JPS5993158A - Magnetic refrigerator - Google Patents

Magnetic refrigerator

Info

Publication number
JPS5993158A
JPS5993158A JP20116082A JP20116082A JPS5993158A JP S5993158 A JPS5993158 A JP S5993158A JP 20116082 A JP20116082 A JP 20116082A JP 20116082 A JP20116082 A JP 20116082A JP S5993158 A JPS5993158 A JP S5993158A
Authority
JP
Japan
Prior art keywords
magnetic field
working material
sealed container
heat
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20116082A
Other languages
Japanese (ja)
Inventor
荻原 宏康
秀樹 中込
安田 聰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20116082A priority Critical patent/JPS5993158A/en
Publication of JPS5993158A publication Critical patent/JPS5993158A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、冷凍効率の向上化を図れるようにした磁気冷
凍装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a magnetic refrigeration device capable of improving refrigeration efficiency.

〔従来技術をその問題点〕[Prior art and its problems]

従来、磁性体の磁気熱量効果を利用した磁気冷凍装置が
知られている。この磁気冷凍装置は、断熱消磁によって
冷えた磁性体で被冷却物から熱を奪わせるようにしたも
ので、通常の気体冷凍装置に較べて単位体積当りの冷凍
能力が高いと云う利点を備えでいru。
2. Description of the Related Art Magnetic refrigeration devices that utilize the magnetocaloric effect of magnetic materials have been known. This magnetic refrigeration system uses a magnetic material cooled by adiabatic demagnetization to remove heat from the object to be cooled, and has the advantage of having a higher refrigerating capacity per unit volume than ordinary gas refrigeration equipment. Iru.

ところで、磁気冷凍装置の場合には、断熱磁化によって
磁性体、つまり作業物質に発生した熱を外部へ逃がす排
熱過程と、断熱消磁によって冷えた作業物質で被冷却物
から熱を奪わせる吸熱過程との2つの熱交換過程を交互
に行なわせる必要がある。このように、2つの熱交換過
程を交互に行なわせ、効率の高い冷凍サイクルを実現す
るには、排熱過稈では作業物質から被冷却物への熱移動
を確実に断つ必要があり、また吸熱過程では被冷却物か
ら作業物質へ向けて速やかに熱移動させる必要がある。
By the way, in the case of magnetic refrigeration equipment, there is a heat exhaustion process in which the heat generated in the magnetic material, that is, the work material, is released to the outside through adiabatic magnetization, and an endothermic process in which heat is removed from the cooled object by the work material cooled by adiabatic demagnetization. It is necessary to perform the two heat exchange processes alternately. In this way, in order to perform the two heat exchange processes alternately and realize a highly efficient refrigeration cycle, it is necessary to reliably cut off the heat transfer from the working material to the object to be cooled in the exhaust heat overculm. In the endothermic process, it is necessary to quickly transfer heat from the object to be cooled to the work material.

このようなことから、従来装置にあっては、排熱過程を
実行する部屋と、吸熱過程を実行する部屋とを設け、作
業物質を両部屋に気密的に交互に進入させるようにして
いる。
For this reason, conventional apparatuses are provided with a chamber for carrying out the heat removal process and a chamber for carrying out the heat absorption process, and the working material is allowed to alternately enter both chambers in an airtight manner.

しかしながら上記のように構成された装置にあっては、
作業物質を両部屋に気密的に交互に進入させるために信
頼性に富んだシール機構を必要とし、このようなシール
機構を構成することは実際問題として困難であることか
らして、冷凍効率の低下を免れ得ない問題があった。ま
た、最も重要な要素である作業物質を機構的に移動させ
る必要があるので構造の複雑化を免れ得ない問題もあっ
た。
However, in a device configured as above,
A highly reliable sealing mechanism is required to allow the work material to enter both chambers alternately in an airtight manner, and since it is difficult to construct such a sealing mechanism in practice, it is difficult to improve refrigeration efficiency. There was a problem that could not avoid the decline. Furthermore, since it is necessary to mechanically move the working material, which is the most important element, there is also the problem that the structure becomes complicated.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情に鑑みてなされたもので、そ
の目的とするところは、簡単な構成であるにも関わらず
、高い冷凍効率を発揮し得る磁気冷凍装置を提供するこ
とにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a magnetic refrigeration device that can exhibit high refrigeration efficiency despite having a simple configuration.

〔発明の概要〕[Summary of the invention]

本発明は、磁界内に入ると発熱し、磁界外へ出ると吸熱
する作業物質と、この作業物質を周期的に磁界内に位置
さぜる装置と、前記作業物質の表面の一部を凝縮部とす
る密封容器と、前記作業物質が磁界内に入っているとき
前記作業物質を冷媒で冷却し、前記作業物質が磁界外に
なったときは前記密封容器の凝縮部に前記冷媒を流通さ
せる冷却装置とで構成した磁気冷凍装置にある。
The present invention provides a working material that generates heat when it enters a magnetic field and absorbs heat when it exits the magnetic field, a device that periodically positions the working material within the magnetic field, and a part of the surface of the working material that condenses. a sealed container as a part; when the working material is inside a magnetic field, the working material is cooled with a refrigerant; and when the working material is out of the magnetic field, the refrigerant is caused to flow through a condensing section of the sealed container; The magnetic refrigeration system consists of a cooling device.

〔発明の効果〕〔Effect of the invention〕

上記構成であると、作込物質の表面の一部を直接凝縮部
とした密封容器を用いているので、吸熱過程時に、前配
密封容器の凝縮部温度を作業物質の表面温度と等しくで
き、両者間での熱損失をなくすことができる。したがっ
て、作業物質の表面の一部を密封容器の凝縮部にしたこ
とで冷凍効用率を大幅に向上させることができる。また
、作業物質を機械的に移動させることなしに冷凍効率を
高めることができるので、従来装置に較べて構造も頗る
簡単化できる。
With the above configuration, since a sealed container is used in which a part of the surface of the material to be prepared is a direct condensing part, the temperature of the condensing part of the predistribution sealed container can be made equal to the surface temperature of the working material during the heat absorption process. Heat loss between the two can be eliminated. Therefore, by making a part of the surface of the work material the condensation part of the sealed container, the efficiency of refrigeration can be greatly improved. Furthermore, since the refrigeration efficiency can be increased without mechanically moving the work material, the structure can be significantly simplified compared to conventional devices.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を参照しながら説明する。 Embodiments of the present invention will be described below with reference to the drawings.

図では、その要部だけを取り出して示している。In the figure, only the main parts are shown.

図において、1はたとえばガドリニウムガリウムガーネ
ットの単結晶塊体な円柱状に加工して形成され軸心線を
重力方向に対して平行させて配置された作業物質であり
、この作業物質1の回りには上記作業物質1と同心的に
超電導コイル2が配置されている。
In the figure, reference numeral 1 is a working material formed by processing a single crystal block of gadolinium gallium garnet into a cylindrical shape, and arranged with the axis line parallel to the direction of gravity. A superconducting coil 2 is arranged concentrically with the working material 1.

しかして、作業物質1の上端面には、キャップ状の部材
3が固着されており、この部材3と作業物質1の上端面
との間に形成された空洞4は配管5a,5b、バルブ6
,7を介して小型冷凍機8の冷媒入口管10とに接続さ
れている。また、上記冷媒出口管9と冷媒入口管10と
の間にはバイパス用のバルブ11が接続されている。上
記冷凍帰は、実際には20k以下のヘリウムガスを生成
するものが用いられている。
A cap-shaped member 3 is fixed to the upper end surface of the working material 1, and a cavity 4 formed between this member 3 and the upper end surface of the working material 1 is filled with pipes 5a, 5b, valves 6,
, 7 to a refrigerant inlet pipe 10 of a small refrigerator 8. Further, a bypass valve 11 is connected between the refrigerant outlet pipe 9 and the refrigerant inlet pipe 10. In practice, the above-mentioned refrigeration system is used which generates helium gas of 20K or less.

一方、作業物質1の回りには上記作業物質1の外周面を
直接に凝縮部12とし、前記キャップ状部材3と接続さ
れる密封容器13が配置されている。
On the other hand, a sealed container 13 is disposed around the working material 1, and the outer peripheral surface of the working material 1 directly serves as a condensing portion 12, and is connected to the cap-shaped member 3.

この密封容器13は、作業物質1の外周面上の間に間隙
14をあけて同心的に配置され、上端部が前記部材3の
外周縁部に気密に接続されるとともに下端部が作業物質
1の下端面より下方に延出した金属材製の貯溜部を5を
備えている。なお、密封容器13、作業物質1および超
電導コイル2は図示しない真空容器内に一体的に収容を
れている。
This sealed container 13 is arranged concentrically on the outer peripheral surface of the work material 1 with a gap 14 therebetween, and has an upper end hermetically connected to the outer peripheral edge of the member 3 and a lower end that is connected to the work material 1. A storage portion 5 made of a metal material and extending downward from the lower end surface of the storage portion 5 is provided. Note that the sealed container 13, the working material 1, and the superconducting coil 2 are housed integrally in a vacuum container (not shown).

そして、上記超電導コイル2の付勢およびバルブ6、7
、11の開閉は制御装置21によって後述する関係に制
御される。
Then, the superconducting coil 2 is energized and the valves 6 and 7 are energized.
, 11 are controlled by a control device 21 according to the relationship described later.

次に、上記のように構成された装置の動作を説明する。Next, the operation of the apparatus configured as described above will be explained.

まず、バルブ6、7が“閉”に、バルブ11が“開”に
保持されて、冷凍機8から排出された20k以下のヘリ
ウムガスが冷媒出口管9〜バルブ11〜冷媒入口管10
の経路で循環しているものとする。
First, the valves 6 and 7 are held "closed" and the valve 11 is held "open", and the helium gas of 20K or less discharged from the refrigerator 8 is transferred from the refrigerant outlet pipe 9 to the valve 11 to the refrigerant inlet pipe 10.
Assume that it circulates along the route.

この状態で、制郵装置21に動作開始指令を与えると、
制御装置21は、まず超電導コイル2を付勢し、続いて
、バルブ6、7を“開”に、バルブ11を“閉”に制御
する。超電導コイル2が付勢されると、作業物質1は磁
界内に置かれることになるので、断熱磁化の状態となり
発熱する、このとき、空洞4内には20k以下のヘリウ
ムガスが流れているので、作業物質1で発生した熱はヘ
リウムガスによって直接的に奪われる。したがって、作
業物質1の温度上昇は抑えられ、排熱過程が実行される
In this state, when a command to start operation is given to the postal control device 21,
The control device 21 first energizes the superconducting coil 2, and then controls the valves 6 and 7 to be "open" and the valve 11 to be "closed". When the superconducting coil 2 is energized, the working material 1 is placed in a magnetic field, so it becomes adiabatic magnetized and generates heat.At this time, since helium gas of 20K or less is flowing in the cavity 4, , the heat generated in the working material 1 is directly removed by the helium gas. Therefore, the temperature rise of the working material 1 is suppressed and a heat removal process is carried out.

続いて、制御装置21は、バルブ11を“開”に、バル
ブ6を“閉”に制御し、次に超電導コイル2の付勢を停
止させる。この結果、作業物質1は磁界外へ出ることに
なるので断熱消磁の状態となり、急速に温度降下する。
Subsequently, the control device 21 controls the valve 11 to "open" and the valve 6 to "close", and then stops the energization of the superconducting coil 2. As a result, the work material 1 comes out of the magnetic field and is therefore in a state of adiabatic demagnetization, resulting in a rapid temperature drop.

そして、作業物質1の温度が4、2k以下まで低下する
と、冷凍機8からのヘリウムガスがバルブ7、11を通
過して密封容器13の間隙14内に流れ、ヘリウムガス
は密封容器13の凝縮部12すなわち作業物質1の外周
面で液化して密封容器13の貯槽部15に落下する。こ
のようにして吸熱過程が実行されることになる。そして
、制御装置21は上述した一連の制御を繰り返す。した
がって冷凍機8から供給されるヘリウムガスは冷却され
て液化されることになり、ここに冷凍装置としての機能
が発揮される。
When the temperature of the work material 1 drops to below 4.2K, helium gas from the refrigerator 8 passes through the valves 7 and 11 and flows into the gap 14 of the sealed container 13, and the helium gas condenses in the sealed container 13. It liquefies at the portion 12, that is, the outer peripheral surface of the work material 1, and falls into the storage tank portion 15 of the sealed container 13. In this way, an endothermic process is carried out. The control device 21 then repeats the series of controls described above. Therefore, the helium gas supplied from the refrigerator 8 is cooled and liquefied, and the function of the refrigerator is exhibited here.

尚、冷凍機8からヘリウムガスを供給して作業物質1を
冷却するときは、密封容器13内にはヘリウムガスが充
満しているので密封容器13の貯槽部5内に入ることは
ない。一方、作業物質1を磁界外にするときは作業物質
1は吸熱作業を行うので冷凍機8から供給するヘリウム
ガスは冷却されて液化するので密封容器13内は減圧し
、更に冷凍機8からヘリウムガスを密封容器13内に引
き込むことになる。
Note that when helium gas is supplied from the refrigerator 8 to cool the work material 1, the helium gas does not enter the storage tank 5 of the sealed container 13 because the sealed container 13 is filled with helium gas. On the other hand, when the work material 1 is placed outside the magnetic field, the work material 1 performs heat absorption work, so the helium gas supplied from the refrigerator 8 is cooled and liquefied, so the pressure inside the sealed container 13 is reduced, and further helium gas is supplied from the refrigerator 8. Gas will be drawn into the sealed container 13.

上述した実施例では、超電導コイルを付勢したり、付勢
を停止することによって作業物質を磁界の内外へ交互に
出し入れするようにしているが、超電導コイルを付勢し
たまゝの状態にしておき、コイルを軸方向に周期的に移
動させることによって作業物質を磁界の内、外へ交互に
出し入れするようにしてもよい。また、超電導コイルに
限られるものでもない。また、コイルや作業物質の支持
は任意に設定できることは勿論である。
In the embodiment described above, the working material is alternately moved in and out of the magnetic field by energizing and stopping the energization of the superconducting coil, but it is not possible to keep the superconducting coil energized. The working material may be moved in and out of the magnetic field alternately by periodically moving the coil in the axial direction. Moreover, it is not limited to superconducting coils. Further, it goes without saying that the support for the coil and the work material can be set arbitrarily.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例に係る磁気冷凍装置の要部を一
部切欠して示す構成説明図である。
The drawing is an explanatory diagram of the configuration of a magnetic refrigeration system according to an embodiment of the present invention, with some parts cut away.

Claims (1)

【特許請求の範囲】[Claims] 磁界内に入ると発熱し、磁界外は出ると吸熱する作業物
質と、この作業物質を周期的に磁界内に位置させる装置
と、前記作業物質の表面の一部を凝縮部とする密閉容器
と、前記作業物質が磁界内に入っているとき前記作業物
質を冷媒で冷却し、前記作業物質が磁界外になったとき
は前記密封容器の凝縮部に前記冷媒を流通させる冷却装
置とを具備してなることを特徴とする磁気冷凍装置。
A working substance that generates heat when it enters a magnetic field and absorbs heat when it leaves the magnetic field, a device that periodically positions this working substance within the magnetic field, and a closed container that has a part of the surface of the working substance as a condensation part. , a cooling device that cools the working material with a refrigerant when the working material is within the magnetic field, and causes the refrigerant to flow through the condensation section of the sealed container when the working material is out of the magnetic field. A magnetic refrigeration device characterized by:
JP20116082A 1982-11-18 1982-11-18 Magnetic refrigerator Pending JPS5993158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20116082A JPS5993158A (en) 1982-11-18 1982-11-18 Magnetic refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20116082A JPS5993158A (en) 1982-11-18 1982-11-18 Magnetic refrigerator

Publications (1)

Publication Number Publication Date
JPS5993158A true JPS5993158A (en) 1984-05-29

Family

ID=16436366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20116082A Pending JPS5993158A (en) 1982-11-18 1982-11-18 Magnetic refrigerator

Country Status (1)

Country Link
JP (1) JPS5993158A (en)

Similar Documents

Publication Publication Date Title
JPH0155392B2 (en)
JPS58124178A (en) Wheel type magnetic refrigerator
JPS58108370A (en) Method and device for operating cooling or heat pump
GB2179729A (en) A method of magnetic refrigeration and a magnetic refrigerating apparatus
US4970866A (en) Magneto caloric system
EP0104713A2 (en) A magnetic refrigerator
JPS5993158A (en) Magnetic refrigerator
JPS5969668A (en) Magnetic refrigerator
JPS5941759A (en) Magnetic refrigerator
JPS5969669A (en) Magnetic refrigerator
JPH03148568A (en) Method and apparatus for cold storage and refrigeration therefor
US7219501B2 (en) Cryocooler operation with getter matrix
US3550390A (en) Method and apparatus for economizing the use of refrigerant
US11486609B2 (en) Systems and methods for providing continuous cooling at cryogenic temperatures
JPH0371627B2 (en)
JPS6141857A (en) Helium liquefier
JPS6349887B2 (en)
JPH02275260A (en) Cryogenic cooling device
JPH08189716A (en) Cool storage vessel type refrigerating machine
JPS6141859A (en) Magnetic refrigerator
JPS63129265A (en) Reciprocating type magnetic refrigerator
JPS58112305A (en) Superconductive magnet device
JPS6122158A (en) Superfluid helium generator
JPH03114279A (en) Cryogenic cooling machine
JPS60253769A (en) Helium refrigerator