JPS5993987A - Scroll fluid machine - Google Patents

Scroll fluid machine

Info

Publication number
JPS5993987A
JPS5993987A JP57201938A JP20193882A JPS5993987A JP S5993987 A JPS5993987 A JP S5993987A JP 57201938 A JP57201938 A JP 57201938A JP 20193882 A JP20193882 A JP 20193882A JP S5993987 A JPS5993987 A JP S5993987A
Authority
JP
Japan
Prior art keywords
scroll
lubricating oil
oil
back pressure
pressure chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57201938A
Other languages
Japanese (ja)
Inventor
Masao Shiibayashi
正夫 椎林
Kenji Tojo
健司 東條
Yoshikatsu Tomita
好勝 富田
Masato Ikegawa
正人 池川
Nobukatsu Arai
信勝 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57201938A priority Critical patent/JPS5993987A/en
Priority to DE19833341637 priority patent/DE3341637A1/en
Priority to KR1019830005451A priority patent/KR840007147A/en
Publication of JPS5993987A publication Critical patent/JPS5993987A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/04Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/0207Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F01C1/0215Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To keep the quantity of lubricating oil in a back pressure chamber always constant by supplying the lubricating oil to the back pressure chamber through a throttle device and by thereafter feeding to a working chamber through a small hole provided in a mirror plate of a scroll member. CONSTITUTION:An independent space is formed behind a revolving scroll 2, and a lubricating oil is supplied to back pressure chamber through a throttle device or mechanism 155. Small holes 101, 102, 103, 104 (not shown in fig.) are formed in a mirror plate of this revolving scroll, and through these holes the lubricating oil in the back pressure chamber is fed to the working chambers of both scrolls, for ex. an enclosed space 5a (not shown in fig.) or suction chamber if, so that the quantity of lubricating oil in back pressure chamber can be held constant at all times.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は冷凍空P:Il’J用等の冷媒圧縮機あるいは
空気圧縮機として月1いられる給油式スクロール流体機
械に係り、特にこの流体機械の潤滑方式及び冷却方式に
関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a refueled scroll fluid machine that is used once a month as a refrigerant compressor or air compressor for refrigerated air P:Il'J, etc., and particularly relates to this fluid machine. This relates to the lubrication system and cooling system.

〔従来技術〕[Prior art]

従来の給油式スクロール流体機械を空気圧縮機を例とし
て第1図乃至第4図を参照して説明する第1図はスクロ
ール圧縮要素部(固定スクロール側)が大気に露出する
開放形で、クランク軸が軸方向に伸びる横形の空気圧縮
機を示し、第3図は同じく開放形で縦形の空気圧縮機を
示す。先ず械1図、第2図の従来例について説明する。
A conventional oil-supplied scroll fluid machine will be explained using an air compressor as an example with reference to Figures 1 to 4. Figure 1 shows an open type where the scroll compression element (fixed scroll side) is exposed to the atmosphere, A horizontal air compressor with a shaft extending in the axial direction is shown, and FIG. 3 also shows an open vertical air compressor. First, the conventional examples shown in FIGS. 1 and 2 will be explained.

1は固定スクロールで、平板部1aにうず巻状のラップ
部1bを直立している。2は旋回スクロールで、鏡板2
aにうず巻状のラップ部2bを直立して形成されている
。上記固定スクロール1と旋回スクロール2は、互にラ
ップ部を内側に向けてかみ合わせ、旋回スクロール2は
、固定スクロール1と該固定スクロール1に固定された
外フレーム4との間に収納されている。
Reference numeral 1 designates a fixed scroll, in which a spiral wrap portion 1b stands upright on a flat plate portion 1a. 2 is an orbiting scroll, and mirror plate 2
A spiral wrap portion 2b is formed to stand upright. The fixed scroll 1 and the orbiting scroll 2 are engaged with each other with their lap portions facing inward, and the orbiting scroll 2 is housed between the fixed scroll 1 and an outer frame 4 fixed to the fixed scroll 1.

また外フレーム4と旋回スクロール2との間には、オル
ダムキー3aとオルダムリング3b等を備えたオルダム
機構と呼称される旋回スクロール2の自転防止手段が形
成され、クランク軸6先端の偏心軸6aの偏心回転によ
り、旋回スクロール2は自転しないで旋回運動を行なう
。クランク軸6が時計方向に回転し、旋回スクロール2
が時計方向に旋回運動をすると、吸入ガスは吸入口1C
を経て圧縮機内に吸入され、ラップ外周部の吸入室1f
に流入し、固定スクロール1および旋回スクロール2で
形成される圧縮室5 (5a、51))のうち、最も外
周に位置する圧縮室5a内のガスが、旋回運動にともな
って容積が次第に縮小し乍ら、圧縮室5b側に、さらに
両スクロール1.2の中心に向って移動していく。両圧
縮室が、両スクロール1.2の中心近傍に達した時、圧
縮室は吐出口1dと連絡して圧縮ガスは吐出される。(
第2図参照) しかしてクランク軸6が横方向に配置された横形構造の
スクロール圧縮機においては、図示のように、電動機7
とクランク軸6との間には、軸継手8が設けられている
。また圧縮機各部の潤滑は、機外に設けられた給油ポン
プ9にて潤滑油を各摺動部に送給している。
Further, between the outer frame 4 and the orbiting scroll 2, there is formed a means for preventing rotation of the orbiting scroll 2, which is called an Oldham mechanism and includes an Oldham key 3a, an Oldham ring 3b, etc. Due to the eccentric rotation, the orbiting scroll 2 performs an orbiting motion without rotating. The crankshaft 6 rotates clockwise, and the orbiting scroll 2
makes a clockwise rotational movement, the intake gas flows through the intake port 1C.
It is sucked into the compressor through the suction chamber 1f on the outer periphery of the wrap.
Among the compression chambers 5 (5a, 51)) formed by the fixed scroll 1 and the orbiting scroll 2, the gas in the compression chamber 5a located at the outermost periphery gradually decreases in volume with the orbiting motion. Meanwhile, it moves toward the compression chamber 5b and further toward the center of both scrolls 1.2. When both compression chambers reach the vicinity of the center of both scrolls 1.2, the compression chambers communicate with the discharge port 1d and the compressed gas is discharged. (
(See Figure 2) However, in a scroll compressor with a horizontal structure in which the crankshaft 6 is disposed laterally, the electric motor 7
A shaft joint 8 is provided between the crankshaft 6 and the crankshaft 6 . Each part of the compressor is lubricated by an oil supply pump 9 provided outside the machine, which supplies lubricating oil to each sliding part.

次に潤滑系統について説明する。フレーム4の背圧室1
0底部に溜った潤滑油11は油通路4Cから油管路12
を経て油タンク13に一旦貯えられ、タンク内の油は油
冷却器23を介して給油ポンプ9により油管路14に送
出される。油管路14は分岐油管路15.16.17に
接続され、分岐油管路15は油量調節弁18aを介在し
てフレームの給油路4aに接続され、旋回スクロール2
の鏡板2aの外周部を潤滑する。また分岐油管路16は
油量調節弁181)を介在してフレームの給油路4bに
接続され、軸受19.20に給油される。また分岐油管
路17は油量調節弁180を介在し、流入口21aから
カバー21内に配設され滑油の流れを示す。次いで、メ
カニカルシール22などを潤滑した潤滑油は、ハウジン
グ21に溜まるとともK、軸受20及び19を通って背
圧室10の底部Vこ戻る。
Next, the lubrication system will be explained. Back pressure chamber 1 of frame 4
0 The lubricating oil 11 accumulated at the bottom is transferred from the oil passage 4C to the oil pipe line 12.
The oil in the tank is temporarily stored in an oil tank 13 through an oil cooler 23 and sent to an oil pipe line 14 by an oil supply pump 9. The oil pipe line 14 is connected to branch oil pipe lines 15, 16, and 17, and the branch oil line 15 is connected to the oil supply line 4a of the frame via the oil amount control valve 18a, and
Lubricate the outer periphery of the mirror plate 2a. Further, the branch oil pipe 16 is connected to the oil supply path 4b of the frame via an oil amount control valve 181), and the bearings 19, 20 are supplied with oil. Further, the branched oil pipe 17 is disposed within the cover 21 from the inlet 21a with an oil amount regulating valve 180 interposed therebetween, and shows the flow of lubricating oil. Next, the lubricating oil that has lubricated the mechanical seal 22 and the like accumulates in the housing 21 and returns to the bottom V of the back pressure chamber 10 through the bearings 20 and 19.

次に第3図に示す従来例について説明する。平板部1a
にうず巻状のラップ1bを直立した固定スクロール1、
鏡板2aにうず巻状のラップ2bを直立した旋回スクロ
ール2、上記両スクロールは互にラップ部を内側に向け
てかみ合せ、旋回スクロール2は、固定スクロール1と
フレーム4との間に収納され、またフレーム4と旋回ス
クロール2との間にはオルダムキー3aとオルダムリン
グ3bにて形成されたオルダム機構と呼称される旋回ス
クロールの自転防止手段が設けられている。上記構造の
圧縮機部は、固定スクロール1を下側にしてケーシング
30の下部に配設されている。クランク軸31はフレー
ム4の軸受19.20に支ホされ、該軸受の上部にはカ
バー32に装着されたオイルシール33が設けられてい
る。オイルシール33は後述の背圧室40と電動機下部
室47の差圧を保持するシール手段である。クランク軸
31下部の偏心軸31aは旋回スクロール2の中央上部
に突設したボス2cに下部軸受2dを介在して挿入され
、クランク軸31の回転により偏心軸31aは偏心回転
し、旋回スクロール2は自転しないで旋回運動を行なう
。固定スクロール1に設けられた吸入口1Cには、吸入
管34が接続され、更にその先端に、は吸入フィルタ3
5が設置され、吸入外気は、吸入フィルタ35がら吸入
管34を介し吸入口ICIC導入される。
Next, a conventional example shown in FIG. 3 will be explained. Flat plate part 1a
a fixed scroll 1 with an upright spiral wrap 1b;
An orbiting scroll 2 with a spiral wrap 2b upright on an end plate 2a, both scrolls are engaged with each other with their lap portions facing inward, and the orbiting scroll 2 is housed between a fixed scroll 1 and a frame 4, Further, between the frame 4 and the orbiting scroll 2, a means for preventing rotation of the orbiting scroll called an Oldham mechanism, which is formed by an Oldham key 3a and an Oldham ring 3b, is provided. The compressor section having the above structure is disposed in the lower part of the casing 30 with the fixed scroll 1 facing downward. The crankshaft 31 is supported by bearings 19 and 20 of the frame 4, and an oil seal 33 mounted on a cover 32 is provided above the bearing. The oil seal 33 is a sealing means that maintains a differential pressure between a back pressure chamber 40 and a motor lower chamber 47, which will be described later. The eccentric shaft 31a at the lower part of the crankshaft 31 is inserted into the boss 2c protruding from the upper center of the orbiting scroll 2 with a lower bearing 2d interposed therebetween.The rotation of the crankshaft 31 causes the eccentric shaft 31a to eccentrically rotate, and the orbiting scroll 2 Performs rotational motion without rotating. A suction pipe 34 is connected to the suction port 1C provided in the fixed scroll 1, and a suction filter 3 is connected to the tip of the suction pipe 34.
5 is installed, and the intake outside air is introduced into the intake port ICIC through the intake filter 35 and the intake pipe 34.

吐出口1dには逆止弁36aを介在した吐出管36が接
続され、他端は圧力タンク37に接続されている。また
吐出管36より分岐した分岐管38には絞り弁39を途
中に設け、この分岐管の他端はフレーム4のガス通路4
dに接続され、背圧室40に開口している。背圧室40
はフレーム4にて旋回スクロール2の上部に形成され、
即ち、背圧室40には、吐出ガスの一部が分岐され、絞
シ弁39にて中間圧に減圧された中間圧のガスが導入さ
れ、この背圧室40の圧力にて旋回スクロール2を同定
スクロール1側に押し付ける軸方向の押圧力を与えてい
る。図中41はバランスウェイト、42は背圧室40の
底部に溜っている潤滑油を示す。
A discharge pipe 36 with a check valve 36a interposed therebetween is connected to the discharge port 1d, and the other end is connected to a pressure tank 37. Further, a throttle valve 39 is provided in the middle of a branch pipe 38 branched from the discharge pipe 36, and the other end of this branch pipe is connected to the gas passage 4 of the frame 4.
d and opens to the back pressure chamber 40. Back pressure chamber 40
is formed on the upper part of the orbiting scroll 2 in the frame 4,
That is, a part of the discharged gas is branched into the back pressure chamber 40, and intermediate pressure gas is introduced which is reduced to intermediate pressure by the throttle valve 39, and the pressure in the back pressure chamber 40 causes the orbiting scroll 2 to A pressing force in the axial direction is applied to press the identification scroll 1 toward the identification scroll 1 side. In the figure, reference numeral 41 indicates a balance weight, and reference numeral 42 indicates lubricating oil collected at the bottom of the back pressure chamber 40.

前記ケーシング30の上部には電動機の固定子45が固
嵌され、その内方には回転子46がクランク軸31の上
部罠固定されて配置されている。
A stator 45 of an electric motor is firmly fitted into the upper part of the casing 30, and a rotor 46 is disposed inside the stator 45, which is secured to the upper part of the crankshaft 31.

またケーシングには固定子45の下部位置に複数個の開
口30aが設けられ、電動機下部室47は開放されてい
る。また回転子46には複数個の通気孔45aが穿設さ
れ、電動機下部室47と上部−室48を連通している。
Further, a plurality of openings 30a are provided in the casing at a position below the stator 45, and the motor lower chamber 47 is open. Further, a plurality of ventilation holes 45a are formed in the rotor 46, and the motor lower chamber 47 and the upper chamber 48 are communicated with each other.

またケーシング30の上端には軸受用フレーム50が配
設され、中央部の上部軸受51には、クランク軸31の
上端部が支承されている。この軸受用フレーム50には
軸受51の外周部に複数個の通気孔50aが開口されて
いる。クランク軸の上端には更に前記電動機部45.4
6の冷却用として冷却ファン52がボルト53を介し取
付けられ、その上方にはファンカバー54が配設され、
取付ポルr55を介し軸受用フレーム50に取付けられ
ている。図中実線矢印は圧縮空気の流れ方向、破線矢印
Vi−動機冷却風の流れ方向を示す。
A bearing frame 50 is disposed at the upper end of the casing 30, and the upper end of the crankshaft 31 is supported by an upper bearing 51 in the center. This bearing frame 50 has a plurality of ventilation holes 50a opened at the outer periphery of the bearing 51. The upper end of the crankshaft further includes the electric motor section 45.4.
A cooling fan 52 is attached via bolts 53 for cooling the cooling fan 6, and a fan cover 54 is disposed above it.
It is attached to the bearing frame 50 via a mounting port R55. In the figure, solid line arrows indicate the flow direction of compressed air, and broken line arrows Vi indicate the flow direction of the motor cooling air.

上記構造のスクロール流体機械の作用について説明する
。吸入空気は、吸入フィルタ35、吸入管34を経て吸
入口ICから吸入室1fを通り、さらに両スクロール1
.2で形成される干縮室に流入し、旋回スクロール2の
旋回運動により圧縮され、高圧の圧縮空気となって、吐
出口1dに至り、次いで吐出管36を経て圧力タンク3
7に送出され、該モカタンク37内の圧縮空気は外部へ
取出され種々の用途に供される。上配吐出圧縮窒気の一
部は分岐管38を介しバイパスされ、絞り弁39にて適
宜減圧され中間圧となり背圧室40に導入される。背圧
室40の中間圧力にて旋回スクロール2は固定スクロー
ル1に適宜押圧され、両スクロール1.2の摺動部のシ
ールを向上している。
The operation of the scroll fluid machine having the above structure will be explained. The intake air passes through the intake filter 35, the intake pipe 34, the intake port IC, the intake chamber 1f, and then the both scrolls 1.
.. 2, is compressed by the orbiting motion of the orbiting scroll 2, becomes high-pressure compressed air, reaches the discharge port 1d, and then passes through the discharge pipe 36 to the pressure tank 3.
The compressed air in the mocha tank 37 is taken out to the outside and used for various purposes. A portion of the compressed nitrogen gas discharged from the upper portion is bypassed through the branch pipe 38 and is appropriately reduced in pressure by the throttle valve 39 to an intermediate pressure and introduced into the back pressure chamber 40 . The orbiting scroll 2 is appropriately pressed against the fixed scroll 1 by the intermediate pressure in the back pressure chamber 40, thereby improving the sealing of the sliding parts of both scrolls 1.2.

次に、潤滑系統について説明する。Next, the lubrication system will be explained.

旋回スクロール2の鏡板2aの上部にある潤滑油42は
、クランク軸31下部に設けた偏心穴62の遠心ポンプ
効果によシ前記旋回スフロールボス部20に設けた横穴
61、偏心穴62を介して、背圧室40上部に配したオ
イルシール33及び軸受19.20に給油される。オイ
ルシール33などに至った潤滑油は、自重により落下し
、再び旋回スクロール2の鏡板2a上部に戻る。勿論、
潤滑油42は、背圧室40底部に位置するオルダム機構
部3a、3bや旋回スクロール鏡板2aの外周部2fな
どの潤滑にも供される。
The lubricating oil 42 in the upper part of the end plate 2a of the orbiting scroll 2 is supplied by the centrifugal pump effect of the eccentric hole 62 provided at the lower part of the crankshaft 31 through the horizontal hole 61 and eccentric hole 62 provided in the orbiting scroll boss portion 20. The oil seal 33 and bearings 19 and 20 arranged above the back pressure chamber 40 are supplied with oil. The lubricating oil that has reached the oil seal 33 and the like falls due to its own weight and returns to the upper part of the end plate 2a of the orbiting scroll 2. Of course,
The lubricating oil 42 is also used to lubricate the Oldham mechanism parts 3a and 3b located at the bottom of the back pressure chamber 40, the outer peripheral part 2f of the orbiting scroll end plate 2a, and the like.

また、両従来例とも、旋回スクロール2の鏡板背面には
、背圧室IQ、40を有し、該背圧室には、オルダム機
構部3a、3bや軸受19.20ナトノ旋回スクロール
2の駆動用機器が配置される。従って、背圧室には、潤
滑油を供給する必要がある。第1図の従来例では、前記
背圧室に給油ポンプ9を用いて外部から強制的に給油す
る潤滑方式を採用している。他方第3図の実施例では、
背圧室内部に給油ポンプ(偏心穴62による遠心ポンプ
構造)を配した潤滑方式を採用している。
In addition, in both conventional examples, a back pressure chamber IQ, 40 is provided on the back surface of the end plate of the orbiting scroll 2, and the back pressure chamber includes the Oldham mechanisms 3a, 3b and bearings 19, 20 for driving the orbiting scroll 2. equipment will be placed. Therefore, it is necessary to supply lubricating oil to the back pressure chamber. In the conventional example shown in FIG. 1, a lubrication method is adopted in which the back pressure chamber is forcibly supplied with oil from the outside using an oil supply pump 9. On the other hand, in the embodiment of FIG.
A lubrication system is adopted in which an oil supply pump (centrifugal pump structure with an eccentric hole 62) is placed inside the back pressure chamber.

次に、第4図にこれらの潤滑系統についてのフローチャ
ートを、圧縮作用を受ける作動ガスの流れと合わせて示
す。
Next, FIG. 4 shows a flowchart for these lubrication systems together with the flow of working gas subjected to compression action.

実線矢印は前述と同様、作動ガスの流れ方向、即ち、作
動ガスの系統を示す。他方破線矢印は潤滑油の流れ方向
、即ち、潤滑系統を示す。潤滑系統のAループは第3図
の場合を指し、他方Bループは、第1図の場合を指す。
As described above, the solid arrows indicate the flow direction of the working gas, that is, the system of the working gas. On the other hand, the dashed arrow indicates the flow direction of the lubricating oil, that is, the lubrication system. The A loop of the lubrication system refers to the case shown in FIG. 3, while the B loop refers to the case shown in FIG.

第4図に示すように作動ガスの系統と潤滑系統とは全く
別な系統となり、互いに交絡するようなことはない。
As shown in FIG. 4, the working gas system and the lubrication system are completely separate systems and do not intertwine with each other.

このような給油式スクロール流体機械においては、次の
ような問題点がある。
Such oil-supplied scroll fluid machines have the following problems.

1、背圧室10.40と作動ガス系統内の吸入室1fと
の境界となる旋回スクロール2の鏡板外周部2fにおい
て、背圧室内の潤滑油11.42の漏洩が起こる。即ち
、該鏡板外周部2fを介して、背圧室内の潤滑油が吸入
室1fへ漏れ、結果として、背圧室内の潤滑油の全体量
ひいては、第4図に示したAループないしBルーズにお
ける4■滑油の全体量が減少する。
1. Leakage of the lubricating oil 11.42 in the back pressure chamber occurs at the outer peripheral portion 2f of the end plate of the orbiting scroll 2, which is the boundary between the back pressure chamber 10.40 and the suction chamber 1f in the working gas system. That is, the lubricating oil in the back pressure chamber leaks into the suction chamber 1f through the outer peripheral portion 2f of the end plate, and as a result, the total amount of lubricating oil in the back pressure chamber decreases in the A loop or B loose shown in FIG. 4 ■ The total amount of lubricating oil decreases.

2、 このように、潤滑系統内の潤滑油の量が減少する
と、背圧室内の駆動部(例えばオルダム機構部3a、3
bや軸受19.20など)の潤滑不良を招く。最悪の場
合は、これらの摺動部において油切れによる焼付き事故
に至る恐れがあり、田縮械の信頼性に不安がある。
2. In this way, when the amount of lubricating oil in the lubrication system decreases, the drive parts in the back pressure chamber (for example, Oldham mechanism parts 3a, 3
b, bearings 19, 20, etc.), leading to poor lubrication. In the worst case, these sliding parts may run out of oil and cause seizing accidents, raising concerns about the reliability of the plating machine.

3 第1図の従来例においては、潤滑油を循環するため
の外部の給油ポンプ9を要し、スクロール流体装置とし
て据付上大きなスペースを要する。即ち、スクロール流
体装置が大形化する。
3. The conventional example shown in FIG. 1 requires an external oil supply pump 9 for circulating lubricating oil, and requires a large installation space as a scroll fluid device. That is, the scroll fluid device becomes larger.

4 また第3図の従来例においては、第4図の潤滑系統
で示した如く、前記背圧室40内の潤滑油42は該背圧
室を循環するだけで、潤滑油40の冷却手段、ひいては
背圧室40内の各摺動部の冷却手段がない。このため該
背圧室40内の各部の温度が異常上昇するとともに潤滑
油42の劣化が促進され、該潤滑油42の寿命が短くな
る。
4 Furthermore, in the conventional example shown in FIG. 3, as shown in the lubrication system shown in FIG. Furthermore, there is no cooling means for each sliding part within the back pressure chamber 40. As a result, the temperature of various parts within the back pressure chamber 40 increases abnormally, and the deterioration of the lubricating oil 42 is accelerated, resulting in a shortened lifespan of the lubricating oil 42.

このように前記1..2.項で述べた潤滑油の不足現象
の他、31項、41項で述べたようにスクロール流体機
械の大形化ならびに背圧室の冷却方法に問題点を有する
In this way, above 1. .. 2. In addition to the lubricating oil shortage phenomenon described in Section 31 and Section 41, there are problems in increasing the size of the scroll fluid machine and in the cooling method of the back pressure chamber.

〔発明の目的〕[Purpose of the invention]

本発明は上記に鑑みて発明されたもので、背圧室内の潤
滑油を常時一定量に確保すること、また背圧室内の潤滑
と冷却を行うと共に、小形化をはかる給油式スクロール
流体機械を提供することを目的とす木。
The present invention was invented in view of the above, and provides a lubricating type scroll fluid machine that always secures a constant amount of lubricating oil in a back pressure chamber, lubricates and cools the back pressure chamber, and also aims to reduce the size of the back pressure chamber. A tree that aims to provide.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため本発明は、旋回スクロール背部
に独立した背圧室を形成し、潤滑油を絞り装置を介して
上記背圧室に供給し、旋回スクロール部材の鏡板を貫通
し圧縮途中の作動室に開口する細孔を介し上記潤滑油を
更に作動室に供給するよう構成した特徴を有する。
In order to achieve the above object, the present invention forms an independent back pressure chamber at the back of the orbiting scroll, supplies lubricating oil to the back pressure chamber through a throttling device, penetrates the end plate of the orbiting scroll member, and supplies lubricating oil to the back pressure chamber during compression. The lubricating oil is further supplied to the working chamber through a pore opening into the working chamber.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面に基すき説明する。先ず第
5図に本発明の基本的な潤滑系統を示す旋回スクロール
2の背部すなわち旋回スクロール2のラップ側と反対に
位置する独立した空間(以後背圧室と称す)を形成し、
潤滑油を絞シ装置あるいは絞り機構部155を介して該
背圧室に送り込み、送り込まれた潤滑油をさら(両スク
ロール部材により形成される作動室に注入し、スクロー
ル圧縮要素部内で作動:ガスとともに昇圧作用を行なう
。高圧となった潤滑油は油分離手段153にて作動ガス
と分離される。さらに潤滑油は、給油通路156Cを通
シ、前記絞シ装置155を介して再び背圧室10 (あ
るいは40)に戻るような潤滑系統156を構成する。
An embodiment of the present invention will be described below with reference to the drawings. First, an independent space (hereinafter referred to as a back pressure chamber) located at the back of the orbiting scroll 2, that is, opposite to the wrap side of the orbiting scroll 2, is formed, and FIG. 5 shows the basic lubrication system of the present invention.
The lubricating oil is sent into the back pressure chamber via the throttling device or the throttling mechanism section 155, and the fed lubricating oil is further injected into the working chamber formed by both scroll members and operated within the scroll compression element section. The high pressure lubricating oil is separated from the working gas by the oil separation means 153.The lubricating oil is then passed through the oil supply passage 156C and returned to the back pressure chamber via the throttling device 155. 10 (or 40).

図において、実線矢印は作動ガスの流れを、破線矢印は
潤滑油の流れを示す。本系統図は、独立した空間の背圧
室10からスクロール圧縮要素部への流れ156aを伴
う潤滑系路を備えることを特徴としている。従って、潤
滑油の流れは、背圧室−スクロール圧縮要素部−油分離
手段153−絞り装置155−背圧室という潤滑系路1
56となる。背圧室に流入した潤滑油は、背圧室の内部
の潤滑及び冷却を行う。
In the figure, solid arrows indicate the flow of working gas, and dashed arrows indicate the flow of lubricating oil. This system diagram is characterized by a lubrication system with a flow 156a from the back pressure chamber 10 to the scroll compression element section in a separate space. Therefore, the flow of lubricating oil is carried out through the lubrication system path 1: back pressure chamber - scroll compression element - oil separation means 153 - throttling device 155 - back pressure chamber.
It becomes 56. The lubricating oil that has flowed into the back pressure chamber lubricates and cools the inside of the back pressure chamber.

次に、背圧室からスクロール圧縮要素部への潤滑油の流
れ156aKついて説明する。第6図、第7図に示すよ
うに、旋回スクロール2の鏡板2aに、旋回側と固定側
の両スクロールにより形成される作動室(例えば5a)
と旋回スクロール2のラップ2b側と反対に位置する独
立した空間の背圧室10(40)とを連通ずる単数側あ
るいは複数個の細孔101.102や103.104を
設ける。これらの細孔は、両スクロール1.2で形成す
る作動室内の作動ガスの一部を前記背圧室に導く圧力導
入孔としての機能と、第5図に示したような潤滑系統を
構成するととKより、前記背圧室内の潤滑油を該細孔を
介して前記作動室(例えば5a)へ導くような排油孔あ
るいは注油孔としての機能を具備する。第6図、第7図
に示す実施例は、ガス圧を前記背圧室の内部に導く圧力
導入孔としての機能及び背圧室から密閉空間5aに潤滑
油を導くような排油機能(あるいは注油機能)を備える
4@の細孔を、旋回スクロール2の鏡板2aに設けた実
施例である。このように、細孔101.102.103
.104を介して背圧室内の潤滑油を両スクロール1.
2の作動室(例えば密閉空間5aあるいは吸入室1fな
ど)へ移動せしめる潤滑経路を形成することを、第2の
特徴とする。
Next, the flow 156aK of lubricating oil from the back pressure chamber to the scroll compression element will be explained. As shown in FIGS. 6 and 7, a working chamber (for example, 5a) formed by both the rotating and fixed scrolls is formed in the end plate 2a of the orbiting scroll 2.
A single side or a plurality of pores 101, 102 and 103, 104 are provided to communicate the wrap 2b side of the orbiting scroll 2 and the back pressure chamber 10 (40), which is an independent space located on the opposite side. These pores function as pressure introduction holes for guiding a part of the working gas in the working chamber formed by both scrolls 1.2 to the back pressure chamber, and constitute a lubrication system as shown in Fig. 5. and K, the lubricating oil in the back pressure chamber is provided with a function as an oil drain hole or an oil filling hole that guides the lubricating oil in the back pressure chamber to the working chamber (for example, 5a) through the fine hole. The embodiment shown in FIGS. 6 and 7 has a function as a pressure introduction hole for guiding gas pressure into the back pressure chamber, and an oil drain function for guiding lubricating oil from the back pressure chamber to the closed space 5a (or This is an example in which 4@ pores with a lubrication function) are provided in the end plate 2a of the orbiting scroll 2. In this way, pores 101.102.103
.. The lubricating oil in the back pressure chamber is supplied to both scrolls 1 through 104.
The second feature is that a lubrication path is formed for movement to the second working chamber (for example, the sealed space 5a or the suction chamber 1f).

前記細孔101.102.103.104は、両スクロ
ール1.2で形成される密閉空間を形成する位置に設け
られている。従って、これらの細孔はスクロールの巻き
始め位置から巻き終シ位置の中間の位置に設けている。
The pores 101, 102, 103, and 104 are provided at positions that form a closed space formed by both scrolls 1.2. Therefore, these pores are provided at an intermediate position between the scroll start position and the winding end position.

たとえば、細孔102を介して密閉空間5a内の作動ガ
スは背圧室10 (40)へ導かれるので、背圧室10
(40)は低圧の吸入圧力と高圧の吐出圧力との中間の
圧力に維持される。旋回スクロール2の鏡板2bの背面
2gにこのガス圧が作用し、そのガス圧により旋回スク
ロール2を固定スクロール1に押圧している。
For example, since the working gas in the closed space 5a is guided to the back pressure chamber 10 (40) through the pore 102, the back pressure chamber 10
(40) is maintained at a pressure intermediate between the low suction pressure and the high discharge pressure. This gas pressure acts on the back surface 2g of the end plate 2b of the orbiting scroll 2, and the gas pressure presses the orbiting scroll 2 against the fixed scroll 1.

第8図は、他の実施例を示し、細孔を2@設けた実施例
である。細孔105は、旋回スクロール20ラツプ2b
の内側付近の鏡板に、他方の細孔106は、旋回スクロ
ール2のラップ2bの外側付近の鏡板に設けたものであ
る。また、これらの2蘭の細孔105.106は、両ス
クロール部材で形成される作動室(例えば密閉空間5a
あるいは5bなど)の対称な位置に、前記背圧室と該作
動室とが連通ずるように形成する。これらの細孔105
.106を対称な位置に設ける理由は、旋回スクロール
2に対して不平衡な力(例えばスラスト方向のガス力あ
るいはラジアル方向のガス力)を与えないためである。
FIG. 8 shows another embodiment, in which two pores are provided. The pores 105 are connected to the orbiting scroll 20 wrap 2b.
The other pore 106 is provided in the end plate near the inside of the orbiting scroll 2, and the other pore 106 is provided in the end plate near the outside of the wrap 2b of the orbiting scroll 2. Further, these two pores 105 and 106 are located in the working chamber (for example, the closed space 5a) formed by both scroll members.
Alternatively, the back pressure chamber and the working chamber are formed at symmetrical positions such as 5b, etc., so that the back pressure chamber and the working chamber communicate with each other. These pores 105
.. 106 in symmetrical positions is to avoid applying an unbalanced force (for example, gas force in the thrust direction or gas force in the radial direction) to the orbiting scroll 2.

第9図は、更に他の実施例を示し、圧力導入孔としての
機能及び排油機能(あるいは注油機能)を有する細孔1
07を一個旋回スクロール2の鏡板2aに設けた実施例
である。なお、前記細孔101.102.103.10
4、+05、+06及び細孔107の位置として、固定
スクロール1と旋回スクロール2によシ形成される複数
個の密閉を間内のいずれの位置にも設けることができる
第10図は、更に他の実施例を示し、吸入室1fの空間
と係合する両スクロールのラップ1bと2bの外縁部の
作動室に細孔108と109を設けた実施例を示す。更
に第11図は、吸入室1fの空間と背圧室とが連通ずる
ように、旋回スクロール2の鏡板2aに細孔110を設
けた実施例である。
FIG. 9 shows still another embodiment, in which a small hole 1 having a function as a pressure introduction hole and an oil draining function (or oil filling function)
07 is provided on the end plate 2a of the orbiting scroll 2. Note that the pore 101.102.103.10
4, +05, +06 and the pores 107, FIG. 10 shows that a plurality of seals formed by the fixed scroll 1 and the orbiting scroll 2 can be provided at any position between the fixed scroll 1 and the orbiting scroll 2. An embodiment is shown in which pores 108 and 109 are provided in the working chambers at the outer edges of the wraps 1b and 2b of both scrolls that engage with the space of the suction chamber 1f. Furthermore, FIG. 11 shows an embodiment in which pores 110 are provided in the end plate 2a of the orbiting scroll 2 so that the space of the suction chamber 1f and the back pressure chamber are communicated with each other.

第12図は、上記実施例の潤滑系統を示すフロチャート
である。図において、実線矢印は作動ガスの流れ方向を
、破線矢印は潤滑油の流れ方向を示す。第6図乃至第1
1図の実施例で示した本潤滑系統の構成で主なものは、
スクロール圧縮要素部(主に固定スクロール1と旋回ス
クロール2)と背圧室10(40)を有するスクロール
流体機械158、油分離機能を有する油分離器153、
前記背圧室への給油量を調節する絞り装置155などで
ある。
FIG. 12 is a flowchart showing the lubrication system of the above embodiment. In the figure, solid line arrows indicate the flow direction of working gas, and dashed line arrows indicate the flow direction of lubricating oil. Figures 6 to 1
The main components of the lubrication system shown in the example shown in Figure 1 are:
A scroll fluid machine 158 having a scroll compression element portion (mainly a fixed scroll 1 and an orbiting scroll 2) and a back pressure chamber 10 (40), an oil separator 153 having an oil separation function,
These include a throttle device 155 that adjusts the amount of oil supplied to the back pressure chamber.

第12図を参照して作動ガスの流れ及び潤滑油の流れに
ついて詳細に説明する。図中、作動ガスの流れは実線矢
印で、潤滑油の流れは破線矢印で示す。作動ガスは、低
湛・低圧の吸入ガスとして吸入管151に導かれ1次い
で、スクロール圧縮要素部に至る。作!tII+ガスは
ここで圧縮作用を受けて高温・高圧の吐出ガスとなり外
部の吐出管に導かれる。さらに油分離器153では、前
記吐出ガスから潤滑油を分離する。潤滑油分離後の油分
量の少い吐出ガスは油分離器153から外部へ導かれる
。次に潤滑油の流れについて説明する。背圧室内の潤滑
油は、前記細孔を介して両スクロールで形成される作動
室に移動し、作動室の内部で潤滑油と作動ガスとが混合
する。前述したように旋回スクロール2め鏡板に設けた
細孔は、圧力導入孔としての機能のほか排油機能あるい
は注油機能を有する。すなわち該細孔を介して作動ガス
への油インジェクションという作用をなす。このように
、前記作動室(例えば密閉空間5aなど)K至った潤滑
油は、両スクロール1.2で形成されるスクロールラッ
プ間の隙間のシール機能及びラップとこのラップと対向
する鏡板との摺動部分の潤滑と冷却機能、さらに作動ガ
スの圧縮作用時に発する熱の吸収機能を有する。スクロ
ール圧縮要素に至った潤滑油は、作動ガスとともに昇圧
作用を受は外部の吐出管152、更に油分離器153に
導かれる。ここで潤滑油は作動ガスと分離され給油路1
56Cを介して油冷却器154及び絞り装置155へと
至る。該絞り装置155にて潤滑油は減圧され、背圧室
内の圧力すなわち中間圧力の′潤滑油となり、再び背圧
室に戻る。油分離器153から背圧室10(40)への
給油方式は、高圧の吐出圧力と中間圧力との差圧でもっ
て行う。その給油量の調節を絞シ装置155にて行う。
The flow of working gas and the flow of lubricating oil will be described in detail with reference to FIG. 12. In the figure, the flow of working gas is indicated by solid line arrows, and the flow of lubricating oil is indicated by broken line arrows. The working gas is introduced into the suction pipe 151 as a low-volume, low-pressure suction gas, and then reaches the scroll compression element. Made! The tII+ gas is compressed here to become a high-temperature, high-pressure discharge gas and guided to an external discharge pipe. Further, an oil separator 153 separates lubricating oil from the discharged gas. After the lubricating oil has been separated, the discharged gas containing a small amount of oil is led to the outside from the oil separator 153. Next, the flow of lubricating oil will be explained. The lubricating oil in the back pressure chamber moves through the pores to the working chamber formed by both scrolls, and the lubricating oil and working gas mix inside the working chamber. As described above, the pores provided in the second end plate of the orbiting scroll have an oil draining function or an oil filling function in addition to the function as a pressure introduction hole. In other words, oil is injected into the working gas through the pores. In this way, the lubricating oil that has reached the working chamber (for example, the closed space 5a, etc.) is used for the sealing function of the gap between the scroll wraps formed by both scrolls 1.2 and for the sliding effect between the wrap and the end plate facing the wrap. It has the function of lubricating and cooling moving parts, and also has the function of absorbing the heat generated when compressing the working gas. The lubricating oil that has reached the scroll compression element is subjected to a pressure increasing action together with the working gas, and is led to an external discharge pipe 152 and further to an oil separator 153. Here, the lubricating oil is separated from the working gas and oil supply path 1
56C to an oil cooler 154 and a throttle device 155. The lubricating oil is depressurized by the expansion device 155, becomes lubricating oil at an intermediate pressure, and returns to the back pressure chamber again. Oil is supplied from the oil separator 153 to the back pressure chamber 10 (40) using a differential pressure between a high discharge pressure and an intermediate pressure. The amount of oil supplied is adjusted by a throttling device 155.

第12図の(系統図)では、潤滑油の冷却方式として油
冷却器154を給油路156Cに配したが、潤滑油が給
油路156Cを流れる際に自然放熱等の冷却効果が高い
場合には、前記油冷却器154を省略してもよい。尚、
前記細孔102.103.105などを介して潤滑油が
循環する油量を、第5図及び第12図ではQob ’(
dμn)と表示した。この循環油量Qobは、主に絞り
装置155と旋回スクロールの鏡板に設けた前記細孔に
より決まる。第13図以降は、本発明の具体的実施例で
あるスクロール流体機械の構造を示す。第13図乃至第
15図の実施例は、用途が冷凍空調機用で、クロール1
と第8図で示したような細孔105.106を有する旋
回スクロール2と、旋回スクロール2の自転を防止する
手段のオルダム機構部3(詳細は図示せず)等のスクロ
ール圧縮要素部が形成され、主軸96の先端の偏心軸9
61)の偏心回転運動によシ、旋回スクロール2は自転
しないで旋回運動を行゛う。その他旋回軸受99、軸受
98.97これらを支えるフレーム92及び駆動用′電
動機95などからなり、これらの部品は密閉容器91の
内部に収納される。密閉容器91は、上蓋部91a、ケ
ーシング部91bと下蓋部91Cからなる。密閉容器9
1内は、吐出室84a及び電動機室841)の2室によ
って構成され、それらの空間は、高圧側の吐出圧力の雰
囲気となる。旋回スクロール2の背部には低圧側の吸入
室1fや吐出室84a、電動機室84bに対して独立し
た空間の背圧室79を形成し、該背圧室79は、前記細
孔105.106によシ中間田力に保持される。作動ガ
スすなわち冷媒ガスの流れを実線矢印で示し、容器底部
に溜められた潤滑油94の流れを破線矢印で示す。次に
、旋回スクロール2の詳細構造を第14図に示す。旋回
スクロール2の鏡板2aKは、放射状の給油路80 (
80a、80b、80C180d)と給油孔82(82
a、821)、82C,82d)が形成される。第13
図乃至第15図を用いて、冷媒ガスの流れ及び潤滑油の
流れを説明する。冷媒ガスは、吸入管90から固定スク
ロール内の吸入口1Cおよび吸入室1fを通り、さらに
両スクロール1.2で形成される圧縮室に流入し、両ス
クロール中央部に移動するとともに子方と温度を高める
。次に、吐出孔1dを経て密閉容器91内の上部空間で
ある吐出室34aに至り、さらに吐出室84aと電動機
室84bとを連通ずる通路93を通って電動機室84b
K至る。電動機室841)に至った冷媒ガスは、電動機
を冷却した後吐出管85を介して外部へ送給される。容
器底部の潤滑油94は、主軸96内に設けた偏心縦孔9
6a内を、容器底部の吐出圧力の高圧と背圧室79の中
間圧との差圧により上昇し、給油横孔97a、98aを
介して軸受97.98及び旋回軸受99に至る。また偏
心軸96bの上端面と旋回スクロール2のボス部2Cの
底部とで形成する空間960に至った潤滑油は、はぼ吐
出圧に等しい圧力であり、旋回スクロール2の鏡板2a
内に設けた放射状の給油路80(例えば80a)及び給
油孔82(例えば82a)を介して、固定スフ占−ル1
の焼板外周部2fに設けた油溝81に至る。油溝81等
に至った潤滑油は、フレー−、ム内部の空間79aを通
って背圧室79に至る。また、旋回軸受99を潤滑した
潤滑油も、軸96bと軸受99の軸受隙間を通って背圧
室79に至る。このように、容器底部の潤滑油94は、
軸受98.99及び鏡板外周部2fを介して背圧室に送
り込まれる。この背圧室79に流入する潤滑油の流量調
整は、軸受部においては軸受隙間(旋回軸受99と偏心
軸96bとの軸受隙間C1及び軸受98と主軸96との
軸受隙間cりの大きさ、鏡板外周部2fにおいては給油
路80の孔径d、及び給油孔82の孔径d2さらに鏡板
部の軸方向隙間Cの大きさを調整することにより行う。
In FIG. 12 (system diagram), the oil cooler 154 is arranged in the oil supply path 156C as a lubricant cooling method, but when the lubricant flows through the oil supply path 156C and has a high cooling effect such as natural heat radiation, , the oil cooler 154 may be omitted. still,
The amount of lubricating oil circulating through the pores 102, 103, 105, etc. is expressed as Qob'(
dμn). This circulating oil amount Qob is mainly determined by the throttle device 155 and the pores provided in the end plate of the orbiting scroll. FIG. 13 and subsequent figures show the structure of a scroll fluid machine that is a specific embodiment of the present invention. The embodiments shown in FIGS. 13 to 15 are used for refrigeration and air conditioners, and crawl 1
An orbiting scroll 2 having pores 105 and 106 as shown in FIG. The eccentric shaft 9 at the tip of the main shaft 96
Due to the eccentric rotation movement of 61), the orbiting scroll 2 performs an orbiting movement without rotating on its own axis. Other components include a slewing bearing 99, bearings 98, 97, a frame 92 supporting these, and a driving electric motor 95, and these parts are housed inside a closed container 91. The airtight container 91 includes an upper lid part 91a, a casing part 91b, and a lower lid part 91C. Airtight container 9
1 is composed of two chambers, a discharge chamber 84a and a motor chamber 841), and these spaces have an atmosphere with a discharge pressure on the high pressure side. A back pressure chamber 79 is formed at the back of the orbiting scroll 2 as an independent space from the suction chamber 1f, discharge chamber 84a, and motor chamber 84b on the low pressure side. Retained by Riki Nakata. The flow of the working gas, that is, the refrigerant gas, is shown by solid line arrows, and the flow of lubricating oil 94 stored at the bottom of the container is shown by broken line arrows. Next, the detailed structure of the orbiting scroll 2 is shown in FIG. The end plate 2aK of the orbiting scroll 2 has a radial oil supply passage 80 (
80a, 80b, 80C180d) and oil supply hole 82 (82
a, 821), 82C, 82d) are formed. 13th
The flow of refrigerant gas and the flow of lubricating oil will be explained with reference to FIGS. 15 to 15. The refrigerant gas passes through the suction port 1C and the suction chamber 1f in the fixed scroll from the suction pipe 90, and further flows into the compression chamber formed by both scrolls 1.2, moves to the center of both scrolls, and changes the temperature of the lower side and the suction chamber 1f. Increase. Next, it passes through the discharge hole 1d to the discharge chamber 34a, which is the upper space inside the closed container 91, and further passes through the passage 93 that communicates the discharge chamber 84a and the motor chamber 84b to the motor chamber 84b.
K. The refrigerant gas that has reached the motor chamber 841) cools the motor and is then sent to the outside via the discharge pipe 85. The lubricating oil 94 at the bottom of the container flows through an eccentric vertical hole 9 provided in the main shaft 96.
6a due to the differential pressure between the high discharge pressure at the bottom of the container and the intermediate pressure in the back pressure chamber 79, and reaches the bearings 97 and 98 and the swing bearing 99 via the horizontal oil supply holes 97a and 98a. Furthermore, the lubricating oil reaching the space 960 formed by the upper end surface of the eccentric shaft 96b and the bottom of the boss portion 2C of the orbiting scroll 2 has a pressure equal to the discharge pressure, and
The fixed floor spacer 1 is connected via a radial oil supply passage 80 (e.g. 80a) and an oil supply hole 82 (e.g. 82a) provided therein.
This leads to an oil groove 81 provided on the outer peripheral part 2f of the grilling plate. The lubricating oil that has reached the oil groove 81 and the like passes through the space 79a inside the frame and reaches the back pressure chamber 79. Furthermore, the lubricating oil that has lubricated the swing bearing 99 also reaches the back pressure chamber 79 through the bearing gap between the shaft 96b and the bearing 99. In this way, the lubricating oil 94 at the bottom of the container is
It is fed into the back pressure chamber via the bearings 98 and 99 and the outer peripheral portion 2f of the mirror plate. The flow rate adjustment of the lubricating oil flowing into the back pressure chamber 79 is performed by adjusting the bearing clearance (the bearing clearance C1 between the swing bearing 99 and the eccentric shaft 96b and the bearing clearance C1 between the bearing 98 and the main shaft 96) in the bearing section. This is done by adjusting the hole diameter d of the oil supply passage 80, the hole diameter d2 of the oil supply hole 82, and the size of the axial clearance C of the head plate in the outer peripheral portion 2f of the head plate.

これらの部分で油量を製筒する絞り機構部(第5図で示
される155)を形成する。
These parts form a throttle mechanism section (155 shown in FIG. 5) that controls the amount of oil.

これらの絞り機構部の寸法設定(例えば軸受隙背圧室7
9に至った潤滑油は、オルダム機構3等を潤滑した後、
前記細孔105.106を介して、両スクロール1.2
とで形成される作動室に注入され、rトいてはスクロー
ルラップの内部で、前記冷媒ガスと混合される。次に冷
媒ガスとともに潤滑油は昇圧作用を受け、吐出孔1d、
吐出室84aさらに通路93を経て電動機室841)へ
と冷媒ガスとともに移動する。電動機室84t)に至っ
た潤滑油は、広い空間のため流速が大きく減少し、自重
のため容器底部へ落下する。すなわち、電動機室84b
で冷媒ガスと潤滑油の分離が行われる。容器底部に落下
した潤滑油94は、再び主軸96内に設けた偏心縦孔9
5a内を上昇し、前記した経路を経て前記背圧室79に
送り込まれる。
Setting the dimensions of these throttle mechanisms (e.g. bearing clearance back pressure chamber 7)
After lubricating the Oldham mechanism 3, etc., the lubricating oil that reached 9.
Through said pores 105, 106 both scrolls 1.2
The refrigerant gas is injected into the working chamber formed by the refrigerant gas, and then mixed with the refrigerant gas inside the scroll wrap. Next, the lubricating oil along with the refrigerant gas is subjected to a pressure increasing action, and the discharge hole 1d,
The discharge chamber 84a further moves along with the refrigerant gas to the motor chamber 841) via the passage 93. The lubricating oil that has reached the motor chamber 84t) has a large flow rate due to the large space, and falls to the bottom of the container due to its own weight. That is, the electric motor room 84b
The refrigerant gas and lubricating oil are separated. The lubricating oil 94 that has fallen to the bottom of the container is returned to the eccentric vertical hole 9 provided in the main shaft 96.
5a and is sent into the back pressure chamber 79 via the above-described route.

このように、背圧室79には、容器底部から常に一定し
た油量が送り込まれるので、従来技術にみられた該背圧
室79内での潤滑油の全体量が不足するという問題点は
解消される。なお第15図の実施例において、給油路8
0と給油孔82を介して油溝81に至った潤滑油は、前
述したように一部は鏡板部の軸方向隙間C3を通ってフ
レーム92内部の空間79aに漏洩する。他方油溝81
内の潤滑油は、低圧側である吸入室1fの方へも、前記
軸方向隙間C3をJiって流れる。前記油溝81から吸
入室1fへ流れる潤滑経路は、前記背圧室79を通らな
い潤滑油の流れとなシ、この場合、高圧側の吐出圧力と
低圧側の吸入圧力との差圧による差圧給油による潤滑経
路となる。
In this way, since a constant amount of oil is always fed into the back pressure chamber 79 from the bottom of the container, the problem of the lack of the entire amount of lubricating oil in the back pressure chamber 79, which was seen in the prior art, can be solved. It will be resolved. In the embodiment shown in FIG. 15, the oil supply path 8
As described above, a portion of the lubricating oil that has reached the oil groove 81 through the oil supply hole 82 leaks into the space 79a inside the frame 92 through the axial clearance C3 of the end plate. The other oil groove 81
The lubricating oil inside also flows toward the suction chamber 1f, which is the low pressure side, through the axial gap C3. The lubrication path that flows from the oil groove 81 to the suction chamber 1f is a flow of lubricating oil that does not pass through the back pressure chamber 79. In this case, the lubricating oil flow is caused by a pressure difference between the discharge pressure on the high pressure side and the suction pressure on the low pressure side. It becomes a lubrication route using pressure oil supply.

第16図は、作動ガスを空気とした場合の給油式空気用
スクロール流体装置の実施例である。主な構成部品は、
第3図で示したものと大きく変わらないので、その部分
の説8Aは省略する。
FIG. 16 shows an embodiment of a refueling type air scroll fluid device in which air is used as the working gas. The main components are:
Since it is not much different from that shown in FIG. 3, explanation 8A of that part will be omitted.

全体構成は、次の通りである。本装置は、電動機部45
.45とスクロール圧縮要素部1と2を有するスクロー
ル流体機械200、油分離器兼突気タンク201、絞シ
装置208がらなシ、その他付属機器として吐出管36
に逆止弁36a油ストレーナ兼ドライヤ2o4、油冷却
6206及び潤滑油の自動阻止機能を有する電磁弁20
7などがある。図に従って、実線矢印で示す作動ガスの
流れ及び破線矢印で示す潤滑油の流れについて説明する
The overall configuration is as follows. This device has an electric motor section 45
.. 45, a scroll fluid machine 200 having scroll compression element parts 1 and 2, an oil separator/blast tank 201, a throttling device 208, and a discharge pipe 36 as other accessory equipment.
Check valve 36a oil strainer/dryer 2o4, oil cooling 6206 and solenoid valve 20 with automatic lubricating oil blocking function
7 etc. The flow of working gas indicated by solid line arrows and the flow of lubricating oil indicated by broken line arrows will be explained according to the figures.

作動ガスである空気は、吸入フィルタ35、吸入管34
を経て吸入口1cがら吸入室1fを通り、さらに両スク
ロール1.2で形成される圧縮室に流入し、旋回スクロ
ール2の旋回運動により圧縮作用を受ける。用縮途中の
密閉空間(例えば前記5aなど)において、前記細孔1
o5(あるいは106)を介して中間圧の圧縮空気が背
圧室40に導かれ、該背圧室を中間圧に維持する。また
細孔106 (あるいは1o5)を介して、背圧室内の
潤滑油42が前記密閉空間(例えば5a)へ移動し圧縮
空気と混合される。圧縮空気と潤滑油は同時に昇圧作用
を受けて高圧化し、吐出口1dに至り次いで吐出管36
、逆止弁36aを経て油分離器兼突気タンク201に送
出される。該空気タンク201内で高圧の潤滑油は、圧
縮空気と分離され空気タンク201の底部に溜まる。該
潤滑油2o1aFi、給油管202.202a及び21
0ひいては、フレーム4内に設けた給油通路4eにて前
記スクロール流体機械200内部の背圧室40に戻され
る。給油管202には、冷却用ファン205を備えた空
冷式油冷却器206を配している。また、背圧室40へ
の適当な油量に調節すべく絞り装置208(例えば流量
調節弁)を給油管210に配する。
Air, which is a working gas, is passed through a suction filter 35 and a suction pipe 34.
The air passes through the suction port 1c and the suction chamber 1f, and then flows into the compression chamber formed by both scrolls 1.2, where it is compressed by the orbiting motion of the orbiting scroll 2. In the closed space (for example, 5a) during contraction, the pore 1
Compressed air at an intermediate pressure is introduced into the back pressure chamber 40 via o5 (or 106) to maintain the back pressure chamber at an intermediate pressure. Also, the lubricating oil 42 in the back pressure chamber moves to the closed space (eg, 5a) through the pores 106 (or 1o5) and mixes with the compressed air. The compressed air and the lubricating oil are simultaneously subjected to pressure increasing action and become high pressure, reach the discharge port 1d, and then the discharge pipe 36.
, and is sent to the oil separator/rush tank 201 via the check valve 36a. The high-pressure lubricating oil in the air tank 201 is separated from the compressed air and collected at the bottom of the air tank 201. The lubricating oil 2o1aFi, oil supply pipes 202, 202a and 21
In turn, the oil is returned to the back pressure chamber 40 inside the scroll fluid machine 200 through the oil supply passage 4e provided in the frame 4. An air-cooled oil cooler 206 equipped with a cooling fan 205 is arranged in the oil supply pipe 202 . Further, a throttle device 208 (for example, a flow control valve) is arranged in the oil supply pipe 210 in order to adjust the amount of oil to the back pressure chamber 40 to an appropriate amount.

なお、スクロール鏡板外周部2fの摺動面にも油量調節
用の絞り装置209を配した給油管′220を介して前
記潤滑油201dを送シ込む。該摺動部2fには、潤滑
用の油溝212を固定スクロール1側に設けている。上
記油溝212に至った潤滑油は、両スクロール外縁部2
fの隙間(第15図でいう隙間C3,)を通って、背圧
室40に漏れる0 以上のように空気用スクロールモ縮槻においても前記背
圧室40への給油が絞シ装置を介して高圧の空気タンク
201側から行なわれ、常に一定した油量が送油される
ので、従来技術にみられた該背圧室40内での潤滑油の
全体量が不足するという問題点は解消される。また、油
冷却器206もって背圧室内のオルダム機構部3a、3
b及び軸受19.20などの潤滑と冷却作用を行なうこ
とができる。′また、背圧室40への給油を、高圧と背
圧室内の圧力すなわち中間圧力との差圧でもって行うた
め、従来技術の第1図でみられるように外部の給油ポン
プ9を不要とし、装置全体をコンパクトにすることがで
きる。
The lubricating oil 201d is also fed to the sliding surface of the outer peripheral portion 2f of the scroll mirror plate through an oil supply pipe '220 provided with a throttle device 209 for adjusting the amount of oil. The sliding portion 2f is provided with an oil groove 212 for lubrication on the fixed scroll 1 side. The lubricating oil that has reached the oil groove 212 is transferred to the outer edge 2 of both scrolls.
The oil leaks into the back pressure chamber 40 through the gap f (gap C3 in FIG. This is done from the high-pressure air tank 201 side, and a constant amount of oil is always fed, so the problem of the lack of the entire amount of lubricating oil in the back pressure chamber 40, which was seen in the prior art, is solved. be done. In addition, the oil cooler 206 is used to cool the Oldham mechanism parts 3a and 3 in the back pressure chamber.
b and bearings 19, 20, etc. can perform a lubrication and cooling action. 'Also, since the back pressure chamber 40 is supplied with oil using the differential pressure between the high pressure and the pressure inside the back pressure chamber, that is, the intermediate pressure, the external oil supply pump 9 as shown in FIG. 1 of the prior art is unnecessary. , the entire device can be made compact.

第17図は、本発明を冷凍・空調用給油式スクロール圧
縮様に適用した場合のもので、密閉容詣内の全体を吸入
圧力と吐出圧力の中間の圧力(以後中間圧と称す)とし
た場合の実施例を示す。
Figure 17 shows the case where the present invention is applied to an oil-supplied scroll compression system for refrigeration and air conditioning, and the entire inside of the sealed chamber is set to a pressure between the suction pressure and the discharge pressure (hereinafter referred to as intermediate pressure). An example of the case is shown below.

全体構成は次の通りである。本装置は、冷凍サイクルの
主要機器として凝S器357、膨張弁358、蒸発器3
59と、圧力導入孔105と排油孔106を共備したス
クロール圧縮機本体300からなり、付層機器として油
分離器350、油冷却用熱交換器360と絞り装置36
3を配設する。作動流体となる冷媒の喧れ方向を実線矢
印で示し、潤滑油の流へ方向を破線矢印で示す。本装置
を、主に潤滑油の流れに従って説明する。圧縮機300
底部の潤滑油307は、主軸308内に設けた偏心縦孔
308aを介して主軸上部の軸受309や背圧室304
内のオルダム機構部3(詳細は図示せず)まで揚油され
その部分を潤滑する。
The overall structure is as follows. This device includes a condenser 357, an expansion valve 358, and an evaporator 3 as the main equipment of the refrigeration cycle.
59, a scroll compressor main body 300 equipped with both a pressure introduction hole 105 and an oil drain hole 106, and includes an oil separator 350, an oil cooling heat exchanger 360, and a throttle device 36 as additional equipment.
Place 3. The direction of the flow of the refrigerant serving as the working fluid is shown by a solid line arrow, and the direction of the flow of lubricating oil is shown by a broken line arrow. This device will be explained mainly according to the flow of lubricating oil. compressor 300
The lubricating oil 307 at the bottom flows through an eccentric vertical hole 308a provided in the main shaft 308 to a bearing 309 at the upper part of the main shaft and a back pressure chamber 304.
The oil is pumped up to the Oldham mechanism section 3 (details not shown) inside, and lubricates that section.

なお前記細孔105によシスクロールラップ内部の密閉
空間から冷媒ガスを背圧室ひいては均圧孔305を介し
て電動機室304aに導いているので、密閉容器300
a内は、中間圧に維持される。背圧室304内の潤滑油
は、前記細孔106を介してスクロールラップ内部の密
閉空間へ移動し、該部分で冷媒ガスと混合される。前述
したととと同様に冷媒ガスと潤滑油はスクロール田縮要
素部1.2で同時に昇圧作用を受けて高圧化し、吐出口
1dに至り次いで吐出管303を経て油分離器350に
送出される。該油分離器350内で高圧の潤滑油は、冷
媒ガスと分離され核油分離器350の底部にたまる。該
潤滑油307aは給油管364に導かれ油冷却用の熱交
換器360に至る。ここで潤滑油は冷却された後絞り装
置363を介して再び圧縮機300内の電動機室304
aひいては該部分と連通せる背圧室304に戻る。
Note that the refrigerant gas is guided from the sealed space inside the second roll wrap to the motor chamber 304a through the back pressure chamber and the pressure equalization hole 305 through the pore 105, so that the closed container 300
Inside a is maintained at intermediate pressure. The lubricating oil in the back pressure chamber 304 moves to the sealed space inside the scroll wrap through the pores 106, where it is mixed with the refrigerant gas. In the same manner as described above, the refrigerant gas and lubricating oil are simultaneously subjected to a pressure increasing action in the scroll compression element portion 1.2 to become high pressure, reach the discharge port 1d, and then are sent to the oil separator 350 via the discharge pipe 303. . In the oil separator 350, the high-pressure lubricating oil is separated from the refrigerant gas and collected at the bottom of the kernel oil separator 350. The lubricating oil 307a is guided to an oil supply pipe 364 and reaches a heat exchanger 360 for oil cooling. After being cooled, the lubricating oil is passed through the expansion device 363 and returned to the motor chamber 300 in the compressor 300.
a, which in turn returns to the back pressure chamber 304 that communicates with the section.

前記熱交換器360は、高圧の潤滑油307aと低湛低
田の冷媒ガス即ち吸入ガスとの熱交換を行う部分である
。該熱交換器360では、蒸発器359かも戻る低温の
液冷媒と前記潤滑油とを熱交換させてもよい。第17図
の装置のような潤滑系統をhq成することにより、電動
機の冷却及び圧縮様300内に設けた背圧室304周辺
の各摺動部の潤滑と冷却を行うことができる。この潤滑
系統を流れる潤循油L1: Qobは、前記絞り装置3
63にて調整される。油分離器153,350や、絞り
装置155.208.363は、スクロール流体埠t4
150.200.300に対して外部に配していたが、
両者をスクロール流体機械の一部とするような一体化構
造にしてもよい。例えば前記油分離器を固定スクロール
1の上部あるいは下部に配する構造、他方背圧室へ給油
する油量調節用の絞り装置として、背圧室を形成するフ
レーム4内の給油通路4e(第16図)の部分で通路面
積を縮小するような絞り部を設けてもよい。
The heat exchanger 360 is a part that performs heat exchange between the high-pressure lubricating oil 307a and the low-water refrigerant gas, that is, the suction gas. In the heat exchanger 360, heat may be exchanged between the lubricating oil and the low-temperature liquid refrigerant that is also returned to the evaporator 359. By constructing a lubrication system such as the apparatus shown in FIG. 17, it is possible to cool the electric motor and to lubricate and cool each sliding part around the back pressure chamber 304 provided in the compression chamber 300. Lubricating oil L1 flowing through this lubrication system: Qob is the throttle device 3
It is adjusted at 63. The oil separator 153, 350 and the throttle device 155, 208, 363 are connected to the scroll fluid wharf t4.
It was placed outside for 150.200.300,
An integrated structure may be used in which both are part of a scroll fluid machine. For example, a structure in which the oil separator is disposed at the upper or lower part of the fixed scroll 1, and a throttle device for adjusting the amount of oil supplied to the back pressure chamber may be used. A constriction part may be provided to reduce the passage area in the part shown in the figure.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、給油式スクロール
流体機械において、旋回スクロールの鏑板に設けた細孔
により、背圧室内の潤滑油は、スクロール内部の密閉空
間に移動し・この潤滑油は、両スクロール間の隙間のシ
ール性能を向上させ、スクロール間の摺動部の潤滑及び
冷却機能ひいては、作動ガスの玉網作用時に発する熱の
吸収機能を有するので、スクロール流体機械の性能(内
部漏れ及び機械効率に関する性能)が向上し、信頼性の
高い給油スクロール流体機械が得られる。
As explained above, according to the present invention, in an oil-supplied scroll fluid machine, the lubricating oil in the back pressure chamber moves to the sealed space inside the scroll through the pores provided in the head plate of the orbiting scroll. It improves the sealing performance of the gap between both scrolls, lubricates and cools the sliding part between the scrolls, and has the function of absorbing the heat generated when the working gas is beaded, so it improves the performance of the scroll fluid machine (internal This results in a highly reliable refueling scroll fluid machine with improved performance (regarding leakage and mechanical efficiency).

また、スクロール流体機械内の潤滑油を一定量に確保す
ると共に、スクロール流体機械内の潤滑と冷却を十分に
行なうことが出来る等の効果を有すへ る。
Further, it has the effect of ensuring a constant amount of lubricating oil within the scroll fluid machine, and also being able to sufficiently lubricate and cool the scroll fluid machine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第3図は従来のスクロール流体機械の縦断面
図、第2図は第1図のスクロールの噛合い状態を示す横
断面図、第4図は従来のスクロール流体も(械における
作動ガスと潤滑油の流れを示すフローチャードである。 第5図は本発明の一実施例を示すスクロール流体機械の
潤滑系統を示すフロチャート、第6図はスクロールの噛
合い状態の一実施例を示す横断面図、第7図は第6図の
旋回スクロールの縦断面図を示す。第8図乃至第11図
は夫々他の実施例を示すスクロールの噛合い状態を示す
横断面図、第12図はff”lf;;系統の他の実施例
を示すフローチャートである。 第13図は他の実施例を示す密閉形スクロール圧縮機の
縦断面図、第14図は第13図の旋回スクロールの平面
図、第15図は第13図の背圧室オわりの部分拡大図を
示す。第16図は更に他の実施例を示す空気用スクロー
ル圧縮様の縦断面図、第17図は更に他の実施例を示し
、スクロール圧縮機を用いた冷凍サイクル図である。 1・・・固定スクロール 2・・・旋回スクロール 1
0.40.79・・・背圧室 101.102.103
.104.107.108.109.110・・・細孔
 155.208.363・・・絞り装置峯1回 515 年4図 −516− 李7函 IC)(40) 消づm 第+4fll 卯500 第16(¥1 募17圓
1 and 3 are vertical cross-sectional views of conventional scroll fluid machines, FIG. 2 is a cross-sectional view showing the meshing state of the scrolls in FIG. 1, and FIG. FIG. 5 is a flowchart showing the flow of gas and lubricating oil. FIG. 5 is a flowchart showing a lubrication system of a scroll fluid machine according to an embodiment of the present invention, and FIG. 6 is a flowchart showing an embodiment of the scroll meshing state. FIG. 7 is a vertical cross-sectional view of the orbiting scroll shown in FIG. 6. FIGS. The figure is a flow chart showing another embodiment of the ff''lf;; system. Fig. 13 is a longitudinal sectional view of a hermetic scroll compressor showing another embodiment, and Fig. 14 is a flowchart of the orbiting scroll of Fig. 13. A plan view, and FIG. 15 is a partial enlarged view of the back pressure chamber shown in FIG. 13. FIG. 16 is a vertical cross-sectional view of a scroll compressor for air showing still another embodiment, and FIG. 17 is a still another example. It is a refrigeration cycle diagram showing an example of the above and using a scroll compressor. 1... Fixed scroll 2... Orbiting scroll 1
0.40.79...Back pressure chamber 101.102.103
.. 104.107.108.109.110...Pore 155.208.363...Squeezing device Mine 1 time 515 Year 4 Figure-516- Lee 7 box IC) (40) Eliminate m No. +4fll Rabbit 500 No. 16 (¥1 recruitment 17 yen)

Claims (1)

【特許請求の範囲】 1、鏡板に渦巻状のラップを直立した固定スクロール部
材及び旋回スクロール部材を備え、両スクロール部材を
互にラップを内側にして噛合せ、旋回スクロール部材は
自転しないように固定スクロール部材に対し旋回運動さ
せて、両スクロール部材によシ形成される密閉空間を外
側から中心へ移動させ乍ら容積を減少させて流体を圧縮
する装置において、旋回スクロール背部に独立した背圧
室を形成し、潤滑油を絞り装置を介して上記背王室に供
給し、旋回スクロール部材の鏡板を貫通し圧縮途中の作
動室に開口する細孔を介し、上記潤滑油を史に作動室に
供給する潤滑油系路を備えたことを特徴とするスクロー
ル流体機械。 2、細孔が、作動室の対称位置に複数個設けられている
特許請求の範囲第1項記載のスクロール流体機械。 3 絞り装置が、軸受間隙eこて形成されている特許請
求の範囲第1項記載のスクロール流体機械4、絞シ装置
が、スクロール部材の外縁部の間隙にて形成されている
特許請求の範囲第1項記載のスクロール流体機械。
[Claims] 1. A fixed scroll member and an orbiting scroll member each having a spiral wrap upright on an end plate are provided, both scroll members are engaged with each other with the wraps inside, and the orbiting scroll member is fixed so as not to rotate on its axis. In a device that compresses fluid by moving the closed space formed by both scroll members from the outside to the center by making an orbiting motion with respect to the scroll member, and reducing the volume, an independent back pressure chamber is provided at the back of the orbiting scroll. The lubricating oil is supplied to the back chamber through a squeezing device, and the lubricating oil is supplied to the working chamber through a small hole that penetrates the end plate of the orbiting scroll member and opens into the working chamber during compression. A scroll fluid machine characterized by being equipped with a lubricating oil system passage. 2. The scroll fluid machine according to claim 1, wherein a plurality of pores are provided at symmetrical positions in the working chamber. 3 Claim in which the throttle device is formed in a bearing gap e trowel Scroll fluid machine 4 according to claim 1, Claim in which the throttle device is formed in a gap at the outer edge of the scroll member Scroll fluid machine according to item 1.
JP57201938A 1982-11-19 1982-11-19 Scroll fluid machine Pending JPS5993987A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57201938A JPS5993987A (en) 1982-11-19 1982-11-19 Scroll fluid machine
DE19833341637 DE3341637A1 (en) 1982-11-19 1983-11-17 Fluid kinetic machine with spiral construction
KR1019830005451A KR840007147A (en) 1982-11-19 1983-11-17 Shroud Fluid Machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57201938A JPS5993987A (en) 1982-11-19 1982-11-19 Scroll fluid machine

Publications (1)

Publication Number Publication Date
JPS5993987A true JPS5993987A (en) 1984-05-30

Family

ID=16449266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57201938A Pending JPS5993987A (en) 1982-11-19 1982-11-19 Scroll fluid machine

Country Status (3)

Country Link
JP (1) JPS5993987A (en)
KR (1) KR840007147A (en)
DE (1) DE3341637A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108884A (en) * 1988-10-17 1990-04-20 Daikin Ind Ltd Horizontal-type scroll-formed fluid machine
WO1991006772A1 (en) * 1989-11-02 1991-05-16 Matsushita Electric Industrial Co., Ltd. Scroll compressor
WO1991006766A1 (en) * 1989-11-02 1991-05-16 Matsushita Electric Industrial Co., Ltd. Scroll compression
WO1991006767A1 (en) * 1989-11-02 1991-05-16 Matsushita Electric Industrial Co., Ltd. Scroll compressor

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0631625B2 (en) * 1984-05-25 1994-04-27 株式会社日立製作所 Scroll fluid machinery
JPH0617676B2 (en) * 1985-02-15 1994-03-09 株式会社日立製作所 Helium scroll compressor
KR870002381A (en) * 1985-08-23 1987-03-31 미다 가쓰시게 Shroul Compressor
JPS6275091A (en) * 1985-09-30 1987-04-06 Toshiba Corp Scroll compressor
KR950008694B1 (en) * 1987-12-28 1995-08-04 마쯔시다덴기산교 가부시기가이샤 Scroll type compressor
JP2782858B2 (en) * 1989-10-31 1998-08-06 松下電器産業株式会社 Scroll gas compressor
CA2049878C (en) * 1990-10-29 1994-07-26 Robert E. Utter Scroll apparatus with enhanced lubricant flow
US5101644A (en) * 1990-10-29 1992-04-07 American Standard Inc. Co-rotational scroll apparatus with positive lubricant flow
KR920007621B1 (en) * 1990-12-29 1992-09-09 주식회사 금성사 Lubricating device for scroll compressor
FR3028573B1 (en) * 2014-11-13 2016-12-23 Danfoss Commercial Compressors SPIRAL COMPRESSOR COMPRISING AN OLDHAM JOINT LUBRICATION SYSTEM
DE102019202860A1 (en) * 2019-03-04 2020-09-10 Volkswagen Aktiengesellschaft Scroll compressor, air conditioner and vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53119412A (en) * 1977-03-28 1978-10-18 Hitachi Ltd Scroll compressor
JPS57173503A (en) * 1981-04-17 1982-10-25 Hitachi Ltd Oil feed device of scroll fluidic machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108884A (en) * 1988-10-17 1990-04-20 Daikin Ind Ltd Horizontal-type scroll-formed fluid machine
WO1991006772A1 (en) * 1989-11-02 1991-05-16 Matsushita Electric Industrial Co., Ltd. Scroll compressor
WO1991006766A1 (en) * 1989-11-02 1991-05-16 Matsushita Electric Industrial Co., Ltd. Scroll compression
WO1991006767A1 (en) * 1989-11-02 1991-05-16 Matsushita Electric Industrial Co., Ltd. Scroll compressor
US5217360A (en) * 1989-11-02 1993-06-08 Matsushita Electric Industrial Co., Ltd. Scroll compressor with swirling impeller biased by cooled lubricant
US5217359A (en) * 1989-11-02 1993-06-08 Matsushita Electric Industrial Co., Ltd. Scroll compressor with regulated oil flow to the back pressure chamber

Also Published As

Publication number Publication date
DE3341637A1 (en) 1984-06-14
KR840007147A (en) 1984-12-05

Similar Documents

Publication Publication Date Title
JP2522775B2 (en) Scroll fluid machinery
JP3147676B2 (en) Scroll compressor
KR930008349B1 (en) Scroll compressor
JPS5993987A (en) Scroll fluid machine
US7520733B2 (en) Multistage compression type rotary compressor
US4545747A (en) Scroll-type compressor
US6494696B2 (en) Scroll compressor
EP1228315A1 (en) Scroll compressor for natural gas
JP2656627B2 (en) Oil supply device for hermetic scroll compressor
US5466136A (en) Scroll compressor having a gas liquid separator
JPS6352237B2 (en)
WO2003083309A1 (en) Compressor
WO2008038366A1 (en) Scroll expander
JP2959457B2 (en) Scroll gas compressor
WO1991006766A1 (en) Scroll compression
JPH08121366A (en) Scroll compressor
JP3593083B2 (en) Scroll compressor
JP2674562B2 (en) Scroll refrigerant compressor with refueling control means
JP2923582B2 (en) Scroll compressor
JP2766659B2 (en) Scroll fluid machine
JP2574366B2 (en) Compressor
JPH03105092A (en) Oil feeding device for sealed type two-stage scroll compressor
JP2019019768A (en) Scroll compressor
JPH0742945B2 (en) Scroll gas compressor
US11162495B2 (en) Oil circulation in a scroll compressor