JPS599481B2 - Fluid purification method and purification device - Google Patents

Fluid purification method and purification device

Info

Publication number
JPS599481B2
JPS599481B2 JP49114005A JP11400574A JPS599481B2 JP S599481 B2 JPS599481 B2 JP S599481B2 JP 49114005 A JP49114005 A JP 49114005A JP 11400574 A JP11400574 A JP 11400574A JP S599481 B2 JPS599481 B2 JP S599481B2
Authority
JP
Japan
Prior art keywords
dioxide gas
sulfur dioxide
sulfur
combustion chamber
hopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49114005A
Other languages
Japanese (ja)
Other versions
JPS5061858A (en
Inventor
エドワ−ド リンドマン ウイリアム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PURESHIPITEITAA CORP
Original Assignee
PURESHIPITEITAA CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PURESHIPITEITAA CORP filed Critical PURESHIPITEITAA CORP
Publication of JPS5061858A publication Critical patent/JPS5061858A/ja
Publication of JPS599481B2 publication Critical patent/JPS599481B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/104Ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/005Black water originating from toilets
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/26Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof
    • C02F2103/28Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof from the paper or cellulose industry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/008Mobile apparatus and plants, e.g. mounted on a vehicle
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/009Apparatus with independent power supply, e.g. solar cells, windpower, fuel cells
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/78Details relating to ozone treatment devices
    • C02F2201/782Ozone generators
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • C02F2301/024Turbulent
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/02Fluid flow conditions
    • C02F2301/026Spiral, helicoidal, radial
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/26Reducing the size of particles, liquid droplets or bubbles, e.g. by crushing, grinding, spraying, creation of microbubbles or nanobubbles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S588/00Hazardous or toxic waste destruction or containment
    • Y10S588/90Apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Glanulating (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

【発明の詳細な説明】 本発明は亜硫酸ガス発生装置に関し、更に詳しくは亜硫
酸ガスを必要とする工業装置、特に汚水浄化装置等へ、
中間貯蔵タンク等を介さずに直接、その消費量の変動に
追従して当該ガスを供給することのできる亜硫酸ガス発
生装置を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sulfur dioxide gas generator, and more specifically to industrial equipment that requires sulfur dioxide gas, particularly sewage purification equipment, etc.
The object of the present invention is to provide a sulfur dioxide gas generator that can directly supply the gas without using an intermediate storage tank or the like, following fluctuations in its consumption.

汚水処理のために亜硫酸ガスと鉄を使用した廃水処理法
が用いられることは既に知られている。
It is already known that a wastewater treatment method using sulfur dioxide gas and iron is used for sewage treatment.

例えば、家庭の汚水管からの廃水を処理するために亜硫
酸ガスとスクラップ鉄を使用する処理法及び装置は、1
970年7月8日特許となった米国特許第3,5 2
1,7 5 2号及び第3,5 2 2,1 7 3号
に本件の発明者が開示している。
For example, treatment methods and equipment that use sulfur dioxide gas and scrap iron to treat wastewater from domestic sewage pipes include:
U.S. Patent No. 3,52, issued on July 8, 1970
No. 1,752 and No.3,522,173 by the inventor of the present invention.

これらの米国特許に開示してある工程は、送給原料を水
平方向に細長い槽をその長手方向に通過させ、気体酸素
と亜硫酸ガスとの混合物を該槽の長手方向に配設した孔
またはマニホルドから加圧して同時的に噴射し、一次反
応チャンバー内で混合物の制御を行なうと共に酸性度の
調整を行なうものである。
The process disclosed in these U.S. patents involves passing the feedstock horizontally through an elongated tank along its length and passing a mixture of gaseous oxygen and sulfur dioxide gas through holes or manifolds disposed along the length of the tank. The mixture is pressurized and injected simultaneously to control the mixture and adjust the acidity within the primary reaction chamber.

混合気体を噴射するこのマニホルドは、一次反応チャン
バーからの送給原料の流れを収容するスクラップ鉄の充
填された二次反応チャンバーへき続いており、処理され
た流体はその後、中和・沈澱・濾過工程を連続的に経る
ものである。
This manifold, which injects a gas mixture, leads to a secondary reaction chamber filled with scrap iron that receives the feed stream from the primary reaction chamber, and the treated fluid is then neutralized, settled, and filtered. The process is continuous.

米国特許第2,1 7 1,2 0 3号でアーベイン
及びステメンの両氏も亜硫酸ガス・鉄酸化法を開示して
いる。
U.S. Pat. No. 2,171,203 also discloses a sulfur dioxide iron oxidation process by Urbein and Stemmen.

亜硫酸ガス及び鉄による浄化機構は以下の如くである。The purification mechanism using sulfur dioxide gas and iron is as follows.

すなわち、最初の酸処理タンクにおいて溶液媒体中の亜
硫酸ガスは亜硫酸となる。
That is, the sulfur dioxide gas in the solution medium in the first acid treatment tank becomes sulfur dioxide.

その後該亜硫酸は金属鉄の存在中で下記化学式に示す如
く亜硫酸第一鉄と自由電子とに変わる。
Thereafter, the sulfite is converted into ferrous sulfite and free electrons in the presence of metallic iron as shown in the chemical formula below.

Q2+2 (H2 803)+2Fe= 2FeSO3+2H20+4e この混合物中の電子は最終pH値約3で究極的には固体
となる物質の連続的懸濁化に大きく寄与する。
Q2+2 (H2 803)+2Fe=2FeSO3+2H20+4e The electrons in this mixture contribute significantly to the continuous suspension of the material which ultimately becomes solid at a final pH value of about 3.

この段階で鉄処理槽の上部から(再循環用として)回収
される気体混合物は硫化水素、二酸化炭素、亜硫酸ガス
、水蒸気の混合物である。
The gas mixture recovered from the top of the iron treatment tank (for recirculation) at this stage is a mixture of hydrogen sulfide, carbon dioxide, sulfur dioxide gas, and water vapor.

酸化された送給原料を中和し、必要であれば更に亜硫酸
ガスで処理した後、石灰で中和すると共に(出来ればオ
ゾンで補われる)気体酸素を含有した気体流と接触させ
、凝結チャンバーで溶液と固体成分との最終的な分離が
行なわれるまで、硫酸塩(CaSO4+Fe2(804
)いに変換することで溶液中の鉄並びに亜硫酸塩を懸濁
状に保つ。
The oxidized feedstock is neutralized and, if necessary, further treated with sulfur dioxide gas, then neutralized with lime and brought into contact with a gas stream containing gaseous oxygen (preferably supplemented with ozone) and placed in a condensation chamber. sulfate (CaSO4 + Fe2 (804
) to keep iron and sulfite in solution in suspension.

かかる浄化方法及び装置にあっては亜硫酸ガスの安定的
供給が不可欠となるが、従来は、亜硫酸ガスの使用場所
とは遠隔の地にあり犬量且つ連続的に亜硫酸ガスを製造
する亜硫酸ガス製造プラントからの亜硫酸ガスをボンベ
若しくはタンク車等に充填し、これを使用場所に運搬し
てタンク等に貯蔵して使用していた。
A stable supply of sulfur dioxide gas is essential for such purification methods and equipment, but conventionally, sulfur dioxide gas production is performed in a location far away from the sulfur dioxide gas usage site and that continuously produces sulfur dioxide gas in large quantities. Sulfur dioxide gas from the plant was filled into cylinders or tank cars, transported to the site of use, and stored in tanks for use.

従来のこの方法では浄化装置の一部として大容量の亜硫
酸ガスタンクが必要となるし、また頻繁にこのタンクへ
の亜硫酸ガスの補給を行なわねばならないという不便さ
があった。
This conventional method requires a large-capacity sulfur dioxide gas tank as part of the purification device, and has the inconvenience of having to frequently replenish the tank with sulfur dioxide gas.

また、一方、浄化装置の一部に亜値酸ガス発生装置を組
み込もうとするときには、従来の亜硫酸ガス発生装置で
は装置を停止すると配管内に溶融した硫黄が凝固してし
まい、そのままでは再始動不可能な状態となってしまう
ので連続運転せざるを得す、浄化装置における亜硫酸ガ
スの必要量の変動に追従できないという問題があった。
On the other hand, when trying to incorporate a sulfur dioxide gas generator into a part of the purification equipment, it is important to note that with conventional sulfur dioxide gas generators, when the equipment is stopped, the molten sulfur in the piping solidifies, Since the system cannot be started, it has to be operated continuously, and there are problems in that it cannot keep up with fluctuations in the amount of sulfur dioxide gas required in the purification system.

本発明は、貯蔵タンクを要することなく、工業プロセス
の亜硫酸ガス消費量に応じて、亜硫酸ガスを直接供給す
ることのできる亜硫酸ガス発生装置を提供することを目
的としており、特に亜硫酸ガスを使用する浄化装置の一
部として使用できる比較的小型で且つ浄化装置における
亜硫酸ガスの消費量の変動に追従し得る亜硫酸ガス発生
装置を提供することを目的とするものである。
The present invention aims to provide a sulfur dioxide gas generator that can directly supply sulfur dioxide gas according to the amount of sulfur dioxide gas consumed in an industrial process without requiring a storage tank. It is an object of the present invention to provide a sulfur dioxide gas generating device that is relatively small and can be used as a part of a purification device and can follow fluctuations in the amount of sulfur dioxide gas consumed in the purification device.

本発明の亜硫酸ガス発生装置は、粉状硫黄を加圧空気に
より燃焼チャンバー内に搬送し、このチャンバー内で硫
黄を燃焼させて亜硫酸ガスを発生させるものであり、粉
状硫黄を収容するホツパーと、粉状硫黄を燃焼するため
の燃焼チャンバーと、ホツパーから燃焼チャンバーへ粉
状硫黄を搬送するためにホソパーから燃焼チャンバーと
に連結された導管部材と、ホツパーから上記導管部材内
へそして上記ノズルへと搬送する粉状硫黄の流れを制御
するために上記導管部材内に配設された弁部材と、上記
ホソパーから上記導管部材へ放出される粒状硫黄を篩う
ための振動グリッドと、上記ホツパーさ上記振動グリッ
ドの両方を同時に振動させて上記ホツパーからの分離硫
黄粒子の流れを制御すべく連結された振動部材と、気体
状亜硫酸ガスを生成するために燃焼チャンバー内に搬送
された粉状硫黄を燃焼させる部材と、燃焼チャンバーか
ら亜硫酸ガスを取り出す出口とから成り、上記導管部材
が燃焼チャンバー及び加圧空気源に連通されたノズルを
含み加圧空気によって粉状硫黄が導管部材を通って該ノ
ズルから燃焼チャンバーへ搬送されるように構成したも
のである。
The sulfur dioxide gas generator of the present invention conveys powdered sulfur using pressurized air into a combustion chamber, and burns the sulfur in this chamber to generate sulfur dioxide gas. a combustion chamber for combusting powdered sulfur, and a conduit member connected from the hopper to the combustion chamber for conveying powdered sulfur from the hopper to the combustion chamber, and from the hopper into the conduit member and to the nozzle. a valve member disposed within the conduit member for controlling the flow of powdered sulfur conveyed through the hopper; a vibrating grid for screening particulate sulfur discharged from the hopper into the conduit member; a vibrating member coupled to simultaneously vibrate both of said vibrating grids to control the flow of separated sulfur particles from said hopper and powdered sulfur conveyed into a combustion chamber to produce gaseous sulfur dioxide gas; and an outlet for removing sulfur dioxide gas from the combustion chamber, the conduit member including a nozzle in communication with the combustion chamber and a source of pressurized air, the pressurized air directing powdered sulfur through the conduit member. It is configured to be transported from the combustion chamber to the combustion chamber.

以下、添付図面に示した望ましい実施例に基づいて本発
明を詳述する。
Hereinafter, the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.

第1図は本発明亜硫酸ガス発生装置の一実施例を示す一
部縦断正面図である。
FIG. 1 is a partially vertical front view showing an embodiment of the sulfur dioxide gas generator of the present invention.

防湿ホッパーHに収容された粉状の硫黄は振動グリッド
、則ちシフター149を通過し、モータMによってゆっ
くりと回転する孔あき計量板161により横方向の流体
通路127内へ少量ずつ落下する。
The powdered sulfur contained in the moisture-proof hopper H passes through a vibrating grid, or shifter 149, and is dropped little by little into the lateral fluid passage 127 by a perforated metering plate 161 that is slowly rotated by a motor M.

粉状硫黄の送給率、則ち計量板161の孔のサイズは計
量板161上を摺動するスライド可能な弁部材Vによっ
て変化させる。
The feed rate of powdered sulfur, and thus the size of the holes in the metering plate 161, is varied by a slidable valve member V sliding on the metering plate 161.

ホツパーの側壁に固定された電気振動機148はホツパ
ー及びシフター149を同時に振動させて粉状硫黄の送
給が定量的に且つ円滑に行なわれるようにする。
An electric vibrator 148 fixed to the side wall of the hopper simultaneously vibrates the hopper and the shifter 149 so that the powdered sulfur can be quantitatively and smoothly fed.

流体通路121の一端には送風機144が取付けてあっ
て、これにより加圧空気が供給されるようになっており
、他端即ちノズルの流出口は燃焼チャンバー129内に
開口している。
A blower 144 is attached to one end of the fluid passage 121 to supply pressurized air, and the other end, ie, the outlet of the nozzle, opens into the combustion chamber 129 .

燃焼チャンバー129はチャンバー内に流入されるいく
つかの流体に渦流を発生、促進させるような形状をして
いて、これにより燃焼チャンバー内で密な混合が行なわ
れるようになっている。
The combustion chamber 129 is shaped to create and promote swirling of some of the fluids entering the chamber, thereby providing intimate mixing within the combustion chamber.

ガス・バーナー145は燃焼チャンバー129内に燃焼
ガスを噴射し、ここで硫黄塵及び気体状酸素の渦流混合
物に点火して亜硫酸ガス及び硫化スラッグを形成し、亜
硫酸ガスは出口133から取出され、硫化スラッグは孔
あき壁166を通って収集チャンバー131へと落下す
る。
Gas burner 145 injects combustion gas into combustion chamber 129 where it ignites a swirling mixture of sulfur dust and gaseous oxygen to form sulfur dioxide gas and sulfide slug, which is removed through outlet 133 and sulfurized. The slug falls through perforated wall 166 into collection chamber 131 .

ガス・バーナー145による燃焼ガスの噴射は燃焼チャ
ンバー129内の温度センサー171及びコントローラ
ー206で電子的に調整される。
The injection of combustion gases by gas burner 145 is electronically regulated by temperature sensor 171 in combustion chamber 129 and controller 206 .

粉状硫黄の流量は通常毎分当り約1ポンド(約0. 4
5 Ky )から約20ポンド(約9K9)という範
囲内である。
The flow rate of powdered sulfur is typically about 1 pound per minute (approximately 0.4
5 Ky) to about 20 pounds (about 9K9).

流体通路127は通常円形の水ジャケット125の中心
に配設してあり、導管147から供給され水ジャケット
125の内部を通って導管146から排水される水によ
って冷却される。
Fluid passageway 127 is centrally located in generally circular water jacket 125 and is cooled by water supplied from conduit 147 and drained through conduit 146 through the interior of water jacket 125 .

冷却用水ジャケット125の機能は粉状硫黄をその融点
よりかなり低く維持することであって、その結果粒子は
凝結しないし、従って送風機からの空気中の酸素と混合
物という形で互に凝着や付着せずに燃焼チャンバー12
9内へと送りこまれる。
The function of the cooling water jacket 125 is to keep the powdered sulfur well below its melting point so that the particles do not condense and therefore do not stick or stick to each other in the form of a mixture with the oxygen in the air from the blower. Combustion chamber 12 without wearing
Sent into 9.

燃焼チャンバーの温度が約232℃(約450下)(ま
たは約93℃乃至約316℃(約200’F乃至約60
0’F))であるのに対して、一般に水ジャケット12
5の温度は約32℃乃至35℃(約90下乃至95’F
)に維持する。
The temperature of the combustion chamber is about 232°C (about 450 below) (or about 93°C to about 316°C (about 200'F to about 60°C)).
0'F)), whereas generally the water jacket 12
The temperature in step 5 is about 32°C to 35°C (about 90 below to 95'F).
).

同様にこの水ジャケット125は燃焼ゾーンが流体通路
127へと、更にはホツパーHへと伝播するのを防止す
る。
This water jacket 125 likewise prevents the combustion zone from propagating into the fluid passage 127 and further into the hopper H.

送風機144はまた出口133での亜硫酸ガス圧に電子
的に感応するコントローラー205によって制御される
Blower 144 is also controlled by controller 205 which is electronically sensitive to sulfur dioxide gas pressure at outlet 133.

燃焼チャンバー129はサイズの等しい二個の円錐部1
72,173で構成し、該円錐部がほぼ水平軸沿いに向
いあった位置にくるように該円錐部の大きい方の端部を
線174沿いに一体的に溶接してあるので、燃焼チャン
バー内の円錐状内部反射壁により流体通路127からの
空気及び硫黄と、ガス・バーナー145からの燃焼ガス
との混合物が効率的に行なわれる。
The combustion chamber 129 has two conical parts 1 of equal size.
72, 173, and the larger ends of the conical portions are welded together along line 174 so that the conical portions are located facing each other along a substantially horizontal axis, so that the inside of the combustion chamber is The internal conical reflective wall of the sulfur gas passage 127 allows for efficient mixing of the air and sulfur from the fluid passageway 127 with the combustion gases from the gas burner 145.

しかしながら、中央部にふくらみを有し、流入口127
,145に対向して流入口から水平方向に離れた位置に
、流入口127,145から導入された二つのガス流を
混合した形で押し戻すような多少とも互いに角度がつい
ている端壁(円錐部173の第1図上の上下端壁に対応
する)を有するその他の形状の燃焼チャンバーを使用し
てもよい。
However, there is a bulge in the center, and the inlet 127
, 145 and located horizontally away from the inlets, end walls (conical sections) more or less angled with respect to each other push back the two gas flows introduced from the inlets 127, 145 in a mixed form. Other shapes of combustion chambers may be used, with the top and bottom end walls corresponding to the top and bottom end walls on FIG.

発生した亜硫酸ガスは出口133からライン143を通
って汚水浄化装置等の亜硫酸ガスを必要とするプロセス
に直接供給される。
The generated sulfur dioxide gas is directly supplied from outlet 133 through line 143 to a process that requires sulfur dioxide gas, such as a sewage purification system.

必要に応じて予備の貯蔵タンク26に供給してもよい。It may be supplied to a reserve storage tank 26 if necessary.

プロセスにおける必要量より亜硫酸ガス発生量の方が多
くなれば、燃焼チャンバー内の圧力が増加するのでコン
トローラー205が作動し、自動的に送風機144の能
力を弱めるか停止させる。
If the amount of sulfur dioxide produced exceeds the amount required for the process, the pressure within the combustion chamber increases and the controller 205 is activated to automatically reduce or stop the blower 144.

停止させる場合にはガス・バーナー145も同時に電子
的制御によって停止させるようにする。
When the gas burner 145 is to be stopped, the gas burner 145 is also stopped by electronic control at the same time.

または、亜硫酸ガスを必要とするプロセスにおいてpH
値を電子式pH計で測定し、このpH計とコントローラ
ー205を連働させて、亜硫酸ガス発生量を制御しても
よい。
Or, pH in processes that require sulfur dioxide gas.
The value may be measured with an electronic pH meter, and the pH meter and controller 205 may be linked to control the amount of sulfur dioxide gas generated.

あるいは、コントローラー205は送風機144と共に
(または別個に)弁部材■を制御するようにすることも
可能である。
Alternatively, the controller 205 can also control the valve member (2) together with (or separately) the blower 144.

このような自動電子制御を用いずにプロセスにおける亜
硫酸ガスの必要量に応じて手操作で制御するこさも勿論
可能である。
Of course, it is also possible to manually control the amount of sulfur dioxide gas required in the process without using such automatic electronic control.

このような制御が可能であるのは、本発明の亜硫酸ガス
発生装置が、粉末状の硫黄を原料としており且つホツパ
ー及びグリッドを振動させて粉状硫黄の流れを制御して
いるので、微量供給の場合でも定量性が良好となり、供
給量の制御が簡易に行えること、また、送風機144の
作動を停止しても流体通路127内における作動中の硫
黄濃度は低いから、高温にさらされる流体通路127の
ノズル部分には硫黄が殆ど残存せず、これらが融解、凝
固してノズルの閉塞をもたらすようなことがないことに
起因する。
Such control is possible because the sulfur dioxide gas generator of the present invention uses powdered sulfur as a raw material and controls the flow of powdered sulfur by vibrating the hopper and grid. Quantitative performance is good even in the case of This is due to the fact that almost no sulfur remains in the nozzle portion of No. 127, and this sulfur does not melt or solidify to cause blockage of the nozzle.

第2図は本発明の一実施例である亜硫酸ガス発生装置を
汚水浄化装置の一部に組込んだ場合の実施例を示す工程
の概略図である。
FIG. 2 is a schematic diagram of a process showing an embodiment in which a sulfur dioxide gas generating device according to an embodiment of the present invention is incorporated into a part of a sewage purification device.

浄化すべき原料はライン10からステンレススチール製
の通気タンク16へと送り込まれ、通気タンク16内で
、ライン20から供給されマニホルド18により分散さ
れた空気により攪拌、通気される。
The raw material to be purified is fed through line 10 to a stainless steel aeration tank 16 where it is agitated and aerated by air supplied from line 20 and dispersed by manifold 18.

供給された空気は常に湿った状態に保たれた木炭が充填
されたフィルター装置22を介して排気される。
The supplied air is exhausted through a filter device 22 filled with charcoal which is kept constantly moist.

タンク91からは脱色物質が供給される。A decolorizing substance is supplied from the tank 91.

通気された流体はボンプ19によりライン21を通って
球状サイクロン式の酸処理チャンバー24へ送られる。
The vented fluid is sent by pump 19 through line 21 to a spherical cyclone acid treatment chamber 24 .

流出量はフロート制御スイツチ15とポンプ19のバイ
パスラインに配置した弁により調節する。
The outflow amount is regulated by a float control switch 15 and a valve located in the bypass line of the pump 19.

通気タンク16からの流体は、ライン13からの亜硫酸
ガス及び空気(リサイクルされた亜硫酸ガスを含む)と
共に酸処理チャンバー24の正接方向に設置された流入
ノズル25を介して酸処理チャンバー24内に導入され
る。
Fluid from the vent tank 16 is introduced into the acid treatment chamber 24 through an inflow nozzle 25 installed tangentially to the acid treatment chamber 24 along with sulfur dioxide gas and air (including recycled sulfur dioxide gas) from line 13. be done.

ライン13からの新しい亜硫酸ガスの導入はpH検出器
30によるモニターに感応する電子制御装置29で調節
されこの制御装置はまた酸処理チャンバー24内への新
しい水の流入(図示せず)を制御し、かくして酸処理チ
ャンバー24内の攪拌流体混合物のpH値を約24から
約2.6までの間に維持する。
The introduction of fresh sulfur dioxide gas from line 13 is regulated by electronic controller 29 which is responsive to monitoring by pH detector 30, which also controls the flow of fresh water into acid treatment chamber 24 (not shown). , thus maintaining the pH value of the agitated fluid mixture within acid treatment chamber 24 between about 24 and about 2.6.

導入される流体が既にpH2.5に近いかあるいはそれ
より低い場合は酸処理チャンバー24は流体を亜硫酸ガ
スで飽和することを機能とする。
If the introduced fluid already has a pH close to or below 2.5, the function of the acid treatment chamber 24 is to saturate the fluid with sulfur dioxide gas.

抽気管32により酸処理チャンバー24から連続的に少
量の流れが引出され、pH検出器30を通り、更にライ
ン33を通って次の鉄処理チャンバー36へと導入され
る。
A small flow is continuously withdrawn from the acid treatment chamber 24 by a bleed tube 32, passed through a pH detector 30, and then introduced through line 33 into the next iron treatment chamber 36.

鉄処理チャンバー36には約1/2 X 6インチのサ
イズをしたスクラップ鉄の少片が密に充填されている。
The iron processing chamber 36 is closely packed with pieces of scrap iron approximately 1/2 x 6 inches in size.

酸処理された送給原料はライン34を介して酸処理チャ
ンバー24の底部から連続的に引出され隣接する塔状の
鉄処理チャンバー36の底部に導入される。
The acid-treated feedstock is continuously withdrawn from the bottom of the acid treatment chamber 24 via line 34 and introduced into the bottom of the adjacent tower-shaped iron treatment chamber 36.

同時に、反応しなかった亜硫酸ガス、酸素の使い尽され
た空気、更には水蒸気を含むその他の気体からなる気体
流が酸処理チャンバー24の排気ベルから連続的に引出
され、ライン35を介して鉄処理チャンバー36内の下
方注入マニホルド37へと送られ、鉄処理チャンバー3
6において送給原料と気体混合物とが再び混合されて金
属鉄片層を通過して上方へと一体的に移動する。
At the same time, a gas stream consisting of unreacted sulfur dioxide gas, oxygen-depleted air, and even other gases containing water vapor is continuously withdrawn from the exhaust bell of the acid treatment chamber 24 and passed through line 35 to the iron into the lower injection manifold 37 within the processing chamber 36 and into the iron processing chamber 3.
At 6, the feedstock and gaseous mixture are mixed again and moved together upwardly through the shingle layer.

処理された上記流体は下方へと延びるライン38を介し
て酸性鉄処理チャンバー36から引出され、ライン49
から導入される水酸化ナトリウムと共に、球形の中和チ
ャンパー56内にその正接方向に設置された流入のど部
47を介して、ライン57から導入された空気により噴
射される。
The treated fluid is drawn from the acid iron treatment chamber 36 via line 38 extending downwardly and into line 49.
The sodium hydroxide introduced from the spherical neutralization chamber 56 is injected by air introduced from the line 57 through an inflow throat 47 placed tangentially in the spherical neutralization chamber 56 .

これにより中和チャンパー56内で渦流が発生し、混合
が行なわれる。
As a result, a vortex is generated within the neutralization chamber 56, and mixing is performed.

一検出器及び電子制御装置53により、ライン49から
導入される水酸化ナトリウム量を制御する。
A detector and electronic controller 53 control the amount of sodium hydroxide introduced through line 49.

排気空気は中和チャンバー56の頂部の排気ベルからラ
イン61を介して引出され、後述するホモジナイザ゛−
65からの排気空気と共に、例えば通気タンク16用空
気としてライン20ヘリサイクルする。
Exhaust air is drawn from an exhaust bell at the top of the neutralization chamber 56 via line 61, and is passed through a homogenizer to be described below.
Together with the exhaust air from 65, it is recycled to line 20, for example as air for the ventilation tank 16.

中和された流体は次いでライン71を通って亜硫酸ガス
処理チャンバー140へと送られ、ここでは閉鎖循環系
のライン141からの亜硫酸ガスがノズル142を介し
て導入される。
The neutralized fluid is then passed through line 71 to sulfur dioxide gas treatment chamber 140 where sulfur dioxide gas from line 141 of the closed circuit is introduced via nozzle 142.

ノズル142にはまたライン143を介して亜硫酸ガス
発生装置Gから新しい亜硫酸ガスが供給される。
The nozzle 142 is also supplied with fresh sulfur dioxide gas from the sulfur dioxide gas generator G via a line 143.

pH検出器及び電子制御装置54により弁175を制御
し、チャンバー140内のpH値を約2.5に維持する
A pH detector and electronic controller 54 controls valve 175 to maintain the pH value within chamber 140 at approximately 2.5.

亜硫酸ガス処理された流体はチャンバー140からライ
ン48を介して流入口63を経て球形のホモジナイザ−
65に導入される。
The fluid treated with sulfur dioxide gas is passed from the chamber 140 via the line 48 to the inlet 63 and then to the spherical homogenizer.
Introduced in 65.

ライン48には水酸化カルシウムが導入される。Calcium hydroxide is introduced into line 48.

流入口63にライン64から空気が導入され、これによ
り各流がホモジナイザ−65内に噴射され混合される。
Air is introduced into the inlet 63 from a line 64 so that each stream is injected into a homogenizer 65 and mixed.

以後、必要に応じた所定の工程を経て浄化水が得られる
Thereafter, purified water is obtained through predetermined steps as required.

酸処理チャンバー24及び亜硫酸ガス処理チャンバー1
40に導入される亜硫酸ガスは第1図に基づいて詳述し
た亜硫酸ガス発生装置Gによって供給される。
Acid treatment chamber 24 and sulfur dioxide gas treatment chamber 1
The sulfur dioxide gas introduced into 40 is supplied by the sulfur dioxide gas generator G described in detail with reference to FIG.

このような汚水浄化装置においては、送給原料の量的あ
るいは性状的変動により必要とする亜硫酸ガス量が変化
するので、このような場合に本発明の亜硫酸ガス発生装
置が有効となる。
In such a sewage purification apparatus, the amount of sulfur dioxide gas required changes due to changes in the quantity or properties of the feed material, so the sulfur dioxide gas generating apparatus of the present invention is effective in such cases.

すなわち、亜硫酸ガス処理チャンバー140のpH値が
必要以上に低下した場合は電子制御装置によって弁17
5が制御され、ノズル142への亜硫酸ガスの流入が制
限される。
That is, if the pH value of the sulfur dioxide gas treatment chamber 140 drops more than necessary, the electronic control device closes the valve 17.
5 is controlled, and the flow of sulfur dioxide gas into the nozzle 142 is restricted.

酸処理チャンバー24への亜硫酸ガス流入量を定量弁等
により一定に制御しておけば、ノズル142への流入が
制限された結果、亜硫酸ガス発生装置の燃焼チャンバー
129内の圧力が増加し、これをコントローラー205
が感知して、送風機144の送風量及び弁部材Vの開度
を制限することになる。
If the amount of sulfur dioxide gas flowing into the acid treatment chamber 24 is controlled at a constant level using a metering valve or the like, the flow into the nozzle 142 will be restricted, and the pressure within the combustion chamber 129 of the sulfur dioxide gas generator will increase. The controller 205
is detected, and the amount of air blown by the blower 144 and the opening degree of the valve member V are limited.

以上、本発明の亜硫酸ガス発生装置を汚水処理に関連し
て説明したが、本発明はこの用途に限定されるものでは
なく、亜硫酸ガスが有用な他のプロセスにも適用し得る
ことは勿論である。
Although the sulfur dioxide gas generator of the present invention has been described above in connection with sewage treatment, the present invention is not limited to this application, and can of course be applied to other processes in which sulfur dioxide gas is useful. be.

以下に本発明の望ましい実施の態様を列記する。Desirable embodiments of the present invention are listed below.

(a) 前記燃焼チャンバーが、各円錐体底面縁部が
互いに向き合い且つ略々水平な整列軸に宿った一対の円
錐部からなり、各円錐部の頂部に前記ノズル及び前記亜
硫酸ガス出口が夫々配設されている特許請求の範囲に記
載の亜硫酸ガス発生装置。
(a) the combustion chamber is comprised of a pair of conical sections, the bottom edges of each conical section facing each other and resting on a substantially horizontal alignment axis, and the nozzle and the sulfur dioxide gas outlet are disposed at the top of each conical section, respectively; A sulfur dioxide gas generator according to the claims.

(l))前記ノズルの入口に対向する円錐部下方に前記
燃焼チャンバー内で生成された硫黄スラングを通過させ
るための孔あき壁を設けてある前記第(aQに記載の亜
硫酸ガス発生装置。
(l)) The sulfur dioxide gas generating device according to item (aQ), wherein a perforated wall is provided below the cone facing the inlet of the nozzle to allow the sulfur slang produced in the combustion chamber to pass through.

(C) 前記粉状硫黄を燃焼させる部材が、硫黄の燃
焼を開始し且つそれを維持するのに充分な量の炎を燃焼
チャンバーに導入すべく該燃焼チャンバーに連通された
バーナーである特許請求の範囲に記載の亜硫酸ガス発生
装置。
(C) The member for combusting the powdered sulfur is a burner communicated with the combustion chamber to introduce a flame into the combustion chamber in an amount sufficient to initiate and maintain combustion of the sulfur. A sulfur dioxide gas generator according to the scope of the above.

(d) 前記導管部材内での粉状硫黄の凝結を防止す
るための冷却装置が該導管部材に付設されている特許請
求の範囲に記載の亜硫酸ガス発生装置。
(d) The sulfur dioxide gas generator according to claim 1, wherein the conduit member is provided with a cooling device for preventing condensation of powdered sulfur within the conduit member.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の亜硫酸ガス発生装置の一実施例を示す
一部縦断正面図であり、第2図は第1図の亜硫酸ガス発
生装置を汚水浄化装置の一部に組込んだ実施例を示す工
程概略図である。 125・・・・・・水ジャケット、127・・・・・・
流体通路、129・・・・・・燃焼チャンバー、131
・・・・・・収集チャンバー、133・・・・・・出口
、144・・・・・・送風機、145・・・・・・ガス
・バーナー、148・・・・・・電気振動機、149・
・・・・・シフター、161・・・・・・孔あき計量板
、166・・・・・・孔あき壁、172,173・・・
・・・円錐部、H・・・・・・ホツパー、■・・・・・
・弁部材。
FIG. 1 is a partially vertical front view showing an embodiment of the sulfur dioxide gas generator of the present invention, and FIG. 2 is an embodiment in which the sulfur dioxide gas generator of FIG. 1 is incorporated into a part of a sewage purification device. FIG. 125...Water jacket, 127...
Fluid passage, 129... Combustion chamber, 131
...Collection chamber, 133...Outlet, 144...Blower, 145...Gas burner, 148...Electric vibrator, 149・
...Shifter, 161...Perforated measuring plate, 166...Perforated wall, 172,173...
... Conical part, H ... Hopper, ■ ...
・Valve parts.

Claims (1)

【特許請求の範囲】 1 粉状硫黄原料を収容するホッパーと、上記粉状硫黄
を燃焼するための燃焼チャンバーと、 上記ホツパーから上記燃焼チャンバーへ粉状硫黄を搬送
するため上記ホツパーと上記燃焼チャンバーとに連結さ
れた導管部材であって、上記燃焼チャンバー及び加圧空
気源に連通されたノズルを含み該加圧空気によって粉状
硫黄を該ノイズから上記燃焼チャンバーへ搬送するよう
になした導管部材と、 上記ホツパーから上記導管部材内へそして上記ノズルへ
と搬送する粉状硫黄の流れを制御するために上記導管部
材内に配設された弁部材と、上記ホツパーから上記導管
部材へ放出される粒状硫黄を篩うための振動グリッドと
、 上記ホッパーと上記振動グリッドの両方を同時に振動さ
せて上記ホッパーからの分離硫黄粒子の流れを制御すべ
く連結された振動部材と、気体状亜硫酸ガスを生成する
ために上記燃焼チャンバーに運ばれた粉状硫黄を燃焼さ
せる部材と、上記燃焼チャンバーから亜硫酸ガスを取り
出す出口と、 からなる亜硫酸ガス発生装置。
[Scope of Claims] 1. A hopper for storing powdered sulfur raw material, a combustion chamber for burning the powdered sulfur, and a hopper and the combustion chamber for transporting the powdered sulfur from the hopper to the combustion chamber. a conduit member connected to the combustion chamber, the conduit member including a nozzle in communication with the combustion chamber and a source of pressurized air for conveying powdered sulfur from the noise to the combustion chamber by the pressurized air; a valve member disposed within the conduit member for controlling the flow of powdered sulfur from the hopper into the conduit member and into the nozzle; a vibrating grid for screening particulate sulfur; a vibrating member coupled to simultaneously vibrate both the hopper and the vibrating grid to control the flow of separated sulfur particles from the hopper; and producing gaseous sulfur dioxide gas. A sulfur dioxide gas generator comprising: a member for burning powdered sulfur conveyed to the combustion chamber for the purpose of combustion; and an outlet for taking out sulfur dioxide gas from the combustion chamber.
JP49114005A 1973-10-05 1974-10-04 Fluid purification method and purification device Expired JPS599481B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US403893 1973-10-05
US05/403,893 US3948774A (en) 1973-10-05 1973-10-05 Water purification process and apparatus

Publications (2)

Publication Number Publication Date
JPS5061858A JPS5061858A (en) 1975-05-27
JPS599481B2 true JPS599481B2 (en) 1984-03-02

Family

ID=23597343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49114005A Expired JPS599481B2 (en) 1973-10-05 1974-10-04 Fluid purification method and purification device

Country Status (4)

Country Link
US (1) US3948774A (en)
JP (1) JPS599481B2 (en)
CA (1) CA1029869A (en)
IL (1) IL45726A (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4224148A (en) * 1975-07-18 1980-09-23 Lindman William E Galvanic flow system for joint particulate recovery and liquid purification
US4340473A (en) * 1975-07-18 1982-07-20 Precipitator Corporation Apparatus for joint particulate recovery and liquid purification
JPS52119494A (en) * 1976-03-05 1977-10-06 Toshiba Corp Control of ozonizer system
US4233126A (en) * 1978-06-08 1980-11-11 Innovative Chemicals, Inc. Ozone produced by chemonuclear generation
BE871512A (en) * 1978-10-24 1979-04-24 Godar Serge WATER AND AQUEOUS EFFLUENT COLLECTION AND TREATMENT INSTALLATION.
US4304673A (en) * 1980-04-07 1981-12-08 International Environmental, Inc. Wastewater treatment process
US4340489A (en) * 1980-04-07 1982-07-20 International Environmental, Inc. Wastewater treatment process with pH adjustment
US4345996A (en) * 1980-09-22 1982-08-24 Precipitator Corporation Conic reaction chamber for water decontamination
JPS6038007A (en) * 1983-08-11 1985-02-27 Yks Co Ltd Oil-water separator for ship
JPS6448157U (en) * 1987-09-17 1989-03-24
US5350516A (en) * 1991-12-27 1994-09-27 Bhadra Amal K Control of odor and septicity and purification of sewage and wastewater
US5141647A (en) * 1991-12-27 1992-08-25 Bhadra Amal K Control of odor and septicity of sewage
AU6248794A (en) * 1993-03-12 1994-09-26 Wilhelm Environmental Technologies, Inc. Sulfur dioxide generation using granulated or emulsoid sulfur feedstock
US5447630A (en) * 1993-04-28 1995-09-05 Rummler; John M. Materials treatment process and apparatus
US5466367A (en) * 1994-04-06 1995-11-14 Environmental Restoration Services, Inc. Industrial waste water treatment
US5759387A (en) * 1996-09-26 1998-06-02 Essef Corporation Grey water filter tank recovery system and filter backwashing system
US5853579A (en) * 1996-11-26 1998-12-29 Wastech International Inc. Treatment system
US5948269A (en) * 1997-08-20 1999-09-07 Stone; Michael D. Process for the removal and suppression of dissolved hydrogen sulfide and other malodorous compounds and reduction of acidity in liquid and sludge wastewater systems
US6132614A (en) * 1997-11-26 2000-10-17 Pacific Advanced Civil Engineering, Inc Modular wastewater treatment system
US20040028572A1 (en) * 2002-08-12 2004-02-12 Sham John C.K. Ozone deodorizer for waste receptacles
US6905609B2 (en) * 2003-02-06 2005-06-14 Namon A. Nassef Waste treatment and disposal system
US7172687B2 (en) * 2003-03-06 2007-02-06 So2 Solutions, Llc Wastewater treatment system
US20040229256A1 (en) * 2003-03-19 2004-11-18 Theodor Funck Method and device for diagnostic investigation of biological samples
US7135106B2 (en) 2003-04-08 2006-11-14 Aquagenex Inc. Portable water purifier
US7285217B2 (en) * 2003-12-02 2007-10-23 Siemens Water Technologies Corp. Removing odoriferous sulfides from wastewater
US7799236B2 (en) * 2005-08-30 2010-09-21 Lg Chem, Ltd. Gathering method and apparatus of powder separated soluble component
CN101239767A (en) * 2007-08-27 2008-08-13 北京能拓高科技有限公司 High concentration organic sewage treating system
CN101239765A (en) * 2007-08-27 2008-08-13 北京能拓高科技有限公司 Low concentration domestic sewage treating system
US7799224B2 (en) * 2008-01-30 2010-09-21 Siemens Water Technologies Corp. Wastewater treatment methods
CA2775335A1 (en) * 2009-09-25 2011-03-31 Siemens Industry, Inc. Synergistic wastewater odor control composition, systems, and related methods therefor
US8430112B2 (en) 2010-07-13 2013-04-30 Siemens Industry, Inc. Slurry feed system and method
US10435316B2 (en) 2010-09-30 2019-10-08 Orange County Sanitation District Chemical optimization during wastewater treatment, odor control and uses thereof
US8968646B2 (en) 2011-02-18 2015-03-03 Evoqua Water Technologies Llc Synergistic methods for odor control
US20130118994A1 (en) * 2011-03-21 2013-05-16 R360 Environmental Solutions System and Methods for Wastewater and Produced Water Cleaning and Reclamation
PT2969973T (en) * 2013-03-15 2019-11-04 E3Water Llc Portable, non-biological, cyclic sewage treatment plant
US8961793B2 (en) * 2013-05-20 2015-02-24 Earth Renaissance Technologies, Llc Storm water treatment apparatus and method
US20170203986A1 (en) * 2016-01-15 2017-07-20 Titan Water Technologies, Inc. Water purification system
CN107497552A (en) * 2017-07-26 2017-12-22 徐俊芳 Sanitary sewage reducing mechanism
CN114923400B (en) * 2022-03-09 2023-10-27 江苏汉宇建筑有限公司 Pipeline dredging work planning dosage mud device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1381936A (en) * 1920-06-19 1921-06-21 Harry L Brown Retort
US1629352A (en) * 1923-12-03 1927-05-17 Gen Chemical Corp Sulphur burner
US2812063A (en) * 1953-11-17 1957-11-05 Nat Lead Co Vibratory apparatus for treating materials
US2807522A (en) * 1953-12-17 1957-09-24 Panhandle Eastern Pipe Line Co Apparatus for burning sulfur and treating liquids with the combustion gases therefrom
US2822327A (en) * 1955-03-31 1958-02-04 Gen Electric Method of generating ozone
US2882994A (en) * 1955-04-12 1959-04-21 Sivalls Tanks Inc Separator apparatus
US3013951A (en) * 1959-06-15 1961-12-19 Mansfield Vaughn Method for continuous coke production whiled extracting low temperature volatiles
GB1059632A (en) * 1963-02-12 1967-02-22 British Oxygen Co Ltd Improvements in apparatus for converting oxygen to ozone
US3297550A (en) * 1963-09-23 1967-01-10 Blaw Knox Co Method of and apparatus for the manufacture of coke
US3713543A (en) * 1968-09-23 1973-01-30 Dravo Corp Activated sewage plant
US3521752A (en) * 1968-11-12 1970-07-28 Western Mechanical Inc Water purification apparatus
US3660277A (en) * 1971-05-17 1972-05-02 Union Carbide Corp Oxygenation-ozonation of bod-containing water
US3739440A (en) * 1971-06-02 1973-06-19 N Lund Ozone generator and method of making same

Also Published As

Publication number Publication date
IL45726A (en) 1977-05-31
IL45726A0 (en) 1974-11-29
AU7401174A (en) 1976-04-08
JPS5061858A (en) 1975-05-27
CA1029869A (en) 1978-04-18
US3948774A (en) 1976-04-06

Similar Documents

Publication Publication Date Title
JPS599481B2 (en) Fluid purification method and purification device
US3647716A (en) Transport reactor with a venturi tube connection to a combustion chamber for producing activated carbon
US4753785A (en) Method of purging of waste gases
KR20050091749A (en) Method and plant for removing gaseous pollutants from exhaust gases
HU221802B1 (en) Device for mixing particulate material and liquid
JPH05248769A (en) Method and device for treating gas and particulate solid in fluid bed
US4526771A (en) Sulfurous acid generator
CN107185385A (en) A kind of spuious flue gas during smelting wet dedusting of atm number, sulfur method
CA1144345A (en) Method for removing sulfur oxides from a hot gas
US3337989A (en) Process of treating soil containing carbonates
KR970010738A (en) Method and apparatus for directly injecting oxygen into a fluidized bed reactor together with reactant stream
US4332774A (en) Manufacture of hydrogen sulfide
US1718420A (en) Process of converting ammonium chloride into ammonia and hydrochloric acid
CN105983311A (en) Desulfurization and denitrification integrated system for flue gas of chain-grate boiler
EP2457634B1 (en) A wet scrubber for removing sulphur dioxide from a process gas
JP3154108B2 (en) Method and apparatus for heat generation, including desulfurization of effluent with fine-grained absorbent particles in a transport bed
EA036818B1 (en) Process and device for treating furnace gas
CN110282718A (en) A kind of system of the reduction method processing containing nitrate wastewater
US5762884A (en) Flue gas treating system
JP6929406B1 (en) Sewage sludge incineration method and sewage sludge incineration equipment
US3541008A (en) Method and apparatus for neutralizing acid waste water
WO2011008159A1 (en) Method for adding oxygen to a liquid absorbent in a device for purifying gas
US1832013A (en) Process and apparatus for subliming sulphur
Wheelock et al. Cyclic operation of a fluidized bed reactor for decomposing calcium sulfate
US4437866A (en) Pollution harness