JPS5994394A - Ceramic heater - Google Patents

Ceramic heater

Info

Publication number
JPS5994394A
JPS5994394A JP20210982A JP20210982A JPS5994394A JP S5994394 A JPS5994394 A JP S5994394A JP 20210982 A JP20210982 A JP 20210982A JP 20210982 A JP20210982 A JP 20210982A JP S5994394 A JPS5994394 A JP S5994394A
Authority
JP
Japan
Prior art keywords
heating element
titanium oxide
coating
heating
sprayed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20210982A
Other languages
Japanese (ja)
Inventor
慶享 児島
宰 小川
朝日 直達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20210982A priority Critical patent/JPS5994394A/en
Publication of JPS5994394A publication Critical patent/JPS5994394A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は導電性物質体に電流を流して発熱させる抵抗加
熱方式のセラミック発熱体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a resistance heating type ceramic heating element that generates heat by passing an electric current through a conductive material.

〔従来技術〕[Prior art]

一般に上記のような抵抗加熱方式の発熱体としては、W
、Mo、ニクロム等の金属、合金あるいはSiC等を主
成分とするセラミック等が知られている。このような抵
抗加熱方式の発熱体はその取シ扱い、及び装置自体の構
造が簡略なものであるため、各方面で数多く用いられて
いる。ところで、このような発熱体として要求される性
質としては、銅、銀、アrミニウム等の導電材料と異な
シ、その比抵抗が発熱体として作用するに十分な大きさ
を有していることが必要である。更に、発熱体を通電加
熱した際、高温に加熱された状態で発熱体自体が安定で
あることもあげられδ。発熱体自体が高温状態で消耗し
た場合、その抵抗が変化し、発熱状態が不均一になる。
Generally, the heating element for the resistance heating method as mentioned above is W.
, Mo, nichrome, and other metals, alloys, and ceramics whose main components are SiC and the like are known. Such resistance heating heating elements are used in large numbers in various fields because they are easy to handle and the structure of the device itself is simple. By the way, the properties required for such a heating element are that it is different from conductive materials such as copper, silver, and aluminum, and that its specific resistance is large enough to act as a heating element. is necessary. Furthermore, when the heating element is heated by electricity, the heating element itself is stable even when heated to a high temperature δ. When the heating element itself wears out at high temperatures, its resistance changes and the heat generation becomes uneven.

その結果、発熱体の消耗部分が過熱され、その部分が破
損することになる。このような高温に加熱した状態での
発熱体の損傷はW、MO等の金属材料で特に著しく、消
耗を防止するために不活性あるいは還元性ガスで保護す
る構造になっている。一方、SiC等を主成分とするセ
ラミック発熱体は金属あるいは合全発熱体に比べ、酸化
等による発熱体の消耗は少なく、高温に加熱した状態で
も安定である。しかるに、従来用いられているセラミッ
ク発熱体は5iCi主成分とする材料に各種の添加剤を
加え焼結等の方法で成形したものである。従って、製造
上その発熱体の形状は棒状あるいは平板状の限られたも
のになる。又、いずれの形状においても発熱体を小型軽
量化することは難しく、更に、SiCの強度上、薄膜状
の発熱体を形成することは困難である。ところで、最近
、発熱体装置として要求される性質も多様化し、例えば
広い面積の部分を均一に加熱する、あるいは所定の形状
の部分、局部的な部分を加熱することができる発熱体装
置が求められている。従来の焼結によるセラミック発熱
体はその形状が限られているため、広贋面積の部分を均
一に加熱するに際しては数個の発熱体を組み合わせたも
のになり、均一な加熱ケ行うことは困難である。又、従
来の焼結によるセラミック発熱体は小型化することが困
難であるので、所定の形状の部分あるいは局部的な部分
を加熱することもできない。更に、その強度上、薄膜状
の形状に成形することも困難であるので、発熱体装置自
体を小型軽量化することもできない。このように、従来
のSiC等を主成分とする材料を焼結し成形した発熱体
はその製造上の問題から、多様化する発熱体の性質に十
分対応できない。一方、w、Mo等の金属材料を発熱体
として用いた装置においては、絶縁物からなる基板の上
にW、、MO等の金属材料粉末と結合剤を混合したペー
スト状の塗料を塗布し、その後基板を1000〜120
011m’の温度で加熱しW、MO等を基板表面に固着
させたものが知られている。このような発熱体装置にお
いては、発熱体に電流を流し加熱状態にした際のW、 
M O等の金属材料の酸化による消耗を防止するため、
発熱体の表面部分を絶縁物からなる上部基板で保護する
構造になっている。このような構造の発熱体装置は、焼
結によるセラミック発熱体に比べ、広い面積の加熱、あ
るいは所定の形状の部分、局部的な部分の加熱を行うこ
とは可能になる。しかし、このような金属材料を用いた
発熱体装置では、発熱体の温度が上昇した場合、発熱体
金属材料と接している絶縁基板(主にアルミナ)との間
に化学的な反応が生じる。その結果、発熱体を構成する
W、Mo等の金属材料が基板材料中ヘモ広散し、発熱体
の断面積が減少し、一定の温度の発熱状態を維持するこ
とができなくなる。更に反応が進行した場合、その部分
の抵抗が犬きくな多部分的な過熱状態になムやがて発熱
体1d損傷してしまう。このように、焼結によって形成
した5iCi主成分とするセラミック発熱体、WXMO
等を塗布焼成した発熱体のいずれも広い面積、あるいは
所定の形状の部分、局部的な部分を加熱する小型軽量な
安定した発熱体とはなり得ないものであった。
As a result, the consumable portion of the heating element becomes overheated and is damaged. Damage to the heating element when heated to such a high temperature is particularly severe for metal materials such as W and MO, so the heating element is protected with an inert or reducing gas to prevent wear and tear. On the other hand, compared to metal or composite heating elements, ceramic heating elements mainly composed of SiC or the like suffer less wear and tear due to oxidation, etc., and are stable even when heated to high temperatures. However, conventionally used ceramic heating elements are made by adding various additives to a material mainly consisting of 5iCi and molding the mixture by a method such as sintering. Therefore, due to manufacturing considerations, the shape of the heating element is limited to a rod or a flat plate. In addition, it is difficult to reduce the size and weight of the heating element in any shape, and furthermore, it is difficult to form a thin film heating element due to the strength of SiC. Incidentally, recently, the properties required of a heating element device have diversified, and for example, there is a demand for a heating element device that can uniformly heat a wide area, or can heat a predetermined shaped part or a localized part. ing. Conventional sintered ceramic heating elements have limited shapes, so in order to uniformly heat a large counterfeit area, several heating elements must be combined, making it difficult to achieve uniform heating. It is. Further, since it is difficult to miniaturize the conventional sintered ceramic heating element, it is also impossible to heat a portion of a predetermined shape or a localized portion. Furthermore, because of its strength, it is difficult to form it into a thin film shape, and therefore the heating element device itself cannot be made smaller and lighter. As described above, conventional heating elements formed by sintering and molding materials mainly composed of SiC or the like cannot sufficiently respond to the diversifying properties of heating elements due to manufacturing problems. On the other hand, in a device using a metal material such as W, Mo, etc. as a heating element, a paste-like paint containing a mixture of metal material powder such as W, MO, etc. and a binder is applied onto a substrate made of an insulator. After that, the board is 1000~120
A substrate in which W, MO, etc. are fixed to the surface of the substrate by heating at a temperature of 0.1 m' is known. In such a heating element device, when a current is passed through the heating element to bring it into a heated state, W,
To prevent wear due to oxidation of metal materials such as MO,
It has a structure in which the surface of the heating element is protected by an upper substrate made of an insulator. A heating element device having such a structure can heat a wider area, a portion of a predetermined shape, or a localized portion than a sintered ceramic heating element. However, in such a heating element device using a metal material, when the temperature of the heating element rises, a chemical reaction occurs between the heating element metal material and an insulating substrate (mainly alumina) in contact with the heating element. As a result, the metal materials such as W and Mo constituting the heating element are diffused throughout the substrate material, the cross-sectional area of the heating element is reduced, and it becomes impossible to maintain the heating state at a constant temperature. If the reaction progresses further, the heating element 1d will eventually be damaged due to overheating in many parts where the resistance of that part becomes too strong. In this way, a ceramic heating element mainly composed of 5iCi formed by sintering, WXMO
None of the heating elements coated and fired with the above materials could become small, lightweight, and stable heating elements capable of heating a large area, a predetermined shaped part, or a localized part.

〔発明く目的〕[Purpose of invention]

本発明の目的は、上記のような点にかんがみて、発熱体
を構成する材料として金属材料に比べ熱的、化学的に安
定なものであるセラミックに注目し、上記のような要求
を満足する小型軽量の発熱体を提供するにある。
In view of the above points, an object of the present invention is to focus on ceramics, which are thermally and chemically more stable than metal materials, as a material constituting a heating element, and to provide a material that satisfies the above requirements. The purpose is to provide a small and lightweight heating element.

〔発明の概要〕[Summary of the invention]

セラミック全発熱体として用いるためには、先ず本来絶
縁物であるセラミックに導電性を付加し、更にその導電
性の程度(比抵抗)を制御できることが要求される。更
に、その比抵抗も発熱時に高温になった状態で、長時間
安定していることも要求される。又、セラミック発熱体
の形成方法も発熱体を小を軽量化するためには、薄膜状
のセラミックを形成することが必要である。このような
点から検討した結果、セラミックを成形する方法として
高出力のプラズマを用いた溶射法が優れておシ、かつこ
のようにして形成したセラミック溶射膜に導電性を付加
するには、At203  、 Zr(Jz等に比べ酸素
との結合力が弱いTiO□が優れていることを思い出し
た。すなわち、’1’i02は通常は1080cmり比
抵抗を示す絶縁物であるが、これ?水素プラズマを含む
プラズマジェットを用いた方法で溶射することによって
、化学量論からずれたTi0z−エの状態になシ比抵抗
が低下する。このような導電性を有したチタン酸化物溶
射膜は水溶液中で化学反応を行う電気化学装置の電極と
して用いられておシ、その構造としては導電性金属基体
の上にチタン酸化物溶射膜を被覆したものが公知である
(例えば特開昭49−98783 ) 、、このような
構造のセラミック電極の場合、チタン酸化物金剛いる理
由としては、先ずチタン酸化物が導電性セラミックであ
ること、更に金属材料と異なり、セラミックであるチタ
ン酸化物は各種の水溶液中での電気化学的反応に対して
安定であることがあげられる。電極材としてのチタン酸
化物溶射被膜の場合、被膜は電気化学的反応を進行させ
る部分で、特に化学反応が生じる際の電極面での過電圧
をいかに低くすることができるかが問題になっている。
In order to use a ceramic as a total heating element, it is first necessary to add electrical conductivity to the ceramic, which is originally an insulator, and to be able to control the degree of electrical conductivity (specific resistance). Furthermore, the specific resistance is also required to be stable for a long period of time in a high temperature state during heat generation. Also, regarding the method of forming a ceramic heating element, in order to reduce the size and weight of the heating element, it is necessary to form a thin film of ceramic. As a result of consideration from these points, we found that thermal spraying using high-power plasma is an excellent method for forming ceramics, and that At203 , I remembered that TiO□, which has a weaker bonding force with oxygen than Zr (Jz, etc.), is superior. In other words, '1'i02 is an insulator that normally exhibits a resistivity of 1080 cm, but this? Hydrogen plasma By thermal spraying using a method using a plasma jet containing Ti0z-E, the specific resistance decreases due to the state of Ti0z-E which deviates from the stoichiometry. It is used as an electrode in an electrochemical device that performs a chemical reaction, and its structure is known as one in which a conductive metal base is coated with a sprayed titanium oxide film (for example, JP-A-49-98783). In the case of a ceramic electrode with such a structure, the reason why titanium oxide is used is that titanium oxide is a conductive ceramic, and unlike metal materials, titanium oxide, which is a ceramic, can be used in various aqueous solutions. In the case of a sprayed titanium oxide coating used as an electrode material, the coating is the part where the electrochemical reaction proceeds, especially on the electrode surface where the chemical reaction occurs. The problem is how to reduce the overvoltage at

過電圧を支配する要因としてはチタン酸化物溶射被膜の
内部抵抗が小さいことも若干効果が期待されうるがむし
ろ、チタン酸化物溶射被膜上での化学反応が行なわれる
際の有効な表面積が大きいこと、あるいは反応の際の被
膜表面での触媒作用等の方が過電圧の低下に大きく寄与
している。又、電極の安定性に関しては電極は主に水溶
液中で使用されるので、電極自体の温度上昇は少く、む
しろ、化学反応が生じる際の生成ガス等による腐食が問
題になっている。このように、電極材として公知である
チタン酸化物溶射被膜は発熱体に要求される(1)、比
抵抗が小さい(2)、加熱状態時の安定性の性質を必ら
ずしも満すものでは無い。そこで本発明者らは上記のよ
うな点上満足するチタン酸化物溶射被膜を得ることにつ
いて検討した。発熱体の比抵抗に関しては、その値が1
O−60c?n程度(通常の導電性金属材料に相当)と
小さすぎる場合は、発熱体として有効なものには成り得
ない。一方、比抵抗が100m以上と大きい場合は発熱
体全体を均一に加熱することが難しくなり、特に薄膜状
の発熱体の場合断面積が小さいので発熱体としての内部
抵抗が大きくなり、有効な発熱量を得る上で多大な電圧
?印加することが必要になる。このような発熱体は経済
的に好ましくないものである。従って、薄膜の発熱体で
は発熱体を構成する材料の比抵抗は1O−6Ωm以上1
θΩ口以下望ましくは10−3Om以上10m以下の範
囲内にあることが要求されることになる。一方、加熱時
の発熱体材料の安定性に関しては、高温状態での比抵抗
の値が上記のような範囲内であることの他に、長時間高
温状態に維持された場合の発熱体材料自体の経時変化に
よる劣化があげられる。
As a factor governing overvoltage, the small internal resistance of the titanium oxide sprayed coating may be expected to have some effect, but rather the large effective surface area for chemical reactions on the titanium oxide sprayed coating. Alternatively, the catalytic action on the surface of the coating during the reaction contributes more to the reduction in overvoltage. Regarding the stability of the electrode, since the electrode is mainly used in an aqueous solution, the temperature rise of the electrode itself is small, and corrosion caused by the gas produced when a chemical reaction occurs is a problem. In this way, the titanium oxide thermal spray coating, which is well known as an electrode material, does not necessarily satisfy the properties required for a heating element (1), low resistivity (2), and stability under heating conditions. It's nothing. Accordingly, the present inventors have studied the possibility of obtaining a titanium oxide thermal spray coating that satisfies the above points. Regarding the specific resistance of the heating element, its value is 1
O-60c? If it is too small, about n (corresponding to a normal conductive metal material), it cannot become an effective heating element. On the other hand, if the specific resistance is large, such as 100 m or more, it becomes difficult to uniformly heat the entire heating element.In particular, in the case of a thin film heating element, the cross-sectional area is small, so the internal resistance as a heating element becomes large, resulting in effective heat generation. Huge voltage on getting quantity? It is necessary to apply Such heating elements are economically undesirable. Therefore, in a thin film heating element, the specific resistance of the material composing the heating element is 1O-6Ωm or more.
It is required to be within the range of θΩ or less, preferably 10 −3 Om or more and 10 m or less. On the other hand, regarding the stability of the heating element material during heating, in addition to ensuring that the specific resistance value at high temperature is within the above range, the stability of the heating element material itself when maintained at high temperature for a long period of time is One example of this is deterioration due to changes over time.

発熱体の経時変化による劣化(例えば発熱体の比抵抗の
変化等)は発熱体の抵抗の変化を招き、安定な発熱状態
を維持する上で問題となる。そこで発熱体として要求さ
れる以上の性質を満足するチタン酸化物溶射被Mを形成
することについて検劇した。その結果、プラズマ溶射を
行う際のプラズマ出力、あるいは溶射材であるチタン酸
化物の種類、特にその成分と粒径分布範囲が、チタン酸
化物溶射被膜を発威体として用いる場合、重要であるこ
とを見い出した。その検討結果の一例として第1表はチ
タン酸化物粉末の粒径分布範囲及びプラズマ出力と溶射
被膜とした際の被膜の比抵抗と”の関係を示したもので
ある。表中、試験片A1〜4の結果粉末の粒径が小さく
なるに従って被膜の比抵抗は小さくなることが判った。
Deterioration of the heating element due to changes over time (for example, changes in the specific resistance of the heating element) causes a change in the resistance of the heating element, which poses a problem in maintaining a stable state of heat generation. Therefore, we investigated the possibility of forming a titanium oxide thermally sprayed coating M that satisfies the properties required for a heating element. As a result, it was found that the plasma output during plasma spraying or the type of titanium oxide used as the spraying material, especially its composition and particle size distribution range, are important when using a titanium oxide sprayed coating as a firing element. I found out. As an example of the study results, Table 1 shows the relationship between the particle size distribution range of titanium oxide powder, the plasma output, and the specific resistance of the sprayed coating.In the table, test piece A1 As a result of 4 to 4, it was found that as the particle size of the powder became smaller, the specific resistance of the coating became smaller.

一方、表中で試験片通5〜8の結果はプラズマ溶射時の
プラズマ出力と被膜の比抵抗との関係を示した一例であ
る。その結果、プラズマ出力が大きくなるに従って被膜
の比抵抗は小さくなる。以上の結果、発熱体として望ま
しい比抵抗値を得るためには、チタン酸化物溶射被膜を
形成する上で、溶射材チタン酸化物の粉末の粒径が74
μrn以下、望ましくは44μm以下の粉末を用いるこ
とが望才しい。一方、5μm以下の粉末はプラズマ溶射
時にプラズマジェット中に粉末を安定して供給する上で
問題があり、必らずしも適したものではない。又、プラ
ズマ出力は45kW以上の出力が望ましい。そこで、次
にこのような発熱体として望ましい比抵抗値が得られた
被膜について、発熱体として用いた場合の経時変化につ
いて検問した。測定方法はA7203製基板の上に予め
所定の間隔で1対のpt電極を設け、その電極間にチタ
ン酸化物溶射被膜を形成したものを作製し評価した。被
膜の厚さは0.1〜0.5 ttan程度である。上記
の発熱体の1対のPt電極間に電圧を印加し、被膜中に
電流を流した。第2表は発熱体装置に一定の電圧を印加
し、所定の時間通電した際の発熱体に流れた電流を調べ
た結果である。第2表では発熱体装置が熱的に安定化し
た後(約5分間)の発熱体に流れた電流値(10)i、
s時間通電した際の電流値(I)とを比較したものであ
る。経時変化の少ない安定な発熱体としては、発熱体に
流れる電流の変化が少なく、発熱体の内部抵抗の経時変
化の小ないものが望ましAoその結果、74μm以上望
ましくは44μm以下のチタン酸化物粉末を用い、45
kW以上の出力で形成したチタン酸化物溶射被膜は、経
時変化の少ない安定した発熱体であることが判った。こ
のように本発明のチタン酸化物溶射被膜発熱体は従来の
電極材としてのチタン酸化物溶射被膜に比べ、発熱体と
して具備すべき性質を十分満足するものであった。この
ような原因の一つとしては、電極材と発熱体に要求され
る性質の相異に寄因する被膜の内部構造の差が考えられ
うる。例えば、電極材としては、電極表面で生じる電気
化学反応を効率良く行うには電極の表面積を大きくする
、すなわち被膜?多孔質化することが有効とされている
。一方、発熱体としては、被膜の内部抵抗を小さクシ、
発熱体としての経時変化に伴なう劣化を防止する上で、
多孔質被膜よりもむしろ緻密な被膜が望ましいと考えら
れる。
On the other hand, the results of test pieces 5 to 8 in the table are an example showing the relationship between the plasma output during plasma spraying and the specific resistance of the coating. As a result, as the plasma output increases, the specific resistance of the coating decreases. As a result of the above, in order to obtain a desired specific resistance value for a heating element, it is necessary to form a titanium oxide thermal spray coating with a particle size of 74 mm.
It is preferable to use a powder with a particle size of less than μrn, preferably less than 44 μm. On the other hand, powders with a diameter of 5 μm or less have problems in stably supplying the powder into a plasma jet during plasma spraying, and are not necessarily suitable. Further, it is desirable that the plasma output is 45 kW or more. Therefore, we next examined the changes over time when used as a heat generating element with respect to the coating that had obtained a specific resistance value desirable for such a heat generating element. In the measurement method, a pair of PT electrodes were provided in advance at a predetermined interval on a substrate made of A7203, and a titanium oxide sprayed coating was formed between the electrodes to produce and evaluate. The thickness of the coating is approximately 0.1 to 0.5 ttan. A voltage was applied between a pair of Pt electrodes of the heating element, and a current was passed through the coating. Table 2 shows the results of examining the current flowing through the heating element when a constant voltage was applied to the heating element device and the current was passed for a predetermined period of time. Table 2 shows the current value (10)i flowing through the heating element after the heating element device has been thermally stabilized (about 5 minutes),
The current value (I) is compared with the current value (I) when the current is applied for s time. As a stable heating element with little change over time, it is desirable to have a small change in the current flowing through the heating element and a small change over time in the internal resistance of the heating element. Using powder, 45
It was found that the titanium oxide sprayed coating formed with an output of kW or more is a stable heating element with little change over time. As described above, the titanium oxide thermal sprayed coating heating element of the present invention satisfactorily satisfies the properties required for a heating element compared to the conventional titanium oxide thermal sprayed coating used as an electrode material. One of the reasons for this may be a difference in the internal structure of the coating due to the difference in properties required of the electrode material and the heating element. For example, when it comes to electrode materials, in order to efficiently carry out the electrochemical reactions that occur on the electrode surface, the surface area of the electrode must be increased, that is, it must be coated. It is said that making it porous is effective. On the other hand, as a heating element, the internal resistance of the coating is reduced.
In order to prevent deterioration over time as a heating element,
A dense coating is considered desirable rather than a porous coating.

本発明者らは、更に、チタン酸化物材料に各種の添加剤
を加えた材料についても検討した。先ず、チタン酸化物
粉末と各種の金属材料粉末の混合粉末を用いて被膜を形
式した。このような被膜はチタン酸化物と金属が混合し
たもので、被膜の比抵抗は小さくなる。しかし、通電加
熱を行ない発熱体としての経時変化による劣化は大きく
なった。
The present inventors also investigated materials in which various additives were added to titanium oxide materials. First, a coating was formed using a mixed powder of titanium oxide powder and various metal material powders. Such a film is a mixture of titanium oxide and metal, and the specific resistance of the film is small. However, when electrical heating was performed, the deterioration due to aging as a heating element increased.

そこでチタン酸化物粉末に各種の金属元素を添加した材
料を作製し、その粉末材料を溶射し被膜を形成し検討し
た。粉末原料であ2酸化チタンと非貴金属元素との均一
混合物は次のようにして作られる。例えば酸化チタンを
電気炉で溶融し、その融液にニオブ金属又はニオブ酸化
物あるいはニッケル金属又はニッケル酸化物を添加し、
これを凝固、粉砕して作ることができる。また、上記方
法において、原料を予め電気炉の中で混合して溶融し、
凝固、粉砕したものもよい。
Therefore, a material was prepared by adding various metal elements to titanium oxide powder, and the powder material was thermally sprayed to form a coating. A homogeneous mixture of titanium dioxide and a non-noble metal element as a powder raw material is prepared as follows. For example, titanium oxide is melted in an electric furnace, niobium metal, niobium oxide, nickel metal or nickel oxide is added to the melt,
It can be made by coagulating and crushing it. Further, in the above method, the raw materials are mixed and melted in an electric furnace in advance,
Coagulated and crushed ones are also good.

更に、多孔質酸化チタン粒又は粉末に、ニオブ又はニッ
ケルの塩の溶液(硝酸ニッケルなど)を含浸し、含浸物
を空気中又は他の任意の雰囲気中で加熱しニオブ塩又は
ニッケル塩全分解する。これを粉砕して目的の粉末を得
ることができる。
Furthermore, porous titanium oxide particles or powder are impregnated with a solution of niobium or nickel salt (such as nickel nitrate), and the impregnated material is heated in air or any other atmosphere to completely decompose the niobium salt or nickel salt. . This can be crushed to obtain the desired powder.

酸化チタン粉末と非貴金属元素又はその化合物の粉末と
の混合物を同時にプラズマ溶射してもよい。
A mixture of titanium oxide powder and powder of a non-noble metal element or its compound may be plasma sprayed at the same time.

X線分析によれば、このようにして得た電極の溶射膜中
の非貴金属元素例えばニオブ又はニッケルは原子状態と
いえるほどきわめて微細にチタン酸化物中に均一分散し
ている。
According to X-ray analysis, non-noble metal elements such as niobium or nickel in the sprayed film of the electrode obtained in this manner are uniformly dispersed in the titanium oxide in such a finely divided manner that they can be said to be in an atomic state.

以上のように、本発明における均一溶射膜は、チタン酸
化物と他の非貴金属元素との単なる混合物ではなく、両
成分の固溶体、複合酸化物、共晶又はそれらの2つ以上
の混合組織を有する。必要に応じ少量の貴金属を含んで
もよい。
As described above, the uniform sprayed film of the present invention is not a mere mixture of titanium oxide and other non-noble metal elements, but a solid solution of both components, a composite oxide, a eutectic, or a mixed structure of two or more thereof. have A small amount of noble metal may be included if necessary.

非貴金属元素のうち、ハロゲン、希ガス、水素などのガ
スは対象外である。
Among non-noble metal elements, gases such as halogens, rare gases, and hydrogen are not covered.

本発明では非貴金属元素として金属元素及び半金属元素
が用いられる。たとえば金属元素としてはNb、Ni、
Fe、V、Ta、Co、Cr。
In the present invention, metal elements and metalloid elements are used as non-noble metal elements. For example, the metal elements include Nb, Ni,
Fe, V, Ta, Co, Cr.

Ca、Sn、Mo、La、Ce、Mn、 W、Sr。Ca, Sn, Mo, La, Ce, Mn, W, Sr.

At、Mg、Zn、Ge、Y、Zrなどがあり、半金属
元素としては、P、Se、Bなどがある。
Examples of metalloid elements include At, Mg, Zn, Ge, Y, and Zr, and metalloid elements include P, Se, B, and the like.

このような非金属元素の酸化物を1種以上添加したチタ
ン酸化物の溶射被膜は発熱体として用いた場合、以下の
ような優れた効果がある。すなわち、上記のような添加
剤を加えた溶射被膜の比抵抗は10−10伽以下になり
、発熱体として望ましい比抵抗になシ易くなる。又、発
熱体として、長時間の通電加熱試験を行なった結果、比
抵抗の変化による発熱体の内部抵抗の経時変化は少く、
添加剤を加えなりチタン酸化物溶射被膜に比べ、その変
化はよシ少くなる。たとえばNb)iNb2Q3 とし
て5%及び15%含むチタン酸化物溶射被膜の比抵抗ハ
0.08〜0.05 Qcm”’C=りす、Nbz 0
3に添加しない場合の比抵抗に比べ小さくなる。更に長
時間の通電加熱試験の結果、発熱体の内部抵抗の変化は
少なく 、Nb20s k添加しない場合に比べ5時間
の試験後のI/IOはほぼ0,95となシ、Nb2O3
の添加の効果は顕著に認められた。このよりなN b等
の非貴金属元素の添加量はチタン酸化物の091%であ
ればよい。チタン酸化物の導電性を利用するためにはチ
タン酸化物が生成分であることがよく、特にNbz O
s の量は35%以下がよいと思われる。このようにチ
タン酸化物に非貴金属元素を均一に分散させると、Ti
O2−エからなる溶射被膜の低い比抵抗が更に低くなシ
、かつ経時変化に対しても安定なものになる。この非貴
金属元素はTi0z−〇の中に入シ込んでTi原子と置
換した’)、Ti02− の欠陥に入り込むと考えられ
る。Pt等の貴金属は酸化物を形成しない元素であるの
で、チタン酸化物との複合した酸化物を形成しない。そ
のため、Ptの元素成分はTi0z−xの結晶構造と何
ら相互関連が無い状態で分散したものになる。従って、
TlO2−xの構造のチタン酸化物溶射被膜の比抵抗、
経時変化による安定性について何ら有効な効果を発輝し
ない。又、発熱体となるチタン酸化物溶射被膜の厚さに
関しては特別な制限は無いが、発熱体の目的、用途によ
って選ばれる。安定した発熱体としては10μm以上が
望ましく、1問以下の厚さにすることが望ましい。しか
し、特に発熱体としての制限がない場合、その厚さを5
00μm以下程度にすることが経済的に好ましく、発熱
体として十分である。
When a sprayed coating of titanium oxide containing one or more oxides of non-metallic elements is used as a heating element, it has the following excellent effects. That is, the specific resistance of the sprayed coating containing the above-mentioned additives becomes 10<-10> or less, which makes it easier to achieve the desired specific resistance as a heating element. In addition, as a heating element, as a result of long-term current heating tests, the internal resistance of the heating element changes little over time due to changes in specific resistance.
Additives are added and the change is much less compared to a titanium oxide sprayed coating. For example, the specific resistance of a titanium oxide sprayed coating containing 5% and 15% of Nb)iNb2Q3 is 0.08 to 0.05 Qcm"'C=Squirrel, Nbz 0
The specific resistance becomes smaller than that when no addition is made to 3. Furthermore, as a result of a long-term current heating test, there was little change in the internal resistance of the heating element, and I/IO after a 5-hour test was approximately 0.95 compared to the case without Nb2O3 addition.
The effect of adding was significantly observed. The amount of the non-noble metal element such as Nb may be 091% of that of titanium oxide. In order to utilize the conductivity of titanium oxide, titanium oxide is often the product, especially NbzO
It is considered that the amount of s is preferably 35% or less. When non-noble metal elements are uniformly dispersed in titanium oxide in this way, Ti
The low specific resistance of the thermally sprayed coating made of O2-E becomes even lower, and it becomes stable against changes over time. It is thought that this non-noble metal element enters into Ti0z-0 and replaces Ti atoms (') and enters into the defects of Ti02-. Since noble metals such as Pt are elements that do not form oxides, they do not form complex oxides with titanium oxide. Therefore, the elemental components of Pt are dispersed without any correlation with the crystal structure of Ti0z-x. Therefore,
Specific resistance of titanium oxide sprayed coating with structure of TlO2-x,
It does not exhibit any effective effect on stability over time. Further, there is no particular restriction on the thickness of the titanium oxide sprayed coating that serves as the heating element, but it is selected depending on the purpose and use of the heating element. As a stable heating element, the thickness is preferably 10 μm or more, and the thickness is preferably one layer or less. However, if there is no particular restriction as a heating element, the thickness should be reduced to 5.
It is economically preferable to make the thickness about 00 μm or less, and it is sufficient as a heating element.

溶射膜はプラズマ溶射法によって形成される。The sprayed film is formed by plasma spraying.

溶射を実施するにあたっては、なるべく微細で大きさの
そろったチタン酸化物−ニオブ又はチタン酸化物−ニッ
ケルの粉末を用意し、特開昭48−40676号公報や
特開昭49−98783号公報などに記載の方法で溶射
する。粉末は200メツシユを通過するもの、特に32
5メツシユを通過するものがよく、あまシ細かいものは
除いて、なるべく5μm以上のもの?使用する。プラズ
マ炎中の水素原子の作用によって、得られる溶射膜の酸
素原子が化学量論量よシ少なくなシ、溶射膜の導電i生
が向上する。そして、ニオブやニッケル全酸化チタンと
固溶させるなどの手段によシ均一に混合すると、酸化チ
タンの酸素原子と結合して、格子欠陥を増やし導電性を
よシ高める作用をすると考えられる。
When carrying out thermal spraying, titanium oxide-niobium or titanium oxide-nickel powder that is as fine and uniform in size as possible is prepared, and powders such as those disclosed in JP-A-48-40676 and JP-A-49-98783 are prepared. Spray using the method described in . The powder should pass through 200 meshes, especially 32
Is it best to use a material that passes through 5 meshes, and preferably a material with a diameter of 5 μm or more, excluding very fine particles? use. Due to the action of hydrogen atoms in the plasma flame, the amount of oxygen atoms in the resulting sprayed film is less than the stoichiometric amount, and the electrical conductivity of the sprayed film is improved. It is thought that when mixed uniformly with niobium or nickel by solid solution with all titanium oxide, it combines with the oxygen atoms of titanium oxide, increasing lattice defects and improving conductivity.

なお、溶射被膜?形成すべき母材となる絶縁基板は特に
その材料の制限はないが、安定な酸化物絶縁体であるA
t2Os系、もしくはZ r 02系材料であることが
望ましい。又、本発明の応用例として、溶射被膜を形成
すべき母材が導電性材料である金属材料である場合、母
材の上に予めAI−zos、ZrO2等を生成分とする
絶縁材料r溶射等の方法で被覆し、その上に本発明の発
熱体被膜を形成することも可能である。更に、他の応用
例として、本発明の発熱体を形成した後、その上にAg
o3、Z r 02等を主成分とする絶縁材料を溶射等
の方法で被覆する構造も可能である。このような本発明
の応用例においては、例えば母材材料が金属材料の場合
、絶縁物材料を母材とするものに比べ、発熱体の形状を
複雑にすることも可能になる。又、本発明の発熱体の上
に絶縁物材料を被覆した構造では、発熱体被膜の表面が
直接外部の雰囲気と触しない。従って、T102−yと
いう構造で、酸素欠損型で導電性が生じている本発明の
発熱体において、発熱体が通電加熱され、高温状態にな
っている際に、発熱体被膜と酸素が直接触していない構
造のものは、その経時変化が更に少なくなるという効果
がある。
By the way, thermal spray coating? There are no particular restrictions on the material of the insulating substrate that is the base material to be formed, but A, which is a stable oxide insulator, may be used.
It is desirable to use a t2Os-based material or a Z r 02-based material. Further, as an application example of the present invention, when the base material on which the thermal spray coating is to be formed is a metal material that is a conductive material, an insulating material r containing AI-zos, ZrO2, etc. as a generated component is sprayed on the base material in advance. It is also possible to coat by a method such as the above, and then form the heating element coating of the present invention thereon. Furthermore, as another application example, after forming the heating element of the present invention, Ag
A structure in which an insulating material mainly composed of O3, Zr02, etc. is coated by a method such as thermal spraying is also possible. In such application examples of the present invention, for example, when the base material is a metal material, it is possible to make the shape of the heating element more complicated than when the base material is an insulating material. Furthermore, in the structure of the present invention in which the heating element is coated with an insulating material, the surface of the heating element coating does not come into direct contact with the external atmosphere. Therefore, in the heating element of the present invention, which has the structure T102-y and is oxygen-deficient and has conductivity, when the heating element is heated with electricity and is in a high temperature state, the heating element coating and oxygen come into direct contact with each other. Structures that do not have this effect have the effect of further reducing changes over time.

〔発明の実施例〕[Embodiments of the invention]

実施例 厚さ1胴、幅30間、長さ100關のAム03製絶縁物
基板の上にプラズマ溶射法によシチタン酸化物溶射被膜
を形成させた。溶射材は粒径分布が44μm以下5μm
以上のチタン酸化物粉末で、100 cfhのArと7
〜15CfhのH2の混合ガスを用いた。プラズマ電流
を950〜100OAとして0.3〜0.5 rran
の厚さに溶射き行なった。このような発熱体装置の断面
の模式図は図のようでチタン酸化物を溶射する前に、先
め基板上にpt製の1対の電流供給端子が設けである。
EXAMPLE A titanium oxide spray coating was formed by plasma spraying on an insulating substrate made of Am03 having a thickness of 1 mm, a width of 30 mm, and a length of 100 mm. Thermal spray material has a particle size distribution of 44μm or less and 5μm
With the above titanium oxide powder, 100 cfh Ar and 7
A mixed gas of ~15 Cfh of H2 was used. 0.3-0.5 rran with plasma current of 950-100OA
Thermal spraying was carried out to a thickness of . A schematic cross-sectional view of such a heating element device is shown in the figure. Before spraying titanium oxide, a pair of current supply terminals made of PT are first provided on the substrate.

発熱体であるチタン酸化物溶射被膜の比抵抗は第1表中
試験片盃4と同等の値でちシ、発熱体装置の内部抵抗は
約10Ωであった。基板上に設けた1対のP’を製の電
流供給端子間に約40Vの電圧を印加した際、発熱体で
あるチタン酸化物溶射被膜の温度は約400C程度にな
った。又、このような条件で約5時間の通電加熱試験を
行なった結果、発熱体の内部抵抗の変化は約10%以下
であった。
The specific resistance of the sprayed coating of titanium oxide, which is the heating element, was the same value as that of test piece cup 4 in Table 1, and the internal resistance of the heating element device was about 10Ω. When a voltage of about 40V was applied between a pair of current supply terminals made of P' provided on the substrate, the temperature of the sprayed titanium oxide coating, which was a heating element, reached about 400C. Further, as a result of carrying out an electrical heating test for about 5 hours under such conditions, the change in internal resistance of the heating element was about 10% or less.

実施例2 実施例1と同様の基板の上に、5%のN1)203を添
加したチタン酸化物粉末?用いて、実施例1と同様の条
件でプラズマ溶射を行なった。発熱体である溶射被膜O
比抵抗は0.08Ω口であり、発熱体装置の内部抵抗は
約7Ωであつ友。基板上に設けた1対のPt製の電流供
給端子間に約70Vの電圧全印加した際、発熱体の温度
は約800Cになった。又、発熱体の内部抵抗の経時変
化は実施例1とほぼ同等もしくはそれ以下であった。そ
の他の実施例の結果を第3表に示す。表において、添加
した非貴金属元素量は表に示した酸化物の形に換、算し
て示した。溶射被膜中の添加物の形が、表に示した安定
な酸化物で存在するかどうか末だ不明である。
Example 2 Titanium oxide powder doped with 5% N1)203 on the same substrate as in Example 1? Plasma spraying was carried out under the same conditions as in Example 1. Thermal spray coating O is a heating element
The specific resistance is 0.08Ω, and the internal resistance of the heating element device is approximately 7Ω. When a full voltage of about 70V was applied between a pair of Pt current supply terminals provided on the substrate, the temperature of the heating element became about 800C. Further, the change over time in the internal resistance of the heating element was approximately equal to or lower than that in Example 1. The results of other Examples are shown in Table 3. In the table, the amounts of non-noble metal elements added are shown in the form of oxides shown in the table. It is unclear whether the additives in the sprayed coating exist in the form of stable oxides shown in the table.

第   1   表 第   2   表 第   3   表 〔発明の効果〕 本発明によれば、複雑な平面形状の加熱体全製造でき、
酸素センサーの予熱ヒーターとして好適である。
Table 1 Table 2 Table 3 [Effects of the invention] According to the present invention, it is possible to manufacture a heating body with a complicated planar shape,
Suitable as a preheating heater for an oxygen sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の発熱体の正面図である。 The figure is a front view of the heating element of the present invention.

Claims (1)

【特許請求の範囲】 1、電気絶縁性基体表面に導電性薄膜を有するものにお
いて、該薄膜はチタン酸化物の溶射膜からなることを特
徴とするセラミック発熱体。 2、特許請求の範囲第1項において、前記溶射膜は非貴
金属元素の酸化物を含有するセラミック発熱体。 3、電気絶縁性基体表面に導電性薄膜を有するものにお
いて、前記薄膜は、チタン酸化物の溶射膜からなシ、そ
の溶射膜の全表面にアルミニウム酸化物あるいはシルコ
ニ?ム酸化物の溶射保護膜が設けられていることを特徴
とするセラミック発熱体。
[Scope of Claims] 1. A ceramic heating element having a conductive thin film on the surface of an electrically insulating substrate, wherein the thin film is made of a sprayed film of titanium oxide. 2. The ceramic heating element according to claim 1, wherein the sprayed film contains an oxide of a non-noble metal element. 3. In the electrically insulating substrate having a conductive thin film on its surface, the thin film is not a sprayed film of titanium oxide, but the entire surface of the sprayed film is coated with aluminum oxide or silicone. A ceramic heating element characterized by being provided with a thermally sprayed protective film of aluminum oxide.
JP20210982A 1982-11-19 1982-11-19 Ceramic heater Pending JPS5994394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20210982A JPS5994394A (en) 1982-11-19 1982-11-19 Ceramic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20210982A JPS5994394A (en) 1982-11-19 1982-11-19 Ceramic heater

Publications (1)

Publication Number Publication Date
JPS5994394A true JPS5994394A (en) 1984-05-31

Family

ID=16452106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20210982A Pending JPS5994394A (en) 1982-11-19 1982-11-19 Ceramic heater

Country Status (1)

Country Link
JP (1) JPS5994394A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099536A1 (en) * 2007-02-14 2008-08-21 Shin Kiyokawa Heating element, heat generating method, and internal combustion engine utilizing the heating element
WO2017217251A1 (en) * 2016-06-17 2017-12-21 トーカロ株式会社 Heat-generating member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099536A1 (en) * 2007-02-14 2008-08-21 Shin Kiyokawa Heating element, heat generating method, and internal combustion engine utilizing the heating element
WO2017217251A1 (en) * 2016-06-17 2017-12-21 トーカロ株式会社 Heat-generating member
CN109315021A (en) * 2016-06-17 2019-02-05 东华隆株式会社 Heat generating components
TWI705156B (en) * 2016-06-17 2020-09-21 日商Tocalo股份有限公司 Heating component
US11272579B2 (en) 2016-06-17 2022-03-08 Tocalo Co., Ltd. Heat generating component

Similar Documents

Publication Publication Date Title
PL165438B1 (en) Oxide-type composite material with silver matrix and method of obtaining same
US2545438A (en) Spark plug electrode
GB2134317A (en) Solid electrolyte fuel cell
Nagashima et al. Properties of conductive films made from fine spherical silver-palladium alloy particles
US4175164A (en) Thermoelectric generator electrode
US4622269A (en) Electrical contact and process for making the same
JPH08505490A (en) How to attach the cermet electrode layer to the sintered electrolyte
US5922275A (en) Aluminum-chromium alloy, method for its production and its applications
JPS63241818A (en) Manufacture of superconducting wire rod
US5340665A (en) Creep resistant, metal-coated LiFeO2 anodes for molten carbonated fuel cells
JPS6154109B2 (en)
EP0020760A4 (en) Method of preparing an electrical contact.
JPS5994394A (en) Ceramic heater
US3401024A (en) Electrical contact material
US4450135A (en) Method of making electrical contacts
JP2971167B2 (en) Ceramic heater
US3522103A (en) Process for the densification of mixed nickel oxide and stabilized zirconia
JP3705665B2 (en) Iron-chromium sintered alloy, method for producing the same, and fuel cell separator using the same
JP3340526B2 (en) Reduction electrode for barium-cerium-based oxide solid electrolyte and method for producing the same
JPH01186561A (en) Fuel cell
RU2066514C1 (en) Resistive heating element manufacturing process
JP2854916B2 (en) Ceramic-copper alloy composite
JP2002241876A (en) Heat resistant and oxidation resistant nickel alloy and conductive paste
JPS6259858B2 (en)
JPS60150558A (en) Production method of fuel electrode for melted carbonate type fuel cell