JPS5995828A - Laver samplng method - Google Patents

Laver samplng method

Info

Publication number
JPS5995828A
JPS5995828A JP20374682A JP20374682A JPS5995828A JP S5995828 A JPS5995828 A JP S5995828A JP 20374682 A JP20374682 A JP 20374682A JP 20374682 A JP20374682 A JP 20374682A JP S5995828 A JPS5995828 A JP S5995828A
Authority
JP
Japan
Prior art keywords
shell
branches
culture
hours
day
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20374682A
Other languages
Japanese (ja)
Other versions
JPH0134010B2 (en
Inventor
新元 久
斉藤 安弘
安村 利雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Seika Kaisha Ltd
Original Assignee
Meiji Seika Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Seika Kaisha Ltd filed Critical Meiji Seika Kaisha Ltd
Priority to JP20374682A priority Critical patent/JPS5995828A/en
Publication of JPS5995828A publication Critical patent/JPS5995828A/en
Publication of JPH0134010B2 publication Critical patent/JPH0134010B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cultivation Of Seaweed (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はのり養殖におけるのり採苗法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for collecting seaweed seedlings in seaweed cultivation.

のり養殖において、貝殻糸状体を培養してのり網に着生
させる殻胞子を得るのり採苗法はのり養殖生産の成否を
決定する重要な作業である。
In seaweed aquaculture, the seaweed seedling method of culturing shell filaments and obtaining shell spores to attach to the seaweed net is an important task that determines the success or failure of seaweed aquaculture production.

従来、のり採苗法としては、カキ、ホタテ貝等の貝殻に
漁場から母藻として採収した原藻より放出される果胞子
を陸上水槽中で人工的に穿孔せしめ、この穿孔した果胞
子を特定条件下で定期的に管理を行いながら殻胞子が放
出する秋冷期まで長期間育成する方法、及び品種特性と
遺伝形質が固定されたフリー糸状体をミキサー等で細断
し、そのフリー糸状体切片を果胞子と同様に貝殻に穿孔
させて貝殻糸状体を培養するフリー糸状体移植による貝
殻糸状体培養法が実施されている。
Conventionally, the glue seedling method involves artificially perforating the shells of oysters, scallops, and other shells with caracospores released from protoalgae collected as mother algae from fishing grounds in a land aquarium. A method of growing for a long period of time until the autumn cool season when the chospores are released while periodically managing them under specific conditions, and a method of growing free filaments with fixed cultivar characteristics and genetic traits by shredding them with a mixer etc. A method of culturing shell filaments using free filament transplantation has been carried out, in which shell filaments are cultured by drilling sections into shells in the same manner as carospores.

しかし、これらの方法は貝殻への移植後に必要な培養期
間が長く、培養するための大型の陸上水槽設備を要し、
照射光線量、照射時間、培養液温度及び比重の調整、更
に貝殻表面に付着繁茂して貝殻糸状体の生育を阻害する
外敵雑藻類を除去するための洗浄、培養液の交換等秋冷
期の殻胞子採苗に至るまでの長期間にわたり培養業者に
かかる経済的負担及び管理労力が大きい欠点がある。
However, these methods require a long culture period after transplantation into the shell, and require large land aquarium facilities for culturing.
Adjustment of irradiation light dose, irradiation time, culture solution temperature and specific gravity, cleaning to remove foreign algae that adhere to the shell surface and inhibit the growth of shell filaments, exchange of culture solution, etc. during the cold autumn season. This method has the drawback that it imposes a large economic burden and management effort on cultivators over a long period of time until spore collection.

本発明者等は従来ののり採苗法に伴う上記の経済上及び
管理上の欠点を解決するために種々の研究を行った結果
、純粋培養して貝殻糸状体に形成せしめた殻胞子嚢を高
温・長日処理して人工培養液中に裸出せしめ、その殻胞
子嚢枝を貝殻糸状体面より分離し、無基質条件下で培養
し殻胞子嚢枝として増殖せしめることにより成熟した殻
胞子を短期間に多量に得ることができることを知見し本
発明の完成に至ったものである。
The present inventors have conducted various studies to solve the above-mentioned economic and management disadvantages associated with the conventional glue seedling method, and as a result, they have developed the method of culturing cholaspores formed in shell filaments through pure culture. The mature chlospores are exposed by exposing them to an artificial culture solution by treating them at high temperature for a long period of time, separating the sporangium branches from the surface of the shell filament, and culturing them under substrate-free conditions to multiply as the sporangium branches. The present invention was completed after discovering that it can be obtained in large quantities in a short period of time.

即ち、本発明は純粋培養した貝殻糸状体を培養して殻胞
子嚢枝を伸出せしめ、次いでその裸出部を分離して細断
し、さらに培養して増殖せしめた後、低温・短日処理し
て殻胞子を放出せしめることを特徴とするのり採苗法で
ある。
That is, in the present invention, a pure cultured shell filament is cultured to make the shell sporangia branches extend, and then the bare part is separated and cut into pieces, and after being further cultured and multiplied, a low temperature and short day This is a method for collecting seedlings using glue, which is characterized by processing to release shell spores.

以下、本発明を詳細に説明する。The present invention will be explained in detail below.

先ず、公知の方法で純粋培養した貝殻糸状体を人工培養
液中で高温・長日処理を行う。具体的には高温度24〜
28℃、貝殻糸状体表面への光線照射量(以下、「照度
」と記す) 1000〜3000luxで1日当り明期
16時間(暗期8時間)の照明条件で、21〜30日間
静置培養させ貝殻中の殻胞子嚢枝を人工培養液中に伸出
させる。
First, shell filaments that have been pure cultured using a known method are treated in an artificial culture solution at high temperature for a long period of time. Specifically, high temperature 24~
Static culture was performed for 21 to 30 days at 28°C, light irradiation amount (hereinafter referred to as "illuminance") to the shell filament surface, 1000 to 3000 lux, and 16 hours of light (8 hours of darkness) per day. The sporangia branches in the shell are extended into the artificial culture medium.

次いで、この人工培養液中に裸出した殻胞子嚢枝を貝殻
糸状体面より純粋分離し、この分離した殻胞子嚢枝をミ
キサ一で細断(12000回転、20秒間)し、さらに
人工培養液中で温度22〜28℃、照度1000〜30
00luxで1日当り明期13〜16時間(暗期11〜
8時間)の照明条件で、1日当り4〜6回培養容器を軽
く振盪しながら無基質条件下で静置培養し殻胞子嚢枝と
して増殖させる。この様にして得られた殻胞子嚢枝は熟
成のための補完培養として公知の低温・短日処理(温度
18〜20℃、照度4000〜5000luxで1日当
り明期10時間/暗期14時間、約4日間通気培養)を
すると直ちに減数分裂に移行し大量の殻胞子を放出して
のり網に着生、発芽する。
Next, the chosporangium branches exposed in this artificial culture solution are separated pure from the surface of the shell filament, and the separated chospore branches are shredded with a mixer (12,000 revolutions, 20 seconds), and further added to the artificial culture solution. Inside temperature 22~28℃, illuminance 1000~30
00lux, light period 13-16 hours per day (dark period 11-16 hours)
8 hours), the culture container is gently shaken 4 to 6 times per day, and the culture is statically cultured in a substrate-free condition to proliferate as cholosporangia branches. The cholaspore branches thus obtained are subjected to a known low-temperature, short-day treatment (temperature 18-20°C, illuminance 4000-5000 lux, 10 hours light/14 hours dark per day) as complementary culture for ripening. After approximately 4 days of aerated culture), the spores immediately enter meiosis, release a large amount of chospores, settle on the glue net, and germinate.

本発明で使用される人工培養液の組成は、市水1000
ml当り塩化ナトリウム24g、塩化カリウム0.7g
、硫酸マグネシウム8g、塩化カルシウム0.37g、
硝酸ナトリウム0.32、リン酸二水素ナトリウム0.
025g、炭酸水素ナトリウム0.336g、ビタミン
B12 0.02mg、フイチン酸0.5mg「クレワ
ット−32」(商品名、帝国化学産業株式会社製、金属
イオン封鎖剤)20mg、「クレワット−N」20mg
からなる溶液をpH7.9〜8.2に調整してなるもの
である。
The composition of the artificial culture solution used in the present invention is city water 1000%
Sodium chloride 24g, potassium chloride 0.7g per ml
, magnesium sulfate 8g, calcium chloride 0.37g,
Sodium nitrate 0.32, sodium dihydrogen phosphate 0.
025g, sodium bicarbonate 0.336g, vitamin B12 0.02mg, phytic acid 0.5mg "Klewat-32" (trade name, manufactured by Teikoku Kagaku Sangyo Co., Ltd., metal ion sequestering agent) 20mg, "Klewat-N" 20mg
The pH of the solution is adjusted to 7.9 to 8.2.

又、本発明に適用されるのりの種類は通常養殖が可能な
ものであれば如何なるものでもよいが、その代表的な例
を示すと、アサクサノリ、ナラワスサビノリ、フタマタ
スザビノリ、スサビノリ、オオバアサクサノリ、マルバ
アサクサノリ等が挙げられる。
Furthermore, the type of seaweed that can be applied to the present invention may be any type as long as it can be normally cultivated, but representative examples thereof include Asakusa nori, Narawasu sabinori, Futamatasu sabinori, Susabi nori, and Obasakusanori. , Malva Asakusanori, etc.

本発明において、純粋培養した貝殻糸状体は公知の方法
で得られたものが用いられるが、特に最良の効果を得る
ために一定期間、特定の条件下で培養したものが好まし
く、その具体例を示すと培養液としては、前述した発明
者らの人工培養液又は公知の組成の人工海水、更には天
然海水、いずれも可能であるが、珪藻や緑藻等外敵雑藻
類を除去した殺菌済の培養液を用いて、果胞子又はフリ
ー糸状体を貝殻に穿孔させた後、温度15〜22℃、照
度1000〜3000lux、明期12〜13時間(暗
期12〜11時間)の照明条件で5〜7カ月間培養した
貝殻糸状体で貝殻中に糸状体が良く繁茂し、低温・短日
処理により殻胞子を放出するまで熟生しているものが通
している。
In the present invention, pure cultured shell filaments obtained by known methods are used, but in order to obtain the best effect, it is preferable to culture them under specific conditions for a certain period of time. As a culture solution, the above-mentioned artificial culture solution of the inventors, artificial seawater with a known composition, or even natural seawater are all possible, but sterilized culture from which foreign algae such as diatoms and green algae have been removed is acceptable. After perforating the shell with caracospores or free filaments using the liquid, the temperature is 15-22°C, the illuminance is 1000-3000 lux, and the light period is 12-13 hours (dark period 12-11 hours) for 5 to 5 hours. Shell filaments cultured for 7 months have well-grown filaments in the shell, and some that have matured to the point of releasing shell spores through low-temperature, short-day treatment are observed.

本発明はこの様に純粋培養して完熟した殻胞子嚢枝が貝
殻中に形成された貝殻糸状体を高温・長日処理して培養
することに1つの特徴があり、高温で培養するので殻胞
子嚢枝の生長は促進されて著しく伸出し、従来の培養法
に比較して10〜20培の生長率を示す。
One feature of the present invention is that the shell filament in which fully ripened shell sporangia branches are formed in the shell through pure culture is cultured by high temperature and long day treatment. The growth of the sporangium branches is promoted and extends significantly, showing a growth rate of 10 to 20 times higher than in conventional culture methods.

分離した殻胞子嚢枝はミキサー等で支障なく機械的に細
断することができ、この様な機械的細断により後の静置
培養に適応する形状、例えば100〜500μに形成さ
れると共に物理的刺激で殻胞子嚢枝の生殖生長が加速さ
れるので、次の無基質条件下での静置培養における生長
、増殖が促進される。
The separated sporangium branches can be mechanically shredded without any trouble using a mixer, etc., and by such mechanical shredding, they are formed into a shape suitable for later static culture, for example, 100 to 500μ, and are physically The reproductive growth of the sporangium branches is accelerated by the stimulation, which promotes growth and proliferation in the next stationary culture under substrate-free conditions.

無基質条件下での静置培養により、該細片状の殻胞子嚢
枝を増殖させるが、培養中1日数回軽く振盪することに
より殼胞子嚢枝は刺激を受け、殻胞子嚢枝を伸長しつつ
細胞内容を充実させ、約1〜1.5カ月で大量の成熟殻
胞子嚢を形成する。
By static culture under no-substrate conditions, the strip-shaped conch sporangium branches are multiplied, but by gently shaking the shell sporangium several times a day during culture, the shell sporangium branches are stimulated and elongate. While growing, the cell contents are enriched and a large number of mature shell sporangia are formed in about 1 to 1.5 months.

この様にして大量に増殖した殻胞子嚢枝は公知の低温・
短日処理することにより減数分裂に移行し、大量の殻胞
子を放出してのり網に着生、発芽する。
The conch sporangia branches that have multiplied in large quantities in this way are known to be
By short-day treatment, it transitions to meiosis, releases a large amount of chospores, settles on the glue net, and germinates.

本発明に係わるのり採苗法は従来の方法と比較して次の
様な利点がある。
The glue seedling collecting method according to the present invention has the following advantages compared to conventional methods.

1)殻胞子嚢を大量に培養することができる。1) It is possible to culture large quantities of chospores.

2)従来の貝殻糸状体の培養で必要とされているコンク
リートブロック又はポリ塩化ビニル製の広範囲な陸上設
備は不要となる。
2) Extensive land equipment made of concrete blocks or polyvinyl chloride, which is required in conventional culture of shell filaments, is not required.

3)貝殻糸状体の表面から付着珪藻類等を除去する洗浄
作業及び換水に必要な多量の海水採取や運搬作業等が不
要となる。
3) There is no need for cleaning work to remove attached diatoms etc. from the surface of shell filaments, and for collecting and transporting a large amount of seawater required for water change.

4)培養業者の種苗管理労力及び経済的負担が大巾に軽
減される。
4) The labor and economic burden of seedling management on cultivators will be greatly reduced.

次に実施例により本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1 公知の方法(培養水温20〜22℃、明期13時間、照
度1500〜2000lux)で約6カ月間純粋培養し
、貝殻中に糸状体が良く繁茂したアサクサ種〔アサクサ
ノリ、学名ポルフィラテネラ(porphyra te
nera) 〕の貝殻糸状体(約20cm2)1枚を、
人工培養液とともに1l容ガラス製培養器に入れフタを
したまま26〜27℃の高温、明期16時間(暗期8時
間)の長日条件下で照度1500〜2000luxで2
1日間培養し、貝殻中の殻胞子嚢枝を人工培養液中に伸
出させる。
Example 1 A pure culture was carried out for about 6 months using a known method (culture water temperature 20-22°C, light period 13 hours, illuminance 1500-2000 lux), and a species of Asakusa [Asakusa nori, scientific name: Porphyra tenella] with well-grown filaments in its shell was cultivated. porphyra te
nera) ] one shell filament (approx. 20 cm2),
Place the artificial culture solution in a 1L glass incubator with the lid on, and incubate at a high temperature of 26-27°C, under long-day conditions with a light period of 16 hours (dark period: 8 hours) and an illuminance of 1500-2000 lux for 2 hours.
After culturing for one day, the shell sporangia branches in the shell are allowed to extend into the artificial culture medium.

次いでこの裸出の殻胞子嚢枝を貝殻糸状体面より湿重約
0.5gを掻き取りミキサーにて細断(12000回転
、20秒間)し、殻胞子嚢枝の切片(100〜500μ
)を調製し、人工培養液とともに1l容ガラス製培養器
に入れ、22〜24℃、明期14時間(暗期10時間)
、照度1000〜1500luxで1カ月間静置(1日
当り4〜6回培養器を軽く振盪)培養し、殻胞子嚢枝と
して増殖させる。通常1枚の貝殻糸状体(20cm2)
より湿重約2gの殻胞子嚢枝を増殖できる。次いで増殖
した殻胞子嚢枝1g(湿重)を1l容下口付丸フラスコ
に人工培養液とともに入れ、殻胞子着生用基質として1
日1回定刻にナイロン糸(東レ株式会社製造、登録商標
「アミラン網糸No.4」を使用)を入れ、通気攪拌(
pHは通気用エアーに炭酸ガスを混合し、培養液pHを
7.9〜8.2にコントロールする。)し、温度18℃
、明期10時間(暗期14時間)、照度5000lux
で8日間採苗を行った。1日1回定刻に下口付丸フラス
コから取り出した殻胞子の着生した採苗済ナイロン糸は
、着生した殻胞子数を計測するため4l容透明アクリル
製角型水槽の人工培養液中で通気攪拌し、温度18℃、
明期12時間、照度8000luxで培養した。培養4
日後にナイロン糸上に着生発芽した小葉体を顕微鏡を用
いて計測した。
Next, about 0.5 g of wet weight of the bare shell sporangium branches was scraped off from the surface of the shell filament, and the pieces were cut into pieces (100 to 500 μm) using a mixer (12,000 revolutions, 20 seconds).
) was prepared and placed in a 1 liter glass incubator together with the artificial culture solution, and incubated at 22-24°C with a light period of 14 hours (dark period of 10 hours).
The cells are left to stand for one month at an illuminance of 1,000 to 1,500 lux (the incubator is gently shaken 4 to 6 times per day), and grown as sporangia branches. Usually one shell filament (20cm2)
It is possible to proliferate shell sporangia branches with a wet weight of about 2 g. Next, 1 g (wet weight) of the proliferated sporangium branches was placed in a 1 liter round flask with a bottom neck along with an artificial culture solution, and 1 g was added as a substrate for the growth of the sporangia.
Once a day at a fixed time, insert nylon thread (manufactured by Toray Industries, Inc., using the registered trademark "Amilan Net Yarn No. 4") and aerate and stir (
The pH of the culture solution is controlled at 7.9 to 8.2 by mixing carbon dioxide gas with aeration air. ) and temperature 18℃
, light period 10 hours (dark period 14 hours), illuminance 5000lux
Seedlings were collected for 8 days. Once a day, the nylon threads with seedlings taken out from the round flask with a bottom neck were placed in an artificial culture medium in a 4-liter transparent acrylic rectangular aquarium in order to measure the number of spores that had settled on the nylon threads. Aerate and stir at a temperature of 18℃.
The cells were cultured at a light period of 12 hours and an illuminance of 8000 lux. Culture 4
After a day, the lobule that had grown epiphytically on the nylon thread was measured using a microscope.

その結果を第1表に示す。The results are shown in Table 1.

1gからの殻胞子放出は低温・短日処理後4日目より確
認され、6日目にピークとなり以後急激に減少した。8
日間の採苗期間中に放出された殻胞子は約3800万個
であり、この量はのり網1cm当り100個の殻胞子を
着生さセると仮定すれば、のり網約7〜8枚分に相当す
ることから、生産レベルでの採苗用種苗として利用出来
ることがわかる。
Shell spore release from 1 g was confirmed from the 4th day after the low-temperature, short-day treatment, peaked on the 6th day, and decreased rapidly thereafter. 8
Approximately 38 million shell spores were released during the one-day seedling collection period, and this amount is equivalent to approximately 7 to 8 sheets of glue net, assuming that 100 shell spores are attached to each 1 cm of glue net. This is equivalent to 50% of the total amount, which indicates that it can be used as seedlings for collecting seedlings at the production level.

比較例 実施例1で用いたものと同様のアサクサ種の貝殻糸状体
(約20cm2)1枚を、人工培養液とともに500m
l容ガラス製ビーカーに入れ実施例1と同様に1日1回
定刻にナイロン糸を入れ通気攪拌(pHは通気用エアー
に炭酸ガスを混入し、培養液pHを7.9〜8.2にコ
ントロールする。)し、温度18℃、明期10時間(暗
期14時間)、照度5000luxで8日間採苗を行っ
た。
Comparative Example One shell filament (approximately 20 cm2) of the same species of Asakusa as that used in Example 1 was grown for 500 m together with an artificial culture solution.
Pour into a 1-volume glass beaker and add nylon thread once a day at the same time as in Example 1 and aerate and stir (for pH, mix carbon dioxide gas with aeration air to adjust the pH of the culture solution to 7.9 to 8.2. ), and seedlings were harvested for 8 days at a temperature of 18°C, a light period of 10 hours (dark period of 14 hours), and an illuminance of 5000 lux.

更に実施例1と同一条件で殻胞子の着生した採苗済ナイ
ロン糸を培養し、培養4日後にナイロン糸上に着生発芽
した小葉体を計測した。
Furthermore, the collected nylon threads on which the callus spores were attached were cultured under the same conditions as in Example 1, and after 4 days of culture, the lobules that had grown on the nylon threads were measured.

その結果を第2表に示す。The results are shown in Table 2.

実施例2〜4 実施例1と同様の方法によって増殖した各種の殻胞子嚢
枝を室内で4日間低温・短日処理を行い、屋外で実施さ
れている本ズボ式採苗に採苗用種苗として供した。種苗
を投入後4日目にズボ袋を取り外し、展開したのり網に
着生した殻胞子を計測した結果を第3表に示す。
Examples 2 to 4 Various types of sporangia branches grown by the same method as in Example 1 were treated indoors at low temperature and short days for 4 days, and then used as seedlings for seedling collection using the burrow method outdoors. Served as. On the 4th day after seedlings were introduced, the bag was removed and the number of shell spores attached to the expanded glue net was measured. The results are shown in Table 3.

第3表に示す通り生産レベルでの本ズボ式採苗法(屋外
)において、品種毎の着生数に若干の差異は認められる
が、殻胞子嚢枝1gでのり網1枚に採苗出来たことから
本発明者等の種苗が生産レベルの本ズボ式採苗法に充分
利用出来ることがわかる。
As shown in Table 3, in this seedling method (outdoor) at the production level, there are slight differences in the number of seedlings for each variety, but it is possible to collect seedlings on one glue net with 1 g of sporangium branches. This shows that the seeds and seedlings produced by the present inventors can be fully utilized in the present zubo-type seedling collection method at the production level.

実施例5〜6 実施例1と同様の方法によって増殖した各種の殻胞子嚢
枝を、室内で4日間低温・短日処理を行い、陸上で実施
されている水車式採苗装置のタンクに殻胞子嚢枝を投入
し、通常の方法で4日間連続採苗し、殻胞子をのり養殖
に必要な適正密度に着生出来たのり網数を第4表に示す
Examples 5 to 6 Various shell sporangia branches grown by the same method as in Example 1 were treated indoors at low temperatures and for short days, and then shelled into the tank of a waterwheel-type seedling device used on land. Sporangium branches were introduced, seedlings were collected continuously for 4 days using the usual method, and Table 4 shows the number of glue nets on which the shell spores were attached to the appropriate density required for glue cultivation.

第4表に示す通り、水車式採苗法という生産レベルでの
陸上採苗において殻胞子嚢枝1gでのり網約1.5〜2
枚が採苗出来たことから、本発明者等の種苗が生産レベ
ルの水車式採苗法に充分利用出来ることがわかる。
As shown in Table 4, when seedlings are harvested on land at the production level using the waterwheel seedling method, 1 g of sporangium branches is used to produce approximately 1.5 to 2 g of glue net.
The fact that a single sheet of seedlings could be taken shows that the seeds and seedlings produced by the present inventors can be fully utilized in the water wheel type seedling collecting method at the production level.

Claims (1)

【特許請求の範囲】[Claims] 1)純粋培養した貝殻糸状体を培養して殼胞子嚢枝を伸
出せしめ、次いでその裸出部を分離して細断し、さらに
培養して増殖せしめた後、低温・短日処理して殻胞子を
放出せしめることを特徴とするのり採苗法。
1) Cultivate pure cultured shell filaments to extend shell sporangia branches, then separate and shred the exposed parts, further culture and propagate, and then treat at low temperature and short days. A glue seedling collection method characterized by releasing shell spores.
JP20374682A 1982-11-22 1982-11-22 Laver samplng method Granted JPS5995828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20374682A JPS5995828A (en) 1982-11-22 1982-11-22 Laver samplng method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20374682A JPS5995828A (en) 1982-11-22 1982-11-22 Laver samplng method

Publications (2)

Publication Number Publication Date
JPS5995828A true JPS5995828A (en) 1984-06-02
JPH0134010B2 JPH0134010B2 (en) 1989-07-17

Family

ID=16479156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20374682A Granted JPS5995828A (en) 1982-11-22 1982-11-22 Laver samplng method

Country Status (1)

Country Link
JP (1) JPS5995828A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6355296B1 (en) 2001-02-28 2002-03-12 Protein Technologies International, Inc. Functional food ingredient
US6355295B1 (en) 2000-02-29 2002-03-12 Protein Technologies International, Inc. Soy functional food ingredient
US6423364B1 (en) 2001-02-28 2002-07-23 Protein Technologies International, Inc. Functional food ingredient
US6465037B1 (en) 2000-02-29 2002-10-15 Protein Technologies International, Inc. Process for producing a novel soy functional food ingredient
US6582746B2 (en) 2001-02-28 2003-06-24 Solae, Llp Meat product
CN111066648A (en) * 2019-12-30 2020-04-28 中国水产科学研究院黄海水产研究所 Method for promoting formation of sporocyst branches of shells protonema of half-leaf laver

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5021399A (en) * 1973-06-28 1975-03-06
JPS52107988A (en) * 1976-02-26 1977-09-10 Meiji Seika Co Method of lave spore collection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5021399A (en) * 1973-06-28 1975-03-06
JPS52107988A (en) * 1976-02-26 1977-09-10 Meiji Seika Co Method of lave spore collection

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6355295B1 (en) 2000-02-29 2002-03-12 Protein Technologies International, Inc. Soy functional food ingredient
US6465037B1 (en) 2000-02-29 2002-10-15 Protein Technologies International, Inc. Process for producing a novel soy functional food ingredient
US6355296B1 (en) 2001-02-28 2002-03-12 Protein Technologies International, Inc. Functional food ingredient
US6423364B1 (en) 2001-02-28 2002-07-23 Protein Technologies International, Inc. Functional food ingredient
US6582746B2 (en) 2001-02-28 2003-06-24 Solae, Llp Meat product
CN111066648A (en) * 2019-12-30 2020-04-28 中国水产科学研究院黄海水产研究所 Method for promoting formation of sporocyst branches of shells protonema of half-leaf laver

Also Published As

Publication number Publication date
JPH0134010B2 (en) 1989-07-17

Similar Documents

Publication Publication Date Title
Leighton The influence of temperature on larval and juvenile growth in three species of southern California abalones
Boulay et al. Development of somatic embryos from cell suspension cultures of Norway spruce (Picea abies Karst.)
Hagen Echinoculture: from fishery enhancement to closed cycle cultivation
Saito Ocean ranching of abalones and scallops in northern Japan
JP2006320292A (en) Method for culturing laver
JP2700741B2 (en) Cultivation method of moss using cultured species
Thakur et al. Rapid in vitro propagation of Matteuccia struthiopteris (L.) Todaro–an edible fern
CN107372122B (en) Gum tree embryonic callus induced medium and gum tree embryonic callus quick proliferation method
JPS5995828A (en) Laver samplng method
CN108323462A (en) A kind of breeding method of resistance to less salt chief blood clam seed
CN111771792A (en) Parent breeding method and hatching device for improving breeding efficiency of crayfishes
JP2008125422A (en) Method for converting dried laver seaweed into single cell form, and culturing the same
JP2002247925A (en) Method for producing seed of large-sized brown algae and method for producing sea weed bed using the same
JPH0220226A (en) Culture of indefinite embryo of chinese yam
Bonga Shoot formation in callus from the stalks of young female strobili of Larix decidua
KR20180134627A (en) New marine forest forming method using attachment and growth of zygotes of sargassum species on the natural basalt gravels
JP2002176866A (en) Method for cultivating seaweed through agglomerating spore and germinating body
Claus et al. Onshore nursery rearing of bivalve molluscs in Belgium
MacVicar et al. A further investigation of the replacement of boron by indoleacetic acid
KR880001246B1 (en) Laver sampling method
JP2020065508A (en) Method for producing dormant Paramecium-containing dried plant
EP0294412A1 (en) An effective process for the in vitro-in vivo production of potato minitubers
US20230134126A1 (en) Seaweed cultivation method and system
CN110521598B (en) Efficient artificial seedling raising method for high-quality passion flower hybrid
JP2000354434A (en) Culturing pearl oyster