JPS5994883A - Coating composition for semiconductor substrate - Google Patents

Coating composition for semiconductor substrate

Info

Publication number
JPS5994883A
JPS5994883A JP57206652A JP20665282A JPS5994883A JP S5994883 A JPS5994883 A JP S5994883A JP 57206652 A JP57206652 A JP 57206652A JP 20665282 A JP20665282 A JP 20665282A JP S5994883 A JPS5994883 A JP S5994883A
Authority
JP
Japan
Prior art keywords
coating composition
junction
semiconductor substrate
heat treatment
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57206652A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kitamura
北村 外幸
Michio Osawa
道雄 大沢
Mikio Murozono
幹夫 室園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57206652A priority Critical patent/JPS5994883A/en
Publication of JPS5994883A publication Critical patent/JPS5994883A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier

Abstract

PURPOSE:To enable to form a P-N junction and a reflection prevention film at the same time by heat treatment after applying a coating composition by a method wherein a complex forming agent is mixed to an organic titanium compound, and a P-N junction forming dopant composed of any one of phosphorus, boron, and arsenide is dissolved to an organic solvent as an ester therewith. CONSTITUTION:The coating composition is so prepared that the P-N junction of excellent reproducibility can be obtained by a method wherein the organic titanium compound is uniformly dispersed into the organic solvent such as ethyl alcohol, a diamine such as FDTA and a diketone such as acetylacetone are added thereto into a complex, in order to obtain the stability of the coating composition, and further the P-N junction forming dopant composed of any one of phosphorus, boron, and arsenide is added as the ester of e.g. B(OR)3 and P(OR)3. A semiconductor substrate 1 is coated with such the coating composition 2 by spinner or dipping method, and thereafter the first heat treatment is performed at a temperature at which the organic solvent evaporates. Next, the dopant diffuses into the semiconductor substrate by performing the second heat treatment at a high temperature, thus forming the P-N junction, and accordingly a titanium oxide film 4 is formed as the reflection prevention film.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体基板用塗布組成物に関し、さらに詳し
くは太陽電池の反射防止膜、ならびにPn接合形成用塗
布組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a coating composition for semiconductor substrates, and more particularly to an antireflection film for solar cells and a coating composition for forming a Pn junction.

従来例の構成とその問題点 従来、太陽電池が高価格となるのは、その製造工程数が
多く、まだ製造に際して熟練技術を要する点に一つの要
因があった。その中でも、Pn接合の形成及び表面反射
防止膜の形成技術は、素子特性を決定する重要な工程で
あり、主にPn接合は熱処理を伴う気相拡散により、又
反射防止膜は真空蒸着法で形成されており、バッチ方式
により生産を行っておシ、連続化等、生産向上のだめの
ネックとなっていた。
Conventional Structures and Their Problems Conventionally, one of the reasons why solar cells have been so expensive is that they require a large number of manufacturing steps and still require skilled technology to manufacture. Among these, the formation of Pn junctions and the formation of surface antireflection films are important processes that determine device characteristics. Pn junctions are mainly formed by vapor phase diffusion accompanied by heat treatment, and antireflection films are formed by vacuum evaporation. This has been a bottleneck in improving production, such as batch production and continuous production.

発明の目的 本発明は、上記従来の欠点を解消するものであり、Pn
接合の形成と、反射防止膜の形成とを同一工程で連続プ
ロセスにて同時に達成するよう、常圧にて作業を行なう
だめの塗布組成物を提供することを目的とするものであ
る。
OBJECT OF THE INVENTION The present invention solves the above-mentioned conventional drawbacks, and
The object of the present invention is to provide a coating composition that can be operated at normal pressure so that the formation of a bond and the formation of an antireflection film can be simultaneously achieved in the same continuous process.

即ち、半導体基板に本発明による塗布組成物を塗布した
後、2oo℃以下の第1の熱処理で溶媒等を蒸発させ、
つづいて8o○℃以上の第2の熱処理を施す事により、
Pn接合と、反射防止膜とを同時に形成するものである
That is, after applying the coating composition according to the present invention to a semiconductor substrate, the solvent and the like are evaporated by a first heat treatment at 200° C. or less,
By subsequently performing a second heat treatment at 8o○℃ or higher,
A Pn junction and an antireflection film are formed at the same time.

発明の構成 上記目的を達成するため、本発明の塗布組成物分散させ
、かつ塗布組成物の安定性を得るためにE D T A
等のジアミン類またはアセチルアセトン等のジケトン類
を加えて錯体化しており、さらにリン、硼素及びヒ素の
いずれかよりなるPn接合形成用ドーパントを、たとえ
ばB (OR)3. P (OR)6等のエステルとし
て加えることにより、再現性のよいPn接合が得られる
ように調合したことを特徴とする。この塗布組成物は室
温で安定なものであり、かつ、ドーパント及びチタンの
有機溶媒中での分散力を高めたことにより、均一で再現
性のよいPn接合及び反射防止膜としての酸化チタン膜
(Tie、、)を同時に形成できる。
Structure of the Invention In order to achieve the above objects, in order to disperse the coating composition of the present invention and to obtain stability of the coating composition, EDT A
For example, B (OR) 3. is complexed by adding diamines such as B (OR)3. It is characterized in that it is formulated so that a Pn junction with good reproducibility can be obtained by adding it as an ester such as P (OR)6. This coating composition is stable at room temperature, and by increasing the dispersion power of the dopant and titanium in an organic solvent, it can be used as a titanium oxide film ( Tie, , ) can be formed at the same time.

この本発明の塗布組成物は半導体基板にスピンナ又はデ
ィッピング法で塗布する。その後有機溶媒が蒸発する温
度にて、第1の熱処理を行なう。
The coating composition of the present invention is applied to a semiconductor substrate using a spinner or dipping method. Thereafter, a first heat treatment is performed at a temperature at which the organic solvent evaporates.

この過程では、有機チタン化合物はジアミンまたはジケ
トンと錯体を形成しているため安定であり、このことが
塗布組成液の安定性、及び膜の再現性を良くしている。
In this process, the organic titanium compound is stable because it forms a complex with the diamine or diketone, and this improves the stability of the coating composition and the reproducibility of the film.

一方、エステルの状態のドーパントは、一部分層して硼
酸、リン酸等に変化しはじめる。このことは次の第2の
熱処理で、塗布組成物中からドーパントが雰囲気中へ消
散する速度より、半導体基板に拡散する速度を大きくす
る。
On the other hand, the dopant in the ester state partially forms a layer and begins to change into boric acid, phosphoric acid, etc. This causes the dopant in the coating composition to diffuse into the semiconductor substrate at a faster rate than it dissipates into the atmosphere during the subsequent second heat treatment.

この効果は、塗布組成物中のドーパント濃度が高いほど
大きく、太陽電池が表面不純物濃度を高めるほど開放電
圧が大きくなり、特性が向上することから非常に都合の
良いことである。次にひきつづいて、不活性ガス雰囲気
中で高温の第2の熱処理を施すことによりドーパントが
半導体基板中に拡散し、Pn接合を形成すると共に、反
射防止膜として酸化チタン膜を形成する。この第2の熱
処理では、有機チタン化合物は200〜300℃付近で
分解し、400〜−500 ’C付近からチタンの低級
酸化物が無定形のTie遵となり、その後の加熱により
結晶化が進み、アナターゼ系のTiO2膜が生成する。
This effect is very advantageous because the higher the dopant concentration in the coating composition is, the greater the effect is, and the higher the surface impurity concentration of the solar cell, the higher the open circuit voltage and the better the characteristics. Subsequently, a second heat treatment is performed at a high temperature in an inert gas atmosphere to diffuse the dopant into the semiconductor substrate, forming a Pn junction and forming a titanium oxide film as an antireflection film. In this second heat treatment, the organic titanium compound decomposes at around 200 to 300°C, and from around 400 to -500'C, the lower oxide of titanium becomes an amorphous TIE compound, which progresses to crystallization by subsequent heating. An anatase TiO2 film is produced.

つまり一般のTlO2の塗布組成物は、加水分解。In other words, general TlO2 coating compositions are hydrolyzed.

縮重合反応により、低温でチタン酸膜になる過程に較べ
て60Q℃以上の高温処理を必要とする代わりに、20
o℃以下の温度では非常に安定であり、経時変化が少な
いという特徴を有し、ピンホールがなく、均一な酸化チ
タン膜が再現性よく得られる。一方、エステル状態のド
ーパントは、エステルから、硼酸又はリン酸等に短時間
に変化しつつ酸化硼素又は五酸化リンの形まで変化し、
一種のドープ拡散によく似た形で不純物の半導体基板へ
の拡散が進行する。そのため従来の塗布拡散、つまり酸
化硼素をエチルセロソルブ等の有機溶媒に溶かした方法
及び一般に用いられている気相拡散に較べ、均一で再現
性がよく、かつダメージの少ない高濃度拡散層を得るこ
とができる。又チタンの太陽電池特性に対する影響は、
400℃付近ですでにチタンは酸素と結合し、かつその
結合エネルギーが非常に太きいために、酸化チタンが還
元されて金属チタンとして半導体基板中に拡散すること
はなく、太陽電池特性に悪影響を与えることはない。つ
まり本発明の塗布組成物は、pn接合と、反射防止膜と
を同一処理で、しかも常圧処理により形成できることか
ら、連続プロセスが採用でき、又作業が簡便になり、熟
練技術を要しないことから著しく生産性を良くする効果
がある。
Compared to the process of forming a titanate film at a low temperature due to a polycondensation reaction, instead of requiring a high temperature treatment of 60Q℃ or more,
It is very stable at temperatures below 0.degree. C. and has the characteristics of little change over time, and a uniform titanium oxide film without pinholes can be obtained with good reproducibility. On the other hand, an ester dopant changes from an ester to boric acid or phosphoric acid, etc. in a short period of time, and then to boron oxide or phosphorus pentoxide.
Diffusion of impurities into the semiconductor substrate progresses in a manner similar to a type of dope diffusion. Therefore, compared to conventional coating diffusion, that is, a method in which boron oxide is dissolved in an organic solvent such as ethyl cellosolve, and the commonly used gas phase diffusion, it is possible to obtain a highly concentrated diffusion layer that is uniform, has good reproducibility, and has less damage. I can do it. In addition, the influence of titanium on solar cell characteristics is as follows:
Titanium already bonds with oxygen at around 400°C, and the bonding energy is very large, so titanium oxide is not reduced and diffused into the semiconductor substrate as metallic titanium, which adversely affects solar cell characteristics. I won't give anything. In other words, since the coating composition of the present invention can form a pn junction and an antireflection film in the same process and by normal pressure treatment, a continuous process can be adopted, and the work is simple and does not require skilled techniques. This has the effect of significantly improving productivity.

実施例の説明 以下、本発明の一実施例について、図面に基づいて説明
する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

有機溶媒としてエチルセロソルブ100COに、カルボ
ン酸チタンにアセチルアセトンを加えて錯体化したも(
7)8.QCC混合し、さらにB(OC2Hs)sの硼
酸トリアルキルを10g加えて十分に攪拌し塗布組成物
を準備した。これをスピンナ塗布装置により、第1図に
示すように比抵抗1.0Ω儒のN形シリコン半導体基板
1に塗布2する。そして次に100℃にて20分間大気
中にて第1の熱処理を行なう。この過程においては、有
機溶媒が蒸発すると共に硼酸トリアルキルの一部が硼酸
になる。
A complex was obtained by adding acetylacetone to titanium carboxylate and ethyl cellosolve 100CO as an organic solvent (
7)8. After QCC mixing, 10 g of trialkyl borate of B(OC2Hs)s was added and sufficiently stirred to prepare a coating composition. This is coated 2 on an N-type silicon semiconductor substrate 1 having a specific resistance of 1.0 Ωf, as shown in FIG. 1, using a spinner coater. Then, a first heat treatment is performed at 100° C. for 20 minutes in the atmosphere. In this process, the organic solvent evaporates and a portion of the trialkyl borate becomes boric acid.

その後に、窒素雰囲気中にて950℃ヤ30分第2の熱
処理を施し、第2図に示すように表面不純物濃度が1.
3 X 10”原−f/C1dで、pn接合深さが約0
・5μmの拡散層3を形成すると共に、アナターゼ系の
酸化チタン膜4も形成される。この時の酸化チタン膜4
の厚さは620人であシ、屈折率は2.17である。そ
して第3図に示すように、裏面をエツチングし、電極6
を形成するとともにリード線6を半田等でつけ、キャノ
ンランプのソーラシュミレータで太陽電池の特性測定を
行なった。
After that, a second heat treatment was performed at 950° C. for 30 minutes in a nitrogen atmosphere, and as shown in FIG. 2, the surface impurity concentration was reduced to 1.
3 x 10” raw f/C1d, pn junction depth is approximately 0
- While forming the 5 μm diffusion layer 3, an anatase-based titanium oxide film 4 is also formed. Titanium oxide film 4 at this time
Its thickness is 620 mm, and its refractive index is 2.17. Then, as shown in FIG. 3, the back surface is etched and the electrode 6 is etched.
A lead wire 6 was attached using solder or the like, and the characteristics of the solar cell were measured using a Cannon Lamp solar simulator.

これにより変換効率が12・7条のものを得ることがで
きた。
This made it possible to obtain a conversion efficiency of 12.7.

発明の詳細 な説明したように、本発明による塗布組成物を用いるこ
とにより、  pn接合と反射防止膜とを同一処理で、
かつ常圧下で同時に形成することが可能であシ、従来法
に較べて高度な熟練技術を必要とせずに簡便に形成する
ことができる。しかも連続化プロセスで製造でき、著し
く生産性を高めることができ、真空系でないだめに生産
設備も安価であり、償却コストも安い等、太陽電池の低
コスト化を図る上での産業的意義は非常に太きい。
As described in detail, by using the coating composition according to the present invention, a pn junction and an antireflection coating can be formed in the same process.
Moreover, they can be formed simultaneously under normal pressure, and compared to conventional methods, they can be formed easily without requiring highly skilled techniques. In addition, it can be manufactured using a continuous process, which can significantly increase productivity, and the production equipment is inexpensive unless it is a vacuum system, and the depreciation cost is also low.This has industrial significance in terms of reducing the cost of solar cells. Very thick.

さらに、特性的に表面反射防止膜についても、真空系で
形成した酸化チタン膜の表面反射率と大差がなく、pn
接合形成においては気相拡散に較べて高濃度のドープ拡
散法のようにシリコンウェハ全面に、均一かつ再現性よ
<pn接合を形成でき、高濃度拡散に伴うダメージによ
る飽和電流増大が軽減でき、高い開放電圧を得ることが
できる。
Furthermore, the characteristics of the surface antireflection film are not much different from the surface reflectance of a titanium oxide film formed in a vacuum system, and the pn
In junction formation, compared to vapor phase diffusion, pn junctions can be formed uniformly and reproducibly over the entire surface of a silicon wafer using a high-concentration dope diffusion method, and the increase in saturation current due to damage caused by high-concentration diffusion can be reduced. A high open circuit voltage can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における塗布組成物を太陽電池
用シリコンウェハに塗布した図、第2図は同実施例にお
ける塗布組成物を塗布したシリコンウェハに第2の熱処
理を施した図、第3図は同太陽電池に電極形成とリード
線取付けを行った後の断面図である。 1・・・・・・シリコン半導体基板、2・・・・・・塗
布組成物、3・・・・・・拡散層、4・・・・・・酸化
チタン膜、6・・・・・・電極、6・・・・・・リード
線。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図
FIG. 1 is a diagram showing a silicon wafer for a solar cell coated with a coating composition according to an example of the present invention, and FIG. 2 is a diagram showing a second heat treatment applied to a silicon wafer coated with a coating composition according to the same example. FIG. 3 is a cross-sectional view of the same solar cell after electrode formation and lead wire attachment. DESCRIPTION OF SYMBOLS 1... Silicon semiconductor substrate, 2... Coating composition, 3... Diffusion layer, 4... Titanium oxide film, 6... Electrode, 6...Lead wire. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 有機チタン化合物にジアミンまたはジケトンからなる錯
体形成剤を混合するとともに、これとリン、硼素及びヒ
素のいずれかよりなるPnn接合形成用ドパパントをエ
ステルとして有機溶媒に溶解した半導体基板用塗布組成
物。
A coating composition for a semiconductor substrate in which an organic titanium compound is mixed with a complex forming agent consisting of a diamine or a diketone, and a dopant for forming a Pnn junction consisting of one of phosphorus, boron and arsenic is dissolved in an organic solvent as an ester.
JP57206652A 1982-11-24 1982-11-24 Coating composition for semiconductor substrate Pending JPS5994883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57206652A JPS5994883A (en) 1982-11-24 1982-11-24 Coating composition for semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57206652A JPS5994883A (en) 1982-11-24 1982-11-24 Coating composition for semiconductor substrate

Publications (1)

Publication Number Publication Date
JPS5994883A true JPS5994883A (en) 1984-05-31

Family

ID=16526890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57206652A Pending JPS5994883A (en) 1982-11-24 1982-11-24 Coating composition for semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS5994883A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609694A (en) * 1994-04-28 1997-03-11 Sharp Kabushiki Kaisha Solar cell and a method of manufacturing thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609694A (en) * 1994-04-28 1997-03-11 Sharp Kabushiki Kaisha Solar cell and a method of manufacturing thereof

Similar Documents

Publication Publication Date Title
US4104091A (en) Application of semiconductor diffusants to solar cells by screen printing
Liu et al. Soft template‐controlled growth of high‐quality CsPbI3 films for efficient and stable solar cells
CA1114050A (en) Manufacture of solar cells
US3832202A (en) Liquid silica source for semiconductors liquid silica source for semiconductors
US5698451A (en) Method of fabricating contacts for solar cells
EP0813753B1 (en) Solar cell with back surface field and process for producing it
JPH057872B2 (en)
US20090301559A1 (en) Solar cell having a high quality rear surface spin-on dielectric layer
US4920078A (en) Arsenic sulfide surface passivation of III-V semiconductors
JPS60113915A (en) Method of producing solar battery
US20090286349A1 (en) Solar cell spin-on based process for simultaneous diffusion and passivation
KR20110089291A (en) Methods of forming multi-doped junctions on a substrate
JPH0638513B2 (en) Method for manufacturing solar cell having antireflection coating
Chambouleyron et al. Properties of chemically sprayed SnO2 antireflecting films on Si solar cells
JPS5994883A (en) Coating composition for semiconductor substrate
JPH07326784A (en) Manufacture of solar battery element
US3963523A (en) Method of manufacturing semiconductor devices
CN104465799A (en) Crystalline silicon solar cell and preparation method thereof
CN112701226B (en) Trans-three-dimensional perovskite solar cell based on photonic crystal heterojunction
JP2928433B2 (en) Method for manufacturing photoelectric conversion element
KR101198930B1 (en) Method for preparing silicon nitride anti-reflection coating and silicon solar cell using the same
JPS5823486A (en) Manufacture of solar cell
JPS623597B2 (en)
JPS59178778A (en) Solar battery and manufacture thereof
US4126713A (en) Forming films on semiconductor surfaces with metal-silica solution