JPS5996525A - Thin film magnetic head - Google Patents
Thin film magnetic headInfo
- Publication number
- JPS5996525A JPS5996525A JP20719082A JP20719082A JPS5996525A JP S5996525 A JPS5996525 A JP S5996525A JP 20719082 A JP20719082 A JP 20719082A JP 20719082 A JP20719082 A JP 20719082A JP S5996525 A JPS5996525 A JP S5996525A
- Authority
- JP
- Japan
- Prior art keywords
- film
- magnetic
- layer
- head
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/31—Structure or manufacture of heads, e.g. inductive using thin films
- G11B5/3163—Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
Landscapes
- Magnetic Heads (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
Abstract
Description
【発明の詳細な説明】
く技i!14分野〉
本発明は磁気ディスク装置、磁ニ(テープ装置i;i1
等の磁気記録を行なうことができる薄膜磁良Cヘッドに
関する。[Detailed description of the invention] Kuwaza i! 14 Fields> The present invention relates to magnetic disk devices, magnetic disk devices (tape devices i; i1
The present invention relates to a thin film magnetic C head capable of performing magnetic recording such as the following.
〈従来技術〉 従来の薄膜磁気ヘッドの構造を第1図に示す。<Conventional technology> FIG. 1 shows the structure of a conventional thin film magnetic head.
同図(a)id平面図、同図(b)は同図(a)のA−
A′線での切断側面断面図である。同図に示す様に磁性
基板1上にCu、An等の導体層2.該導体層2 f:
Ksio2,5iD3N4 等の絶縁層3.該絶縁層
3−ドにNi−Fe合金、Fe−AeHsi金合金の磁
性層4が積層されて構成される。上記磁性基板1が下側
コアを形成し上記磁性層4が」−側コアを形成する。同
図に示す様に上側コアと下側コアとはヘッド後部のバッ
クコア部5にて磁気的に結合され、又ヘッド先端部のヘ
ッドギャップ部6にて−に記絶縁層3を介して対向して
いる。以−にの従来構造の薄膜磁気ヘッドにおいてバッ
クコア部5とへ′ンドギャップ°部6における12側コ
ア(磁性基板1)の表面平滑度はヘッドの再生(あるい
は記録)特性上非常に重要な問題である。The same figure (a) is the id plan view, the same figure (b) is the A- of the same figure (a).
FIG. 3 is a side sectional view taken along line A'. As shown in the figure, a conductive layer 2 of Cu, An, etc. is formed on a magnetic substrate 1. The conductor layer 2f:
Insulating layer such as Ksio2,5iD3N43. A magnetic layer 4 made of a Ni-Fe alloy or a Fe-AeHsi gold alloy is laminated on the insulating layer 3. The magnetic substrate 1 forms a lower core, and the magnetic layer 4 forms a negative core. As shown in the figure, the upper core and the lower core are magnetically coupled at a back core section 5 at the rear of the head, and are opposed to each other at a head gap section 6 at the tip of the head via an insulating layer 3. are doing. In the conventional thin-film magnetic head described above, the surface smoothness of the 12th core (magnetic substrate 1) in the back core part 5 and the head gap part 6 is very important for the reproduction (or recording) characteristics of the head. That's a problem.
以下にこの]・側コア(磁1イl: J、U板1)の表
面・1f滑度のへ71・゛特1イ1;にケえる影響につ
いて説明を11なう。Below, we will explain the influence on the surface and 1f smoothness of the side core (magnetic plate 1: J, U plate 1).
第1図の薄膜磁気ヘッドは−1:、に記録用ヘッドとし
て用いられるもので、動作原理は従来のバルクヘッドと
同じ電磁誘導現象である。その記録動作を説明すれば、
!I −1−”である導体層2に通電を行なう事により
上側コア及び下側コアからなる磁気コアに起磁力が発生
するものである。この11μ磁力によって磁気コア内に
磁束が流れ、ヘツトギ1.ツブ部6にて磁束が漏洩しこ
の漏洩磁束が記録磁界となる。以上の記録動作を行なう
ヘノ1−゛におい−Cヘッド効率(中位記録電流当りの
記録磁界)を向上させるには磁気コア内での磁束の漏洩
量を極力減らしてヘンドギャップ部6に有効に磁束を導
くことが必要である。その為にはへソドギャップ部6伺
近での下側コア磁性体表面を可能な限り平滑化する事が
必要である。もしヘッドギャップ部6イ(1近での下側
コア磁性体表面が粗な状態であ−9たりその表面に加工
変質層が存在している場合は、その部分で磁束の漏洩量
゛が憎加する為に磁束が有効にヘンドギャップ部6に到
達しなかったりあるいはヘッドの実効ギャップ長が増大
してヘン1−゛効率が低下したりする。又以−にの間刈
とは別のヘット゛効率を白子させる重要な要素は磁気コ
アの磁気抵抗(レフクタンス)を極力小さくし、磁気コ
アを流れる磁束のエネルギー損失を極力小さくする月1
である。磁気コアの各部分の内形もレラクタンスを生じ
易いのはバックコア?31! 5である。この部分では
下側コア(硫柱衷板1)と−1〕側コア(磁1ト1゜層
4)とが単に接触によって磁気的に結合されているから
、+側コアの表面がこの部分で組な状態になっている場
合やその表面に加工変質層のイする場合などでは著しく
レヲクタンヌが増大化しその結果ヘッド効率が低下する
のである。The thin film magnetic head shown in FIG. 1 is used as a recording head for -1:, and its operating principle is the same electromagnetic induction phenomenon as that of the conventional bulk head. To explain the recording operation,
! A magnetomotive force is generated in the magnetic core consisting of the upper core and the lower core by energizing the conductor layer 2, which is 1-1-''. Magnetic flux flows in the magnetic core due to this 11μ magnetic force, and the headgear 1 .Magnetic flux leaks at the knob portion 6, and this leaked magnetic flux becomes a recording magnetic field.In order to improve the head efficiency (recording magnetic field per medium recording current) for performing the above recording operation, magnetic It is necessary to reduce the amount of magnetic flux leakage within the core as much as possible to effectively guide the magnetic flux to the hend gap portion 6. To do this, it is necessary to minimize the surface of the lower core magnetic material near the hend gap portion 6. It is necessary to smooth it. If the surface of the lower core magnetic material near the head gap part 6-9 is rough or there is a process-affected layer on the surface, smooth it. Since the amount of leakage of magnetic flux increases in the hend gap portion 6, the magnetic flux may not effectively reach the hend gap portion 6, or the effective gap length of the head increases, resulting in a decrease in hend efficiency. In addition to thinning, the important factor for improving head efficiency is to minimize the magnetic resistance (reflectance) of the magnetic core and to minimize the energy loss of the magnetic flux flowing through the magnetic core.
It is. Is the back core likely to cause reluctance due to the internal shape of each part of the magnetic core? 31! It is 5. In this part, the lower core (sulfur column plate 1) and -1] side core (magnetic layer 4) are magnetically coupled simply by contact, so the surface of the + side core is in this part. If the head is in a rough state or if there is a damaged layer on the surface, the vacancy increases significantly and the head efficiency decreases as a result.
第2図にバックコア部5、ヘット−ギヤノブ部6の磁性
基板1に凹凸や加工変質層が生じだ薄膜磁気ヘッドの側
面断面図を示1゛。FIG. 2 is a side cross-sectional view of a thin film magnetic head in which irregularities and a damaged layer are formed on the magnetic substrate 1 of the back core portion 5 and the head gear knob portion 6.
さて、従来薄膜磁気ヘッドのリードの微細加−1゜法と
してスパッタエツチング法がイ1効な千法の1つである
と言われている。IR,士にスバ・ンタエノチング法に
てリードパターンを形成する形成上程について説明する
。ソー1パの月産1としてい」を用いリードのパターン
を形成するマヌク拐彊とし、て1゛iを用いるものとす
る。第3図は従来のメガツタエツチング法にてリードパ
ターンを形成する形成工程の工程説明図である。Now, it is said that the sputter etching method is one of the most effective methods for finely machining the leads of thin-film magnetic heads. The formation process of forming a lead pattern using the IR and sub-interetching method will be described. Assuming that the monthly production of 1 saw is 1, it is assumed that the reed pattern is formed using 1 inch. FIG. 3 is a process explanatory diagram of a forming process for forming a lead pattern using the conventional mega-vine etching method.
磁性基板1」二にリードの材料のCu及びマスクのイA
*lの1゛I を順次真空蒸着法、スパック法等でh;
、Hし、Cu 11便7及びTi膜8とする。Magnetic substrate 1" Second, lead material Cu and mask A.
*1゛I of 1 h is sequentially applied by vacuum evaporation method, spack method, etc.;
, H, Cu 11 stool 7 and Ti film 8.
第3図(b)の工程
T i 膜8−Lに所定パターン形状のフ副トレジス1
−膜をマスクしドライエツチング等でTi 膜8を所定
パターン形状にエツチングする。In the step T i of FIG. 3(b), a flat sub-registration 1 having a predetermined pattern shape is formed on the film 8-L.
- Mask the film and etch the Ti film 8 into a predetermined pattern shape by dry etching or the like.
第3図(C)の工4L
T i Il#j 8をマスクとしてCu膜7をスパッ
タエツチングする1、この時Cu1l+i7のスパッタ
エツチングをウェハー面内で完全に均一に終了させる中
は実際−1,困φ(1である事から通常はある程度余分
の時間エツチングを施しくオーバエツチング)、つ、−
バー面内全体のエツチングを終える1、ここで問題とな
るのは磁性基板1の表面か子連のオーバエツチングを1
1なった時間たけスパッタエツチングされる点である。In step 4 of FIG. 3(C), the Cu film 7 is sputter-etched using T i Il #j 8 as a mask. At this time, the sputter etching of Cu1l+i7 is completed completely uniformly within the wafer surface, while the process is actually -1, (Since it is 1, it is usually etched for a certain amount of extra time and over-etched), -
Finish etching the entire bar surface 1. The problem here is to avoid over-etching the surface of the magnetic substrate 1 or the sub-layers.
This is the point that is sputter-etched for a time equal to 1.
例えば磁性基板1の基板相和として多結晶フェライトを
用いた場合、約20分間程度のオーバエツチングで結晶
れr界の形状がはっきりと表面に現われてくるのである
。For example, when polycrystalline ferrite is used as the substrate material of the magnetic substrate 1, the shape of the crystalline r-field clearly appears on the surface after about 20 minutes of overetching.
これは多結晶フェライトを用いた磁性基板1では結晶軸
の異なる結晶粘が存在する月1から自ずとスパンクリン
グ・イールド゛が結晶粘?IJに異なり、その結晶粘合
のエツチングの速度差が原因となって精算では段差が生
じ、その為(a i生シ、(板1の表面が粗雑になるの
である。よって1)II述し/こ如きヘッド効率の劣化
を避けることかできなか−、た。Does this mean that in the magnetic substrate 1 using polycrystalline ferrite, the spankling yield naturally changes due to the presence of crystal viscosity with different crystal axes? Unlike IJ, the difference in etching speed of the crystal viscosity causes a difference in level during settlement, and as a result, the surface of plate 1 becomes rough. Therefore, 1) II. /There is no way to avoid this kind of deterioration in head efficiency.
〈目 的〉
本発明は以−にの従来技術の欠点を解消するためになさ
れたもので、オーバエツチングによる磁性ノ&板の表面
損傷の問題を解決することをト1的とするものである。<Purpose> The present invention has been made in order to eliminate the drawbacks of the prior art described below, and its primary purpose is to solve the problem of surface damage to magnetic plates due to overetching. .
〈実施例〉
以−V本発明に係る薄膜磁気ヘノ1−の一実施例につい
て図面を用いて詳細に説明する1、第4図によって本発
明に係る’A’7膜磁気ヘッドの一実施例のリードのg
I細加上の■゛稈についてSrs、明する。第4図はス
パッタエツチング法にてリードパターンを形成する形成
工程の工程説明図である。<Embodiment> Hereinafter, an embodiment of the thin film magnetic head 1 according to the present invention will be described in detail with reference to the drawings.1 and 4 show an embodiment of the 'A'7 film magnetic head according to the present invention. g of the lead of
Srs will explain the details of ■ culm. FIG. 4 is a process explanatory diagram of a forming process for forming a lead pattern by sputter etching.
肖り一ドの材刺としてCuを用いリードのパターンを形
成するマスク4J I+としてTiを用いるものとする
、。It is assumed that Cu is used as the material of the lead material, and Ti is used as the mask 4J I+ for forming the lead pattern.
第4図(a)の−[程
)、ライトからなる磁性基板1上に保護層となる11月
匁9を1000〜1500A不呈度蒸γf(スパックで
もよい)し、更にリードとなるCu膜7を2μ程度蒸着
し、更にマスクとなる′I″i膜8を1、000〜1.
500 A稈度蒸着(スパックでもよい)する。In Fig. 4(a), on the magnetic substrate 1 consisting of a light film, a protective layer of November 9 is evaporated at a temperature of 1000 to 1500A (spackling may also be used), and a Cu film is further formed as a lead. 7 is evaporated to about 2 μm, and a 'I''i film 8 to serve as a mask is deposited to a thickness of 1,000 to 1.5 μm.
500 A culm vapor deposition (spack may be used).
第4図(1〕)の二「程
A Z ]、 500 等のフぢトレシヌ1−パターン
をウェハー−」−に形成し、Ti1l’jj8を1・′
ライエノチンク法で加工する。In Fig. 4 (1), a photoresin pattern 1 such as 500 is formed on a wafer, and Ti1l'jj8 is 1.'
Processed using the Laienotink method.
第4図(c)の工程
T + 11% 8 ヲマスクとして(−ull笥7を
ヌパックエッチングする。この時Cu膜7を完全にエッ
チオフする為にオーバエツチングを行なうがT i の
スパッタエッチンクa 度1d、 Cuのスバッタエy
−f−ング速度のgo程度であるので20分稈度のオー
バエツチングを行なってもTi膜9が除去される事はな
く、磁性基板1の表面ばT i膜9によって保護される
ので磁性基板Jの表面は全く甲・滑である。In step T + 11% 8 of FIG. 4(c), Nupac etching is performed on the (-ull board 7) as a mask. At this time, over-etching is performed to completely etch off the Cu film 7, but sputter etching of Ti a degree 1d, Cu scattering y
-f- The Ti film 9 will not be removed even if the culm over-etching is performed for 20 minutes because the etching speed is about 0. Since the surface of the magnetic substrate 1 is protected by the Ti film 9, the magnetic substrate The surface of J is completely smooth.
」二記T1膜9はCu膜7と磁性基板1との間の伺着強
度を高める密着層としても働くのでCu膜7の線幅が細
くとも磁171つ、1板Jとの間の密着力が良好であり
、リードの密度を上げる沖ができるものである。2.The T1 film 9 also works as an adhesion layer that increases the adhesion strength between the Cu film 7 and the magnetic substrate 1, so even if the line width of the Cu film 7 is narrow, the adhesion between the magnetic film 171 and the magnetic substrate 1 is maintained. The force is good and the ability to increase the density of the lead is what can be done.
以−に、磁性基板1上にリードを形成する丑での工程に
ついての説明を行なったが、第4図(c)に示される構
造に旬は加える他の構イ2(絶縁層3、磁性層4)は従
来の薄膜磁気ヘラ1−゛と同様の構造であっても構わな
い。Although the process of forming leads on the magnetic substrate 1 has been described above, other structures 2 (insulating layer 3, magnetic Layer 4) may have the same structure as the conventional thin film magnetic spatula 1-'.
〈効 果〉
本発明によればリードパターン形成時のオーバエツチン
グによる磁11つ基板の表面損傷を防<−11のできる
構造となっているのでヘッド効率の良い薄膜磁気ヘッド
を得ることができる。<Effects> According to the present invention, a thin film magnetic head with high head efficiency can be obtained because the structure is such that damage to the surface of the magnetic substrate due to overetching during lead pattern formation can be prevented to <-11.
第1図は従来の薄膜磁気ヘッド′の構造を示すもので同
[3(a)は平面図、同図(1〕)は同図(a)のAA
/ 線での切断側面断面図、第2[り1は従来の薄膜磁
気ヘラ1−の側面断面図、第3図は従来のヌパソクエツ
チンク法にてリードバゲーンヲ1し成する形成工程の丁
程腎1明図、第4図は本発明に1糸る薄膜磁気・\ラド
のスバツタエッチンク’/LVCてリー 1゛パターン
を形成する形成下稈説明図である。
図中、J:磁性基板 2:導体Fi
3:絶縁層 4:磁性層
5:バック丁y)4+S 6 mヘラ1゛ギ曳・ツブ
部7:CIJ膜 8.9:i“1膜Figure 1 shows the structure of a conventional thin-film magnetic head.
2 is a side sectional view of a conventional thin-film magnetic spatula 1-, and FIG. 3 is a diagram showing a step in the process of forming a reed baggage 1 using the conventional Nupasoquetting method. 1 and 4 are explanatory diagrams of the formed lower culm forming a thin film magnetic/RAD's Svatuta etching'/LVC pattern according to the present invention. In the figure, J: Magnetic substrate 2: Conductor Fi 3: Insulating layer 4: Magnetic layer 5: Back cover y) 4+S 6 m spatula 1゛gage/tube portion 7: CIJ film 8.9: i"1 film
Claims (1)
タン)層と、該Ti(チタン)層上にCu(銅)等の導
イ4(層と、該導体層−1−にヌパッタエソチングのエ
ツチングマスクとして機能するTi(チタン)層とを夫
々層設した構成を具備したことを特徴とする薄膜磁気ヘ
ッド。1. A layer 1 (titanium) which functions as a protective layer on the magnetic board, a layer 4 (layer 4) of Cu (copper) etc. on the Ti (titanium) layer, and a layer 4 (layer 4) of conductor such as Cu (copper) on the Ti (titanium) layer. 1. A thin film magnetic head characterized by having a structure in which a Ti (titanium) layer is provided, each layer functioning as an etching mask for Nupatta etching.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20719082A JPS5996525A (en) | 1982-11-25 | 1982-11-25 | Thin film magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20719082A JPS5996525A (en) | 1982-11-25 | 1982-11-25 | Thin film magnetic head |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5996525A true JPS5996525A (en) | 1984-06-04 |
Family
ID=16535735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20719082A Pending JPS5996525A (en) | 1982-11-25 | 1982-11-25 | Thin film magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5996525A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100606245B1 (en) * | 2004-03-23 | 2006-07-28 | 학교법인 국민학원 | Method for Forming Wiring Using Dry Etching in TFT-LCD Using Ti Glue Layer |
US7372002B2 (en) | 2003-08-05 | 2008-05-13 | Matsushita Electric Industrial Co., Ltd. | Fluid heating device and cleaning device using the same |
-
1982
- 1982-11-25 JP JP20719082A patent/JPS5996525A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7372002B2 (en) | 2003-08-05 | 2008-05-13 | Matsushita Electric Industrial Co., Ltd. | Fluid heating device and cleaning device using the same |
KR100606245B1 (en) * | 2004-03-23 | 2006-07-28 | 학교법인 국민학원 | Method for Forming Wiring Using Dry Etching in TFT-LCD Using Ti Glue Layer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09135046A (en) | Thin film magnetic head containing via hole formed in alumina layer and its manufacture | |
JP2000285409A (en) | Fabricating method of magnetic head and magnetic head | |
JPS6142714A (en) | Manufacture of multilayer conductor film structure | |
JPS5996525A (en) | Thin film magnetic head | |
JP2613876B2 (en) | Method for manufacturing thin-film magnetic head | |
JP2639156B2 (en) | Method for manufacturing thin-film magnetic head | |
JPH0618056B2 (en) | Method of manufacturing thin film magnetic head | |
JP2535819B2 (en) | Method of manufacturing thin film magnetic head | |
JPH0520637A (en) | Thin-film magnetic head | |
JP2630380B2 (en) | Method for manufacturing thin-film magnetic head | |
JPH04281205A (en) | Etching method | |
JP2703760B2 (en) | Method of forming conductor pattern | |
JPH11339222A (en) | Production of thin-film magnetic head | |
JPH0370848B2 (en) | ||
JPH06203326A (en) | Thin-film magnetic head and its produciton | |
JPH02247808A (en) | Thin film magnetic head and its production | |
JPH11273026A (en) | Composite type thin film magnetic head and its manufacture | |
JPS6066312A (en) | Production of thin film magnetic head | |
JPH1186220A (en) | Manufacture for thin film magnetic head | |
JPS63119010A (en) | Floating thin film magnetic head and its manufacture | |
JPS60107713A (en) | Production of multi-element thin film magnetic head | |
JPH0320807B2 (en) | ||
JPH02210608A (en) | Production of magnetic head | |
JP2001291213A (en) | Thin film magnetic head and method of manufacture thereof | |
JPS594767B2 (en) | Manufacturing method of thin film magnetic head |