlinitého 13,6 hmotnostních procent kysličníku titanicitého.in addition to nickel, 20.2 weight percent chromium. In addition to aluminum oxide, the covering layer 0.45 to 0.60 mm thick contains 13.6 weight percent titanium dioxide.
Příklad 2Example 2
Obdobným příkladem je plazmový nástřik trubek rovněž parního kotle. Na trubky zdrsněné tryskáním 0 76 mm tloušťky stěny 5 mm byla nastříkána podkladová vrstva v tloušťce 0,09 mm obsahující kromě niklu 15,8 hmotnostních procent chrómu. Krycí vrstva obsahovala kromě kysličníku hlinitého 5,8 hmotnostních procent kysličníku titaničitého a dosahovala tloušťky 0,43 až 0,70 mm.A similar example is the plasma spraying of steam boiler tubes. An underlay of 0.09 mm thickness containing 15.8 percent by weight of chromium in addition to nickel was sprayed onto the pipes blasted with 0 76 mm wall thickness of 5 mm. The cover layer contained, in addition to alumina, 5.8 weight percent of titanium dioxide and reached a thickness of 0.43-0.70 mm.
Claims (1)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS777658A CS197697B1 (en) | 1977-11-22 | 1977-11-22 | Double course protective coat of heat stressed components |
DE19782850210 DE2850210A1 (en) | 1977-11-22 | 1978-11-20 | TWO-LAYER PROTECTIVE COVER FOR HEAT-EXPOSED PARTS THAT IS EXECUTED BY PLASMA OR HEAT SPRAY APPLICATION |
GB7845490A GB2009621B (en) | 1977-11-22 | 1978-11-21 | Protective coating for heat stressed parts |
SE7812002A SE7812002L (en) | 1977-11-22 | 1978-11-21 | PROTECTIVE TWO-LAYER COATING FOR HEAT PACKING PARTS SUPPLIED WITH PLASMA-MADE RADIATION OR A HIGH TEMPERATURE RADIATION |
IN1265/CAL/78A IN149867B (en) | 1977-11-22 | 1978-11-22 | |
FR7833008A FR2409322A3 (en) | 1977-11-22 | 1978-11-22 | PROTECTIVE COATING IN TWO LAYERS, FOR PARTS SUBJECT TO HIGH HEAT, EXECUTED BY SPRAYING, BY SPRAYING, PLASMA OR HOT MATERIALS |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS777658A CS197697B1 (en) | 1977-11-22 | 1977-11-22 | Double course protective coat of heat stressed components |
Publications (1)
Publication Number | Publication Date |
---|---|
CS197697B1 true CS197697B1 (en) | 1980-05-30 |
Family
ID=5426133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS777658A CS197697B1 (en) | 1977-11-22 | 1977-11-22 | Double course protective coat of heat stressed components |
Country Status (6)
Country | Link |
---|---|
CS (1) | CS197697B1 (en) |
DE (1) | DE2850210A1 (en) |
FR (1) | FR2409322A3 (en) |
GB (1) | GB2009621B (en) |
IN (1) | IN149867B (en) |
SE (1) | SE7812002L (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3242543C2 (en) * | 1982-11-18 | 1985-09-19 | Glyco-Metall-Werke Daelen & Loos Gmbh, 6200 Wiesbaden | Layer material with a functional layer made of a metallic suspension alloy applied to a metallic carrier layer and a method for its production |
DE3724995A1 (en) * | 1987-02-26 | 1988-09-08 | Radex Heraklith | Process for manufacturing a composite body and the composite body itself |
DE3910725C1 (en) * | 1989-04-03 | 1990-10-31 | Hydraudyne Cylinders B., Boxtel, Nl | |
DE19721080C1 (en) * | 1997-05-20 | 1998-10-01 | Siemens Ag | Corrosion protective coating especially of nuclear plant component |
DE19748260A1 (en) * | 1997-10-31 | 1999-08-12 | Bosch Gmbh Robert | Combustion chamber, especially for gas water heaters and gas heater burners |
DE102010044859A1 (en) * | 2010-09-09 | 2012-03-15 | Siemens Aktiengesellschaft | Apparatus for operating a circulation system, method for coating and using generator and / or turbine blades and / or condenser tube plates of a power plant condenser |
-
1977
- 1977-11-22 CS CS777658A patent/CS197697B1/en unknown
-
1978
- 1978-11-20 DE DE19782850210 patent/DE2850210A1/en not_active Withdrawn
- 1978-11-21 GB GB7845490A patent/GB2009621B/en not_active Expired
- 1978-11-21 SE SE7812002A patent/SE7812002L/en unknown
- 1978-11-22 FR FR7833008A patent/FR2409322A3/en active Granted
- 1978-11-22 IN IN1265/CAL/78A patent/IN149867B/en unknown
Also Published As
Publication number | Publication date |
---|---|
SE7812002L (en) | 1979-05-23 |
FR2409322A3 (en) | 1979-06-15 |
DE2850210A1 (en) | 1979-05-23 |
GB2009621A (en) | 1979-06-20 |
FR2409322B3 (en) | 1980-12-05 |
GB2009621B (en) | 1982-04-07 |
IN149867B (en) | 1982-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5169674A (en) | Method of applying a thermal barrier coating system to a substrate | |
US4255495A (en) | Corrosion resistant thermal barrier coating | |
CS197697B1 (en) | Double course protective coat of heat stressed components | |
US20080149897A1 (en) | Protective Layer Against Hot Gas Corrosion in the Combustion Chamber of an Internal Combustion Engine | |
CA1076153A (en) | Acid-resistant cement | |
KR950008431A (en) | Self-repairing covering material and manufacturing method thereof | |
US20070238058A1 (en) | Longevity and performance improvements to flare tips | |
CS197698B1 (en) | Double course protective coat of heat stressed components | |
JPH07292453A (en) | Heat shielding coating method for preventing high temperature oxidation | |
US3048105A (en) | Aluminum alloy cartridge case | |
CN114088869A (en) | Verification test method for titanium fire prevention of titanium alloy casing structure of aircraft engine | |
JPS5811796A (en) | Heat protective heat resistant alloy structure and coating of surface of heat resistant alloy | |
US5202163A (en) | Surface coating for protecting a component against titanium fire and method for making the surface coating | |
Levine et al. | Thermal barrier coatings: A near term, high payoff technology | |
CN113446592B (en) | Coating with multilayer structure for boiler heating surface | |
US3887201A (en) | Rubbing seal material for ceramic heat exchanger | |
JPS6043910B2 (en) | Surface treatment method | |
RU2701025C1 (en) | Gas turbine gtd-110m flame tube | |
Federer et al. | Evaluation of ceramic coatings on silicon carbide | |
EP2977487B1 (en) | Method for smoothing the surface of a coating | |
CN114774826B (en) | Environment barrier coating for preventing and treating overtemperature of boiler and preparation method thereof | |
US5648158A (en) | Method of protecting metal against corrosion and a vehicle including a structural member protected by the method in high temperature areas | |
US4003695A (en) | Stove of blast furnace | |
US3198653A (en) | Coated columbium article | |
KR102600126B1 (en) | Method for preventing red brick breakaway of coke quenching tower |