JPS5996123A - Production of high-molecular weight polylactide - Google Patents

Production of high-molecular weight polylactide

Info

Publication number
JPS5996123A
JPS5996123A JP20544682A JP20544682A JPS5996123A JP S5996123 A JPS5996123 A JP S5996123A JP 20544682 A JP20544682 A JP 20544682A JP 20544682 A JP20544682 A JP 20544682A JP S5996123 A JPS5996123 A JP S5996123A
Authority
JP
Japan
Prior art keywords
polylactide
molecular weight
lactic acid
pressure
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20544682A
Other languages
Japanese (ja)
Other versions
JPH0252930B2 (en
Inventor
Yoshito Ikada
義人 筏
Jiyoukiyuu Gen
丞烋 玄
Masaru Kubo
久保 賢
Yukio Doi
幸夫 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Highpolymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Highpolymer Co Ltd filed Critical Showa Highpolymer Co Ltd
Priority to JP20544682A priority Critical patent/JPS5996123A/en
Publication of JPS5996123A publication Critical patent/JPS5996123A/en
Publication of JPH0252930B2 publication Critical patent/JPH0252930B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To produce a high-MW (MW>=4,000) polylactide without employing any catalyst, by directly condensing lactic acid by dehydration under a specified condition. CONSTITUTION:Lactic acid (any of L-, D- and racemate) is condensed by dehydration in the absence of any catalyst in an inert gas atmosphere. Lactic acid is placed in a reaction vessel and heated slowly to effect the condensation under a stream of an inert gas (e.g., N2). Then, the reaction temperature is raised slowly and the pressure is lowered slowly and the reaction is brought to completion under a final condition including a temperature of 220-260 deg.C and a pressure of below 10mm.Hg to obtain a polylactide of a MW>=4,000. This polylactide is useful for use in medical materials.

Description

【発明の詳細な説明】 本発明は、医療用材料等として有用な高分子量ポリラク
タイドの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high molecular weight polylactide useful as a medical material and the like.

乳酸は自然界に広く分布し、動植物および人畜に対して
無害であり、その重合体(ポリラクタイド)は水の存在
下で比較的容易に加水分解全党け、また生体内でも加水
分解され吸収されるところから医療用の合成高分子材料
として注目されている。
Lactic acid is widely distributed in nature and is harmless to animals, plants, and humans. Its polymer (polylactide) is relatively easily hydrolyzed in the presence of water, and is also hydrolyzed and absorbed in living organisms. For this reason, it is attracting attention as a synthetic polymer material for medical use.

乳酸は分子内に水酸基とカルボキシル基を有するために
重縮合が可能であるが、従来までに行なわれた脱水縮合
では分子量が4000未満の低重合度のオリゴマーしか
得られないという欠点を有する( C,H,Haste
n著、”Lactic Ac1d”P−226、Ver
7ag Chemie、 1971 )。従って5分子
量が4000以上の高分子量ポリラクタイドを得るには
、乳酸を単に脱水縮合させるのではなく、乳酸を脱水縮
合して乳酸のオリゴマーとし、こね−を三酸化ア/チモ
ン、三弗化アンチモ/%四塩化スズ等の如き触lの存在
下で解重合して乳酸の環状ジエステル(ラクタイド)と
し、こわにオクチル酸スズ、ジエチル亜鉛、三弗化ホウ
素等の如き触媒を加えて開LJtitj合する方法が広
く一般的に採用されている(例えば特公昭56−146
88)。
Lactic acid has a hydroxyl group and a carboxyl group in its molecule, so it can undergo polycondensation, but the conventional dehydration condensation method has the disadvantage that only oligomers with a molecular weight of less than 4000 and a low degree of polymerization can be obtained (C , H, Haste
Author: “Lactic Ac1d” P-226, Ver.
7ag Chemie, 1971). Therefore, in order to obtain a high molecular weight polylactide with a molecular weight of 4,000 or more, lactic acid is not simply dehydrated and condensed, but lactic acid is dehydrated and condensed to form a lactic acid oligomer, and the dough is prepared using alumina trioxide, thymonium trifluoride, antimony trifluoride, % depolymerization in the presence of a catalyst such as tin tetrachloride to form a cyclic diester of lactic acid (lactide), followed by an open LJtitj reaction by adding a catalyst such as tin octylate, diethylzinc, boron trifluoride, etc. The method is widely and generally adopted (for example,
88).

しかし、この方法は、操作が繁雑である上に生成物は亜
鉛とかスズの如き毒性の懸念される金属を含んでいるこ
とから、医療用材料として適当であるとはいい難い。従
って、ポリラクタイドを簡便容易に、しかも人体に有害
な不純物を含1ない状態で製造する方法が強く要望され
ている。
However, this method is difficult to operate and the product contains metals such as zinc and tin that are of concern for toxicity, so it cannot be said to be suitable as a medical material. Therefore, there is a strong demand for a method for producing polylactide simply and easily, and without containing any impurities harmful to the human body.

本発明者らは、高分子量のポリラクタイドを得るべく、
乳酸の重縮合反応について種々横割した結果、反応条件
を特定すれば、触媒を全く用いずに乳酸を直接脱水縮合
せしめるだけで、分子量が40001u上のポリラクタ
イドが得られることを見出し、本発明に至った。
The present inventors, in order to obtain a high molecular weight polylactide,
As a result of various studies on the polycondensation reaction of lactic acid, it was discovered that if the reaction conditions were specified, a polylactide with a molecular weight of 40,001 u could be obtained by directly dehydrating and condensing lactic acid without using any catalyst, which led to the present invention. Ta.

即ち、本発明は、乳酸を不活性ガス雰囲気中、触媒の不
存在下に加熱し、圧力を降下させて重縮合させ、最終的
に温度220〜260℃、圧力10謳場以下の条件で重
縮合を完結させて分子量が少なくとも4000のポリラ
クタイドを得ることを特徴とする高分子量ポリラクタイ
ドの製造方法に関する。
That is, in the present invention, lactic acid is heated in an inert gas atmosphere in the absence of a catalyst, and the pressure is lowered to cause polycondensation, and finally the polycondensation is carried out at a temperature of 220 to 260°C and a pressure of 10 or less. The present invention relates to a method for producing a high molecular weight polylactide, which comprises completing the condensation to obtain a polylactide having a molecular weight of at least 4,000.

本発明の製造方法によれば、ポリラクタイドは触媒の不
存在下で製造されるため、触媒に由来する不純物を全く
含んでいない点で毒性の心配がなく、医療用拐料として
生体内での使用に好適であるばかりでなく、製法が極め
て単純で、かつ高分子量のポリラクタイドが容易に得ら
力るという点でも甚だ好都合である。こねは従来までに
行なわわた脱水縮合では、高分子量のポリラクタイドを
得ることができないとする前記C,I大HAltenの
知見からすると予期せぬことといわざるを得ない。
According to the production method of the present invention, polylactide is produced in the absence of a catalyst, so there is no concern about toxicity as it does not contain any impurities derived from the catalyst, and it can be used in vivo as a medical detergent. It is extremely advantageous in that it is not only suitable for use, but also that the production method is extremely simple and high molecular weight polylactide can be easily obtained. This is unexpected in light of the knowledge of the above-mentioned C, I large HAlten that high molecular weight polylactide cannot be obtained by dehydration condensation, which has been conventionally carried out.

次に、ポリラクタイドの製造方法について1本発明方法
と従来方法(特公昭56−14688号)とを比較して
みると下記のごとくである。
Next, a comparison of the method of the present invention and the conventional method (Japanese Patent Publication No. 14688/1988) for producing polylactide is as follows.

本発明において使用される乳酸とは、L−乳酸。The lactic acid used in the present invention is L-lactic acid.

D−乳酸、ラセミ体であるり、L−乳酸である。D-lactic acid, racemic form, and L-lactic acid.

乳酸の重縮合反応は、乳酸を窒素やアルゴンのごとき不
活性ガス雰囲気中、触媒の不存在に連続的あるいけ段階
的に加熱して昇温させると共に、圧力を連続的あるいは
段階的に降下させて縮合水の留出のもとに重縮合させ、
最終的に温度220〜260℃、圧力10 mm I%
以下の条件下で重縮合反応が10 tran Hgより
高い場合には、生成するポリラクタイドの分子量が40
00未満にとどする。一方、最終の縮合温度が260℃
を越えると、生成するポリラクタイドは暗褐色となるば
かりでなく、熱解重合が優勢となって、その分子量が4
000未満となる。
The polycondensation reaction of lactic acid is carried out by heating lactic acid in an inert gas atmosphere such as nitrogen or argon in the absence of a catalyst, raising the temperature continuously or gradually, and lowering the pressure continuously or stepwise. polycondensation with distillation of condensed water,
Final temperature 220-260℃, pressure 10 mm I%
When the polycondensation reaction is higher than 10 tran Hg under the following conditions, the molecular weight of the polylactide produced is 40 tran Hg.
Keep it below 00. On the other hand, the final condensation temperature is 260℃
If the polylactide exceeds 50%, the polylactide produced not only becomes dark brown, but also thermal depolymerization becomes dominant, and its molecular weight decreases to 4.
It will be less than 000.

本発明の製造方法によねば、分子量が4000以上、特
に分子量が4000〜20000の範囲のポリラクタイ
ドが容易に得られる。この範囲の分子量を有するポリラ
クタイドのガラス転移温度は20〜45℃であり、従っ
てそれらが体内で使用される場合、体温で光分に柔軟と
なり、周囲の生体組織を損傷することがなく、好ましい
と考えられる。
According to the production method of the present invention, polylactide having a molecular weight of 4,000 or more, particularly a molecular weight in the range of 4,000 to 20,000, can be easily obtained. The glass transition temperature of polylactides with molecular weights in this range is 20-45°C, and therefore, when they are used in the body, they become light-flexible at body temperature and do not damage surrounding living tissues, which is preferred. Conceivable.

一般にポリラクタイドの加水分解速度は分子量に大きく
依存し、分子量が高い程加水分解に要する時間が長くな
る。従って、徐放性薬剤としては適当な時間で分解する
という意味からも分子量の余り高ぐない、4000〜2
0000程度の大きさの分子量を有するポリラクタイド
が有効な場合が多い。
Generally, the hydrolysis rate of polylactide largely depends on its molecular weight, and the higher the molecular weight, the longer the time required for hydrolysis. Therefore, as a sustained-release drug, the molecular weight should not be too high, from 4000 to 2.
Polylactides having a molecular weight on the order of 0,000 are often effective.

遅効性農薬用にも同様のことが期待される。手術用縫合
糸とか整形外科用の骨補綴用材料等のように高い機械的
強度が要求される場合には当然高分子量のポリラクタイ
ドが必須であるが、軟骨のような中程度の強度とか適度
な分解速度が要求される場合には本発明程度の分子量の
ポリラクタイドが極めて有効と考えられる。
The same is expected for slow-acting pesticides. Naturally, high-molecular-weight polylactide is essential when high mechanical strength is required, such as surgical sutures and orthopedic bone prosthetic materials, but polylactide with moderate strength, such as cartilage, is essential. When a high decomposition rate is required, a polylactide having a molecular weight similar to that of the present invention is considered to be extremely effective.

マ 以下、実 例によって本発明を更に詳しく説明する。Ma Hereinafter, the present invention will be explained in more detail by way of examples.

実施例1 冷却器、温度計、攪拌器および窒素ガス導入キヤヒラリ
ーヲ備え*500iの3つ目フラスコに、市販のD%L
−乳酸(85〜92重量係水貴重) 500.9を仕込
み、窒素ガスを吹き込みながら180℃で4時間脱水反
応させた後、真空ポンプにて徐々に2゜arm Hy 
tで減圧し、更に2時間脱水反応させた(この状態で反
応を終了させた場合、ゲルパーミェーションクロマトグ
ラフィーによって分子量を測定すると分子量は2000
であった。1だ、DSCによってガラス転移温度を測定
すると22℃であった。)。その後、更に温度を徐々に
上げ、かつ圧力を徐々に下げて最終的に260℃の温度
−2mmI(yの圧力で8時間反応させた。260℃、
2mmHyにしてからの反応時間と得られたポリラクタ
イドの分子量、ガラス転移温度の関係は第1表のごとぐ
であった。
Example 1 A third flask of a 500i equipped with a condenser, a thermometer, a stirrer and a nitrogen gas introduction carrier was charged with commercially available D%L.
- Lactic acid (85 to 92 weight water valuable) 500.9 was charged and dehydrated at 180°C for 4 hours while blowing nitrogen gas, and then gradually heated to 2° arm Hy with a vacuum pump.
The pressure was reduced at t, and the dehydration reaction was further carried out for 2 hours.
Met. 1. The glass transition temperature was measured by DSC and was 22°C. ). After that, the temperature was further gradually raised and the pressure was gradually lowered, and the reaction was finally carried out for 8 hours at a temperature of 260 °C and a pressure of -2 mmI (y. 260 °C,
Table 1 shows the relationship between the reaction time after the reaction time was adjusted to 2 mmHy, the molecular weight of the obtained polylactide, and the glass transition temperature.

第1表 実施例2 出発原料として市販のL−乳酸(90係水溶液)を用い
た以列は実施例1と同様の条件で重縮合反応わさせ、分
子量18000、ガラス転移温度42℃の淡黄色のポリ
ラクタイドを得た。
Table 1 Example 2 Using commercially available L-lactic acid (90% aqueous solution) as a starting material, a polycondensation reaction was carried out under the same conditions as in Example 1, resulting in a pale yellow product with a molecular weight of 18,000 and a glass transition temperature of 42°C. of polylactide was obtained.

比較例1゜ 実施例10重縮合条件において、最終圧力をその1オ一
定の2 wn Hy にして最終温度のみヲ280℃に
高めたところ、折角1分子量を高めたにもかかわらず、
重合体の熱解重合が優勢となり、乳酸の環状ジエステル
であるラクタイドが著しく生成してさた。また、生成物
は暗褐色を呈し、その分子量も4,000未満であった
Comparative Example 1゜Example 10 Under the polycondensation conditions, the final pressure was kept constant at 2 wn Hy and only the final temperature was raised to 280°C. Despite the effort to increase the molecular weight,
Thermal depolymerization of the polymer became predominant, and lactide, a cyclic diester of lactic acid, was produced significantly. The product also had a dark brown color and a molecular weight of less than 4,000.

比較例2゜ 実施例10重縮合条件において、最終温度のみを一定の
260℃にし、最終圧力を20 mm H,!9にして
反応を進めたところ、反応時間を長くしても分子量は4
,000以上にはならない上に反応時間が8〜10 時
間と長くなると生成物が暗褐色に変化してきた。
Comparative Example 2゜Example 10 Under the polycondensation conditions, only the final temperature was kept constant at 260°C, and the final pressure was 20 mm H,! When the reaction was carried out at a temperature of 9, the molecular weight remained at 4 even if the reaction time was increased.
,000 or more, and when the reaction time was increased to 8 to 10 hours, the product turned dark brown.

比較例3゜ 実施例1の反応温度(180℃)と圧力(20mmIi
)は、そのままにして、そこへさらに三酸化アノチモン
触媒を乳酸モノマーに対してIM量パーセント添加して
縮合反応を行なうと、圧力20 tan Hgi反応温
度180℃という比較的低温においてもラフメイドが激
しく生成してきた。
Comparative Example 3 Reaction temperature (180°C) and pressure (20mmIi
) is left as it is, and when a condensation reaction is carried out by adding an IM amount of anotymone trioxide catalyst to the lactic acid monomer, rough maid is generated violently even at a relatively low pressure of 20 tan Hgi and a reaction temperature of 180°C. I've been doing it.

特許出願人 昭和高分子株式会社 代理人弁理士菊地精−Patent applicant: Showa Kobunshi Co., Ltd. Representative Patent Attorney Sei Kikuchi

Claims (1)

【特許請求の範囲】[Claims] 乳酸を不活性ガス雰囲気中、触媒の不存在下に加熱し、
圧力を降下させて重縮合させ、最終的に温度220〜2
60℃、圧力10 mx Hy以下の条件下で重縮合反
応を完結させて分子量が少なくとも4000のポリラク
タイドを得ることを特徴とする高分子量ポリラクタイド
の製造方法。
heating lactic acid in an inert gas atmosphere in the absence of a catalyst;
Polycondensation is carried out by lowering the pressure, and finally the temperature is 220~2
A method for producing a high molecular weight polylactide, which comprises completing the polycondensation reaction under conditions of 60° C. and a pressure of 10 mx Hy or less to obtain a polylactide having a molecular weight of at least 4000.
JP20544682A 1982-11-25 1982-11-25 Production of high-molecular weight polylactide Granted JPS5996123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20544682A JPS5996123A (en) 1982-11-25 1982-11-25 Production of high-molecular weight polylactide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20544682A JPS5996123A (en) 1982-11-25 1982-11-25 Production of high-molecular weight polylactide

Publications (2)

Publication Number Publication Date
JPS5996123A true JPS5996123A (en) 1984-06-02
JPH0252930B2 JPH0252930B2 (en) 1990-11-15

Family

ID=16507009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20544682A Granted JPS5996123A (en) 1982-11-25 1982-11-25 Production of high-molecular weight polylactide

Country Status (1)

Country Link
JP (1) JPS5996123A (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0368571A2 (en) * 1988-11-07 1990-05-16 MITSUI TOATSU CHEMICALS, Inc. Preparation process for bioabsorbable polyester
WO1993012160A1 (en) * 1991-12-19 1993-06-24 Mitsui Toatsu Chemicals, Inc. Polyhydroxy carboxylic acid and production thereof
JPH0649185A (en) * 1984-07-06 1994-02-22 Wako Pure Chem Ind Ltd New polymer
EP0694874A2 (en) 1994-07-25 1996-01-31 Toppan Printing Co., Ltd. Biodegradable cards
US5646238A (en) * 1994-07-27 1997-07-08 Mitsui Toatsu Chemicals, Inc. Preparation process of polyhydroxycarboxylic acid
JPH09221542A (en) * 1995-10-31 1997-08-26 Nippon Shokubai Co Ltd Production of aliphatic polyester
WO1999019378A1 (en) * 1997-10-13 1999-04-22 Kureha Kagaku Kogyo K.K. Processes for producing polyhydroxy carboxylic acid and glycolide
WO2009008262A1 (en) 2007-07-12 2009-01-15 Fujifilm Corporation Injection molded article of fiber-reinforced polylactic acid resin
US7589151B2 (en) 2004-03-05 2009-09-15 Mitsubishi Rayon Co., Ltd. Thermoplastic resin composition and molded article comprising the same
WO2010104196A1 (en) 2009-03-13 2010-09-16 三井化学株式会社 Piezoelectric polymer material, process for producing same, and piezoelectric element
EP2270603A1 (en) 2009-06-30 2011-01-05 Ricoh Company, Ltd. Electrostatic image developing toner, developer and image forming apparatus
WO2012026494A1 (en) 2010-08-25 2012-03-01 三井化学株式会社 Macromolecular piezoelectric material and manufacturing method therefor
WO2012110117A1 (en) 2011-02-18 2012-08-23 Sulzer Chemtech Ag Method for the manufacture of a polyhydroxy-carboxylic acid
US8383307B2 (en) 2008-10-23 2013-02-26 Ricoh Company, Limited Toner, developer, and image forming method and apparatus using the toner
WO2013054918A1 (en) 2011-10-13 2013-04-18 三井化学株式会社 Polymer piezoelectric material, and manufacturing method thereof
WO2013089148A1 (en) 2011-12-13 2013-06-20 三井化学株式会社 Polymeric piezoelectric material and method for manufacturing same
CN103300120A (en) * 2013-06-25 2013-09-18 南京工业大学 Environment-friendly hair removal agent for poultry and livestock and preparation method of hair removal agent
US8623580B2 (en) 2009-08-03 2014-01-07 Ricoh Company, Ltd. Toner, developer, image forming method and image forming apparatus
US8685604B2 (en) 2011-09-13 2014-04-01 Ricoh Company, Ltd. Toner, developer, and image forming apparatus
US8735040B2 (en) 2011-12-28 2014-05-27 Ricoh Company, Ltd. Toner, developer, and image forming apparatus
US8741520B2 (en) 2008-07-01 2014-06-03 Ricoh Company, Ltd. Image forming toner, image forming apparatus, image forming method, and process cartridge
US8765878B2 (en) 2012-10-18 2014-07-01 Fuji Xerox Co., Ltd. Resin composition and resin molded product
WO2014119577A1 (en) 2013-02-01 2014-08-07 三井化学株式会社 Display device and multilayered optical film
WO2014168188A1 (en) 2013-04-10 2014-10-16 三井化学株式会社 Laminate
WO2014171011A1 (en) 2013-04-19 2014-10-23 株式会社武蔵野化学研究所 Method for purifying aliphatic polyester and aliphatic polyester purified with said method
WO2014185530A1 (en) 2013-05-16 2014-11-20 三井化学株式会社 Pressing-detection device and touch panel
WO2015001956A1 (en) 2013-07-04 2015-01-08 三井化学株式会社 Film and polymeric piezoelectric material
US8932790B2 (en) 2012-02-03 2015-01-13 Ricoh Company, Ltd. Toner, developer including the toner, image forming apparatus using the toner, and block copolymer
WO2015008841A1 (en) 2013-07-19 2015-01-22 三井化学株式会社 Crystalline polymer film and method for manufacturing same
WO2015030174A1 (en) 2013-09-02 2015-03-05 三井化学株式会社 Laminate body
WO2015053089A1 (en) 2013-10-07 2015-04-16 三井化学株式会社 Pressing-force detection device, and pressing-force-detecting touch panel
US9012116B2 (en) 2012-03-16 2015-04-21 Ricoh Company, Ltd. Toner and developer
WO2015079899A1 (en) 2013-11-26 2015-06-04 三井化学株式会社 Macromolecular piezoelectric material and manufacturing method therefor
US9141013B2 (en) 2011-09-13 2015-09-22 Ricoh Company, Ltd. Electrophotographic toner, developer containing the toner, and image forming apparatus
US9458317B2 (en) 2014-09-05 2016-10-04 Fuji Xerox Co., Ltd. Resin composition and resin molded article
WO2017213108A1 (en) 2016-06-06 2017-12-14 三井化学株式会社 Piezoelectric base material, piezoelectric woven fabric, piezoelectric knitted fabric, piezoelectric device, force sensor, and actuator
WO2018194180A1 (en) 2017-04-20 2018-10-25 三井化学株式会社 Piezoelectric base material, force sensor, and actuator
WO2019031414A1 (en) 2017-08-09 2019-02-14 三井化学株式会社 Sensor module and pressure distribution sensor provided with same
US10472499B2 (en) 2017-09-26 2019-11-12 Fuji Xerox Co., Ltd. Resin composition and resin molded article thereof
US10584232B2 (en) 2017-09-26 2020-03-10 Fuji Xerox Co., Ltd. Resin composition and resin molded article thereof
WO2020059573A1 (en) 2018-09-19 2020-03-26 三井化学株式会社 Human body detection device, bed device, and human body detection system
WO2022065454A1 (en) 2020-09-25 2022-03-31 三井化学株式会社 Piezoelectric device, force sensor, and biological information acquisition device
WO2022085801A1 (en) 2020-10-23 2022-04-28 三菱ケミカル株式会社 Resin composition and molded article thereof

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649185A (en) * 1984-07-06 1994-02-22 Wako Pure Chem Ind Ltd New polymer
EP0368571A2 (en) * 1988-11-07 1990-05-16 MITSUI TOATSU CHEMICALS, Inc. Preparation process for bioabsorbable polyester
JPH0314829A (en) * 1988-11-07 1991-01-23 Mitsui Toatsu Chem Inc Preparation of bioabsorbable polyester
US5310865A (en) * 1991-12-18 1994-05-10 Mitsui Toatsu Chemicals, Incorporated Polyhydroxycarboxylic acid and preparation process thereof
WO1993012160A1 (en) * 1991-12-19 1993-06-24 Mitsui Toatsu Chemicals, Inc. Polyhydroxy carboxylic acid and production thereof
EP0694874A2 (en) 1994-07-25 1996-01-31 Toppan Printing Co., Ltd. Biodegradable cards
US5646238A (en) * 1994-07-27 1997-07-08 Mitsui Toatsu Chemicals, Inc. Preparation process of polyhydroxycarboxylic acid
JPH09221542A (en) * 1995-10-31 1997-08-26 Nippon Shokubai Co Ltd Production of aliphatic polyester
WO1999019378A1 (en) * 1997-10-13 1999-04-22 Kureha Kagaku Kogyo K.K. Processes for producing polyhydroxy carboxylic acid and glycolide
US7589151B2 (en) 2004-03-05 2009-09-15 Mitsubishi Rayon Co., Ltd. Thermoplastic resin composition and molded article comprising the same
WO2009008262A1 (en) 2007-07-12 2009-01-15 Fujifilm Corporation Injection molded article of fiber-reinforced polylactic acid resin
US8741520B2 (en) 2008-07-01 2014-06-03 Ricoh Company, Ltd. Image forming toner, image forming apparatus, image forming method, and process cartridge
US8383307B2 (en) 2008-10-23 2013-02-26 Ricoh Company, Limited Toner, developer, and image forming method and apparatus using the toner
WO2010104196A1 (en) 2009-03-13 2010-09-16 三井化学株式会社 Piezoelectric polymer material, process for producing same, and piezoelectric element
EP2270603A1 (en) 2009-06-30 2011-01-05 Ricoh Company, Ltd. Electrostatic image developing toner, developer and image forming apparatus
US8691486B2 (en) 2009-06-30 2014-04-08 Ricoh Company, Ltd. Electrostatic image developing toner, developer, image forming apparatus, image forming method, and process cartridge
US8623580B2 (en) 2009-08-03 2014-01-07 Ricoh Company, Ltd. Toner, developer, image forming method and image forming apparatus
WO2012026494A1 (en) 2010-08-25 2012-03-01 三井化学株式会社 Macromolecular piezoelectric material and manufacturing method therefor
WO2012110117A1 (en) 2011-02-18 2012-08-23 Sulzer Chemtech Ag Method for the manufacture of a polyhydroxy-carboxylic acid
US9637587B2 (en) 2011-02-18 2017-05-02 Sulzer Chemtech Ag Method for the manufacture of a polyhydroxy-carboxylic acid
WO2012110118A1 (en) 2011-02-18 2012-08-23 Sulzer Chemtech Ag Method for the manufacture of a polyhydroxy-carboxylic acid
US9141013B2 (en) 2011-09-13 2015-09-22 Ricoh Company, Ltd. Electrophotographic toner, developer containing the toner, and image forming apparatus
US8685604B2 (en) 2011-09-13 2014-04-01 Ricoh Company, Ltd. Toner, developer, and image forming apparatus
WO2013054918A1 (en) 2011-10-13 2013-04-18 三井化学株式会社 Polymer piezoelectric material, and manufacturing method thereof
WO2013089148A1 (en) 2011-12-13 2013-06-20 三井化学株式会社 Polymeric piezoelectric material and method for manufacturing same
US8735040B2 (en) 2011-12-28 2014-05-27 Ricoh Company, Ltd. Toner, developer, and image forming apparatus
US8932790B2 (en) 2012-02-03 2015-01-13 Ricoh Company, Ltd. Toner, developer including the toner, image forming apparatus using the toner, and block copolymer
US9012116B2 (en) 2012-03-16 2015-04-21 Ricoh Company, Ltd. Toner and developer
US8765878B2 (en) 2012-10-18 2014-07-01 Fuji Xerox Co., Ltd. Resin composition and resin molded product
WO2014119577A1 (en) 2013-02-01 2014-08-07 三井化学株式会社 Display device and multilayered optical film
WO2014168188A1 (en) 2013-04-10 2014-10-16 三井化学株式会社 Laminate
WO2014171011A1 (en) 2013-04-19 2014-10-23 株式会社武蔵野化学研究所 Method for purifying aliphatic polyester and aliphatic polyester purified with said method
WO2014185530A1 (en) 2013-05-16 2014-11-20 三井化学株式会社 Pressing-detection device and touch panel
CN103300120A (en) * 2013-06-25 2013-09-18 南京工业大学 Environment-friendly hair removal agent for poultry and livestock and preparation method of hair removal agent
WO2015001956A1 (en) 2013-07-04 2015-01-08 三井化学株式会社 Film and polymeric piezoelectric material
WO2015008841A1 (en) 2013-07-19 2015-01-22 三井化学株式会社 Crystalline polymer film and method for manufacturing same
WO2015030174A1 (en) 2013-09-02 2015-03-05 三井化学株式会社 Laminate body
WO2015053089A1 (en) 2013-10-07 2015-04-16 三井化学株式会社 Pressing-force detection device, and pressing-force-detecting touch panel
WO2015079899A1 (en) 2013-11-26 2015-06-04 三井化学株式会社 Macromolecular piezoelectric material and manufacturing method therefor
US9458317B2 (en) 2014-09-05 2016-10-04 Fuji Xerox Co., Ltd. Resin composition and resin molded article
WO2017213108A1 (en) 2016-06-06 2017-12-14 三井化学株式会社 Piezoelectric base material, piezoelectric woven fabric, piezoelectric knitted fabric, piezoelectric device, force sensor, and actuator
WO2018194180A1 (en) 2017-04-20 2018-10-25 三井化学株式会社 Piezoelectric base material, force sensor, and actuator
WO2019031414A1 (en) 2017-08-09 2019-02-14 三井化学株式会社 Sensor module and pressure distribution sensor provided with same
US10472499B2 (en) 2017-09-26 2019-11-12 Fuji Xerox Co., Ltd. Resin composition and resin molded article thereof
US10584232B2 (en) 2017-09-26 2020-03-10 Fuji Xerox Co., Ltd. Resin composition and resin molded article thereof
WO2020059573A1 (en) 2018-09-19 2020-03-26 三井化学株式会社 Human body detection device, bed device, and human body detection system
WO2022065454A1 (en) 2020-09-25 2022-03-31 三井化学株式会社 Piezoelectric device, force sensor, and biological information acquisition device
WO2022085801A1 (en) 2020-10-23 2022-04-28 三菱ケミカル株式会社 Resin composition and molded article thereof

Also Published As

Publication number Publication date
JPH0252930B2 (en) 1990-11-15

Similar Documents

Publication Publication Date Title
JPS5996123A (en) Production of high-molecular weight polylactide
US5434241A (en) Biodegradable poly(lactic acid)s having improved physical properties and process for their preparation
JPH04283227A (en) Hydrolyzable resin composition
EP0937116B1 (en) Process for the preparation of polyhydroxy acids
JP4702987B2 (en) Absorbable copolylactide and uses thereof
US8242186B2 (en) Lactic acid oligomer and method for producing the same
US5466444A (en) Resorbable, biocompatible copolymers and their use
JP3079716B2 (en) Method for producing polylactide containing urethane bond
KR101386222B1 (en) Preparation method of aliphatic polyester resin
JP3453648B2 (en) Biodegradable and absorbable polymer having low metal content and method for producing the same.
JPH0912688A (en) Polylactic acid resin composition
JPS61236820A (en) Low-molecular weight glycolic acid-lactic acid copolymer
JPWO2019244875A1 (en) Lactic acid-glycolic acid copolymer and its production method
JP3796891B2 (en) POLYLACTIC ACID COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND MOLDED ARTICLE OF THE COMPOSITION
JPH06228287A (en) Polylactic acid having hydroxyl group end blocked with ester and its production
JP2606260B2 (en) Block copolymer
JP3339601B2 (en) Polylactic acid based polyester block copolymer
JP3273821B2 (en) Purification method of polyhydroxycarboxylic acid
JP3752776B2 (en) POLYLACTIC ACID COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND MOLDED ARTICLE OF THE COMPOSITION
JPH06287278A (en) Production of aliphatic polyester
JP3339600B2 (en) Polylactic acid and / or its copolymer
JPH0857949A (en) Biodegradable polymer film and its preparation
JPH0616790A (en) Aliphatic polyester and its production
US5576418A (en) Resorbable biocompatible copolymers and their use
JPS62212423A (en) Production of polymer or copolymer of hydroxypolycarboxylic ester