JPS5992774A - Pwm controlling method for inverter - Google Patents

Pwm controlling method for inverter

Info

Publication number
JPS5992774A
JPS5992774A JP20040882A JP20040882A JPS5992774A JP S5992774 A JPS5992774 A JP S5992774A JP 20040882 A JP20040882 A JP 20040882A JP 20040882 A JP20040882 A JP 20040882A JP S5992774 A JPS5992774 A JP S5992774A
Authority
JP
Japan
Prior art keywords
voltage
pwm
output
inverter
microcomputer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20040882A
Other languages
Japanese (ja)
Inventor
Katsu Maekawa
克 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20040882A priority Critical patent/JPS5992774A/en
Publication of JPS5992774A publication Critical patent/JPS5992774A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To enhance the output of an inverter while suppressing the generation of low order harmonic wave by performing a sinusoidal PWM when a voltage reference value is low, and sequentially shifting from the sinusoidal PWM to a rectangular PWM when the voltage reference value is higher than the DC power source voltage. CONSTITUTION:The set voltage of the output frequency given by an output frequency setter 1 is converted by a V/F converter 2 into a frequency, which is then inputted to a microcomputer 100. A timing signal from the microcomputer 100 is applied to the microcomputer 101, which provides necessary data to output a PWM signal. The sinusoidal PWM is performed while the peak value of the AC output voltage is lower than the voltage of a DC power source, and gradually shifted to a rectangular PWM when the AC voltage of the peak value higher than the voltage of the DC power source is outputted.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はインバータのPWM (%戦W政しボdlLt
yn ) z行制御方法にかかり、特に正弦波PWM 
l二よる出力電圧が飽和したとき矩形波PWMへ順次部
分的に移行させることによって出力電圧の電圧範囲を拡
大すルハルス1】制御方法(二関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides an inverter PWM
yn) Z row control method, especially sine wave PWM
1] Control method (related to 2) in which the voltage range of the output voltage is expanded by sequentially partially shifting to rectangular wave PWM when the output voltage due to 12 is saturated.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に訪尋電動(奴の可変速(枢動用とし、て第1図に
示すPWMインバータが多く用いられており、特C低姻
111波の低減をはかるためには正弦波PWM方式が用
いられている。
Generally, the PWM inverter shown in Figure 1 is often used for variable speed (pivotal) electric power, and the sine wave PWM method is used to reduce the special C low 111 wave. .

マタマイクロコンピュータ(以下マイコンと呼ぶ)の進
歩に伴って、制御回路のマイコン化が進み、 PWMの
演謄−にもマイコンを利用することが可能となった。
With the advancement of microcomputers (hereinafter referred to as microcomputers), the use of microcomputers in control circuits has progressed, and it has become possible to use microcomputers for PWM operation.

T’WMへのマイコン応用の一つとして、本発明者は先
に特願昭57−76635に丸・いて、出力周波数の広
い範囲で低仄高調波を含まない正弦波PWM電圧を出力
するパルス巾制御方法を提案した。
As one of the applications of microcontrollers to T'WM, the present inventor previously published a patent application No. 76635/1983 to develop a pulse generator that outputs a sinusoidal PWM voltage that does not contain low harmonics over a wide range of output frequencies. A width control method was proposed.

その幀、要を述べると下記の通りである。The outline is as follows.

第2図に示すように、3相正弦波崖間出力市、圧VU 
V+ VVW+ VWUを得るために、直流電圧中性点
に対する各相電位EU+ EV+ Ewが図示のように
PWM制御される。
As shown in Figure 2, three-phase sine wave cliff output city, pressure VU
In order to obtain V+VVW+VWU, each phase potential EU+EV+Ew with respect to the DC voltage neutral point is PWM controlled as shown.

すなわち区間■ではV相正側トランジスタVPTがオフ
、負側トランジスタVNTがオンされてEV=E、( m−になると共にEU+ EwがEVに対してそえj、
ぞれV1J+Iz7L (θ+30°)2よびυL:、
6−1θ ]二なるようf二PWM制御され、順次区間
■〜■でも1相が一二貰たは−j −に固定されると共に他の2相が1:lJ様in PW
M制御され、これによって波高11D−〇の3札止弦波
出力が得られる。
That is, in the interval ■, the V-phase positive side transistor VPT is turned off and the negative side transistor VNT is turned on, so that EV=E, (as m- becomes, EU+Ew rises to EV j,
V1J+Iz7L (θ+30°)2 and υL:,
6-1θ] is controlled by f2 PWM so that it becomes 2, and one phase is fixed at 12 or −j − in sequential intervals ■ to ■, and the other two phases are 1:lJ-like in PW
M control is performed, thereby obtaining a three-note string wave output with a wave height of 11D-0.

第3図は上記パルス中部1徊1を行なうための回路宿成
を示すもので、Aマイコン100およびBマイコン10
1にはそれぞれ例えばインテル8048Aおよび804
1を用いることができる。
FIG. 3 shows the circuit configuration for carrying out the above-mentioned pulse mid-section 1, in which the A microcomputer 100 and the B microcomputer 100
1 for example Intel 8048A and 804 respectively
1 can be used.

第3図Cおいて、出力周波数設定器1で54.たえられ
る出力周波数fの設定電圧ばVFコンバータ2で6×n
xPXfの周波数に変4QされてAマイコン100に入
力され、ここで’/nに分周されて6・P−fの変調周
波数、すなわち電気角60°ごとに2回の割込タイミン
グ信号が発生する。
In FIG. 3C, the output frequency setter 1 is set to 54. The setting voltage of the output frequency f that can be maintained is 6×n in VF converter 2.
It is changed to the frequency of xPXf by 4Q and inputted to the A microcomputer 100, where it is divided into '/n to generate a modulation frequency of 6·P-f, that is, two interrupt timing signals are generated every 60 degrees of electrical angle. do.

一方周波数設定器1の出力は関数発生器12を介して電
圧基準信号aをあたえる。
On the other hand, the output of the frequency setter 1 provides a voltage reference signal a via a function generator 12.

今A回目の割込タイミングが発生するとAマイコンは割
込ルーチンにジャンプしs  (’−’i)回目の割込
ルーチンで計9.シて2いたパルス中となるようタイミ
ングをとってBマイコンがPWM信号を出力するために
必要とするデータをあたえる。
When the A-th interrupt timing occurs, the A microcomputer jumps to the interrupt routine, and the s ('-'i)-th interrupt routine causes a total of 9. The data required for the B microcomputer to output the PWM signal is given at a timing such that the pulse is in the middle of the second pulse.

このデータの受渡しは変調周波数の1周ルjの時間Tr
nの半分で終了する。
This data exchange takes place over the time Tr of one round of the modulation frequency.
Finish with half of n.

従ってAマイコンは残りの半分の時間(二、次回の再り
込タイミングがあたえられ/・二ときにBマイコンにあ
たえるべきデータの占j算を行なう。
Therefore, the A microcomputer calculates the data to be given to the B microcomputer during the remaining half of the time (2) when the next re-entry timing is given.

その後次回の割込タイミングがあたえられるのを待ちな
がら、割込タイミングかめたえられるまでの時間を測定
するメインルーチンに戻るOBマイコンは第4図に示す
ようなPWM (ム号の前十分けAマイコン3からあた
えられるタイミングとデータに従ってPWM (’j号
を出力し、後半分は前半分であたえられていたデータを
再度使用してBマイコン自身でタイミングをつくってP
WM (s号を出力する。
After that, the OB microcontroller returns to the main routine, which waits for the next interrupt timing to be given and measures the time until the interrupt timing is determined. PWM according to the timing and data given from microcomputer 3 ('j is output, and the second half uses the data given in the first half again to create the timing on the B microcomputer itself.
WM (Outputs number s.

このよつ(二2つのマイコンA、Bで機能を分担するこ
とC二よって、パルス中の計算を行なうための時間的余
裕を得ている。
By sharing the functions between the two microcomputers A and B, there is enough time to perform calculations during the pulse.

ので4回目の電気角θAl”l:(A−1)回目の市5
気角θA−1から次の(1)弐で求められる。
Therefore, the fourth electrical angle θAl”l: (A-1) the city 5
It is obtained from the air angle θA-1 using the following (1) 2.

θA −θルーl + △θ        −−−−
−−−−−−−−(1)一方割込タイミング間すなわち
△θの肚猫・する時間が、メインルーチンでカウント値
Tfflとしてmil定される。
θA −θ rule + △θ −−−−
------- (1) On the other hand, the time between interrupt timings, that is, Δθ, is determined by mil as a count value Tffl in the main routine.

この測定値Tmと電気角θAおよびADコンバータ1】
を介してあたえられる電圧基Iφσ(−=−)からf5
dr。
This measured value Tm, electrical angle θA and AD converter 1]
f5 from the voltage base Iφσ (-=-) given via
dr.

次の(2)式および(8)式を用いてU相およびw相の
パルスrl”rsl ’r0が演算される。
U-phase and w-phase pulses rl''rsl'r0 are calculated using the following equations (2) and (8).

” :a””L(θa+30°) ・Tm −−−−−
−−−(2)TO= (1−c、e、aθa     
−Tm−−−−−−−(81従ってTlX1間の平均電
圧はそれぞれ一工’−= a 鳥(0,+30°)  
  −−−−−−−−−−−L41M j−一α〜・θa      −−−−−−−−−−−
−(5)7M となり、こね、によって正弦波PWMが行なわれ1出力
電圧を正弦波近似とし、aをゼロから1まで変化させる
ことC二よって線間電圧の基本波の波高値Vをゼロから
直流電圧Ed、までSij!I御することができる。
”:a””L(θa+30°) ・Tm −−−−−
---(2) TO= (1-c, e, aθa
−Tm−−−−−−−(81 Therefore, the average voltage between Tl
−−−−−−−−−−−L41M j−1 α~・θa −−−−−−−−−−
-(5) 7M, and by kneading, sine wave PWM is performed. 1. The output voltage is approximated as a sine wave, and a is changed from zero to 1. C. 2. Therefore, the peak value V of the fundamental wave of the line voltage is changed from zero to DC voltage Ed, up to Sij! I can control it.

しかし基本波の波高値をEjc以上にすることはできな
い。
However, the peak value of the fundamental wave cannot be made higher than Ejc.

すなわち第2図1−おいて、線間電圧Vuvid期間■
の終り(θA=60°)で最大(j4.i vとなり、
電圧基準a = lのとき Tll、?A=600−〔1itn(θル+30°)・
Tm 3 e4 = 6oO= Tm−−−−−−−−
−−−−(61 となり、波置値がEdcの交流定圧が得ら力、る。
In other words, in Fig. 2 1-, the line voltage Vuvid period ■
At the end of (θA = 60°), it becomes maximum (j4.i v,
When voltage reference a = l, Tll, ? A=600-[1itn(θle+30°)・
Tm3e4=6oO=Tm---------
-----(61), and a constant AC pressure with wave position value Edc is obtained.

従って出力電圧の最大値d′直流電圧PQdc、で決貰
る。
Therefore, the maximum value d' of the output voltage is determined by the DC voltage PQdc.

訪導電動機を第1図ζ二示すように交流定圧を整流して
直流電源としたインバータで運転すると、直流電圧Ed
は負荷によって変化する。
When the motor is operated with an inverter that rectifies the AC constant pressure and uses it as a DC power source as shown in Figure 1ζ2, the DC voltage Ed
changes depending on the load.

抄・1えば3相200vの交流電圧な槓流したJz x
 200vヰ282vを直流電源とした正弦波PWMイ
ンバータは、素子の電圧降下を無視すると最大200V
の交流電圧を出力できるが1重負荷時は直流電圧が27
0v程度まで降下するのでインバータ実際は素子内の電
圧降下や、素子を保r焚するだのメンディレィタイムに
よってインバータ出力電圧はさらに低下する。
Excerpt: 1. For example, 3-phase 200v AC voltage flowing Jz x
A sine wave PWM inverter using 200v to 282v as a DC power source has a maximum output of 200V, ignoring the voltage drop of the elements.
It is possible to output an AC voltage of
Since the voltage drops to approximately 0V, the inverter output voltage actually decreases further due to the voltage drop within the inverter elements and the delay time required to keep the elements fired.

一方矩形波PWMは正弦波pwMl二比して低次高調波
の含有率は大きいが基本波電圧は高くなって最た3相交
流電圧が得られることになる。
On the other hand, the rectangular wave PWM has a higher content of low-order harmonics than the sine wave PWM, but the fundamental wave voltage is higher and a three-phase AC voltage can be obtained.

〔発明の目的〕[Purpose of the invention]

本発明は交流出力電圧の波高値が14〒流電源電圧より
低い間は正弦波PWMを行なうと共に、■i流fJ4.
:源電圧よりも萬い波高値の交流電圧を出力するときは
徐々C二矩形波PWMに移行させ、これによって低次高
調波の発生を抑制しながら出力電圧の範囲を拡大できる
インバータのPWM制御方法を提供することを目的とし
ている。
The present invention performs sine wave PWM while the peak value of the AC output voltage is lower than the 14 current power supply voltage, and ■i current fJ4.
: When outputting an AC voltage with a wave peak value higher than the source voltage, the inverter's PWM control gradually shifts to C2 square wave PWM, thereby expanding the output voltage range while suppressing the generation of lower harmonics. The purpose is to provide a method.

〔発明の概要〕[Summary of the invention]

本発明は、出力周波数fおよび最大正弦波PWM出力電
圧に対する出力電圧基準αを設定し、インバータの出力
周波数を上記設定周波数f(二制御すると共(二、上記
最大正弦波PWM出力電圧に対する変調周期ごとの電気
角θAの関数としてのパルス中T、(θA)からa−T
p(θA)を算出し、上記算出したa−Tp(θ4)と
変調周期中TI、lとの何れか小さい方をそれぞれの変
EIt3周期におけるパルス1ノとして出力1b、圧を
制御し、これによって正弦波PWM出力電圧が最大値に
達したときは順次矩形波PWM l二移行式せて出力電
圧を1・占加でさるインバータのPWM制御力法である
The present invention sets an output voltage reference α for the output frequency f and the maximum sine wave PWM output voltage, and controls the output frequency of the inverter at the set frequency f (2) and the modulation period for the maximum sine wave PWM output voltage. T during the pulse as a function of electrical angle θA, (θA) to a-T
p(θA) is calculated, and the smaller of a-Tp(θ4) calculated above and TI, l during the modulation period is set as pulse 1 in each variable EIt3 period, and the output 1b and pressure are controlled. This is an inverter PWM control force method in which when the sine wave PWM output voltage reaches the maximum value, the inverter's PWM control force method is sequentially converted into a rectangular wave PWM.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第5図のフローチャー)に示す。 An embodiment of the present invention is shown in the flowchart of FIG.

本発明のハード講成は第3図と同じであり、本発明けP
WMにおけるパルス中の制御を′電圧基準aが1より小
さい間は正弦波PWMで行ない、1より大きくなると部
分的に順次矩形波PWM l1近ずける。
The hardware lecture of the present invention is the same as shown in Fig. 3, and the present invention
Control during pulses in WM is performed using a sine wave PWM while the voltage reference a is smaller than 1, and when it becomes larger than 1, it is partially sequentially brought closer to a rectangular wave PWM l1.

第5図はW相【二対するパルス中T。の制御C二ついて
示してあり、他の相に対してもその波形に対応して同様
な制御を行なうことがてきる。
Figure 5 shows W phase [T during two paired pulses. Two control Cs are shown, and similar control can be performed for other phases in accordance with their waveforms.

第5図において、ステップ(1)でパルス巾計算に必要
なデータはすべて準備されているとして、ステップ(2
)で各タイミングAに対する計算」二の正弦波パルス中
Tc′を下記(7)式でtl 74する。
In FIG. 5, it is assumed that all the data necessary for pulse width calculation has been prepared in step (1), and step (2)
), calculate Tc' during the second sine wave pulse for each timing A using the following equation (7).

To’: a −ceriθA −、Tm     −
−−−−−一−−(7)但し上記T。′は実際のパルス
間隔T、を考慰しないで算出したものであり、a〉1の
ときはQ ’ C+6Jθa>1となることがあり、従
って争。’ > ’rmとなることがある。
To': a-ceriθA-, Tm-
-------1--(7) However, the above T. ' is calculated without considering the actual pulse interval T, and when a>1, Q'C+6Jθa>1 may be obtained, so there is a dispute. '>'rm may occur.

しかし冥際上パルス巾をパルス間隔T。より大きくする
ことは出来ないめで、実’I’tA に用いるパルスr
l] To it ステップ+81−.(51において
下記(8)式を用いて決定する。
However, the pulse width at the end of the day is the pulse interval T. The pulse r used for the actual 'I'tA cannot be made larger.
l] To it step +81-. (Determined in step 51 using the following equation (8).

次1ニステップ(6)でT。を出力してパルス1jを″
制御し、次(ニステップ(7)で4をA+1′としタイ
ミングA +1 += ツイテ同INの演り、を行ない
、こノしC二よって順次バ°ルス巾制御を行なう。
T in the next 1st step (6). Output pulse 1j''
Then, in the second step (7), set 4 to A+1' and perform timing A +1 += Tweet same IN, and then sequentially perform pulse width control by C2.

第6図は上記Ta’;T41とToとの関係の一例な示
したものである。
FIG. 6 shows an example of the relationship between Ta';T41 and To.

これ(二よってa ’ cv、6θAが0〜1″!では
正弦波PWMが行なわれ%”D6AθAが1を超えると
Toは飽和して一定’i6. Tmとなり、出力波形の
中央部から11石1次パルスがつながって徐々(−矩形
波(二移行する。
This (2, therefore, a' cv, 6θA is 0 to 1''!, sine wave PWM is performed, and when %D6AθA exceeds 1, To is saturated and becomes constant 'i6.Tm, 11 stones from the center of the output waveform. The primary pulses are connected and gradually transition to a (-square wave).

すべてのパルスが飽和すると完全な矩形波になり、直流
電圧EdのJ倍(約1,1倍)の波高値のπ 交流電圧がイ0られる。
When all the pulses are saturated, they become complete rectangular waves, and a π AC voltage with a peak value J times (approximately 1.1 times) the DC voltage Ed is generated.

この場合、正弦波から矩形波への移行は順次部分的(1
行なわれるので、 PWMモードを直接に正弦波から矩
形波f二切換える場合のようなショックを発生すること
がない。
In this case, the transition from sine wave to square wave is sequentially partial (1
Therefore, there is no shock unlike when directly switching the PWM mode from a sine wave to a rectangular wave f2.

尚第5図のフローチャートを他のオ目の場合を含んで一
般的■二示すC′:、げ、。ヶ2θ爲・T、の代りに正
弦波PWMの最大正弦波出力電圧発生時の谷相の変調周
期ごとの電気角θ^に対するパルス中Tp(θA)を前
もって計算しておいて用いればよい。
In addition, the flowchart in FIG. 5 is shown in general (1) and (2), including other cases. Instead of 2θ ⋅T, it is sufficient to calculate in advance Tp (θA) during the pulse with respect to the electrical angle θ^ for each modulation period of the valley phase when the maximum sine wave output voltage of the sine wave PWM is generated.

〔発明の効果〕〔Effect of the invention〕

以上説明したようC二本発明によれば、電圧基率値が低
いときけ正弦波PWMを行なうと共C二、電圧基準値が
直流′g¥TJW電圧よりも高いときはlii次正弦波
pwy+から矩形波PWMに移行させ、こ、itζ二よ
って低次高調波の発生をできるたり抑制しながら反流出
力1↓も圧を商めることかできる合JII・rt::+
なインバータのPWM制御方法がイむられる。
As explained above, according to the present invention, when the voltage reference value is low, the sine wave PWM is performed, and when the voltage reference value is higher than the DC'g\TJW voltage, the lii-order sine wave pwy+ By shifting from to square wave PWM, it is possible to suppress or suppress the generation of low-order harmonics while also converting the counterflow output 1↓.
A PWM control method for an inverter is adopted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用されるインバータの一般的な構成
を示す回路図、紀2図は正弦波アWM−二おける各相の
1i:正波形図、g1已3図けPWM il]ll葡]
回路の構成を示すブロック図、第4図はFW’M制御に
おけるパルスIt]を示す図、第5図は本発明の−シ、
:、施しl]を示すフローチャート、第6図は本発明の
C(す作を説明するためのs+ 71−図である。 1 周波数設定器  2  VFコンバータ11  A
Dコンバータ 12  関数発生器100  Aマイコ
ン  101BマイコンPS  交流電源   REO
整流器 UPT〜WNT  )ランジスタ ■脣 誘導1に動機 第1図 第2図 θ瓢 θ°      6oI′      12o6
     1aoj       2ao”     
 J(110″″     3n6第3図 第4図 第5図 第6図 一ヤ龍・のりθ造 369−
Fig. 1 is a circuit diagram showing the general configuration of an inverter to which the present invention is applied, Fig. 2 is a 1i: positive waveform diagram of each phase in sine wave AWM-2, g1 x 3 Fig. PWM il]ll Grapes]
FIG. 4 is a block diagram showing the configuration of the circuit, FIG. 4 is a diagram showing the pulse It in FW'M control, and FIG.
1. Frequency setter 2. VF converter 11 A
D converter 12 Function generator 100 A microcomputer 101B microcomputer PS AC power supply REO
Rectifier UPT~WNT) Transistor ■ External power to induction 1 Fig. 1 Fig. 2 θ° θ° 6oI' 12o6
1aoj 2ao”
J (110″″ 3n6 Fig. 3 Fig. 4 Fig. 5 Fig. 6

Claims (1)

【特許請求の範囲】[Claims] 出力周波数fおよび最大正弦波pwM出力電圧を1とし
た出力電圧基準aを設定し、インパークの出力周波数を
上記設定周波数ft二制御すると共に、上記最大正弦波
PWM出力電圧における各変調周期ごとのti気角θA
に対応するパルスrl〕T、(OA)からa・Tp(O
A)を算出し、上記算出したa−Tp (OA)と俊=
rr、1局期中Tmとの倒れか小さい方をそれぞれの変
調周期におけるパルス巾として出力電圧な制向jするこ
とを特徴とするインバータのPwMfI111η印方法
An output voltage reference a is set with the output frequency f and the maximum sine wave PWM output voltage as 1, and the output frequency of the impark is controlled at the set frequency ft2, and the ti air angle θA
Pulse rl corresponding to]T, (OA) to a・Tp(O
A) is calculated, and the above calculated a-Tp (OA) and Shun =
PwMfI111η marked method for an inverter, characterized in that the output voltage is controlled by using the smaller of rr and Tm during one station period as the pulse width in each modulation period.
JP20040882A 1982-11-17 1982-11-17 Pwm controlling method for inverter Pending JPS5992774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20040882A JPS5992774A (en) 1982-11-17 1982-11-17 Pwm controlling method for inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20040882A JPS5992774A (en) 1982-11-17 1982-11-17 Pwm controlling method for inverter

Publications (1)

Publication Number Publication Date
JPS5992774A true JPS5992774A (en) 1984-05-29

Family

ID=16423815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20040882A Pending JPS5992774A (en) 1982-11-17 1982-11-17 Pwm controlling method for inverter

Country Status (1)

Country Link
JP (1) JPS5992774A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6099004B1 (en) * 2015-09-18 2017-03-22 株式会社安川電機 INVERTER DEVICE AND INVERTER DEVICE MANUFACTURING METHOD
WO2017046964A1 (en) * 2015-09-18 2017-03-23 株式会社安川電機 Inverter device and method for controlling inverter device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6099004B1 (en) * 2015-09-18 2017-03-22 株式会社安川電機 INVERTER DEVICE AND INVERTER DEVICE MANUFACTURING METHOD
WO2017046965A1 (en) * 2015-09-18 2017-03-23 株式会社安川電機 Inverter device, and method for manufacturing inverter device
WO2017046964A1 (en) * 2015-09-18 2017-03-23 株式会社安川電機 Inverter device and method for controlling inverter device
JP6156784B1 (en) * 2015-09-18 2017-07-05 株式会社安川電機 INVERTER DEVICE AND INVERTER DEVICE CONTROL METHOD

Similar Documents

Publication Publication Date Title
JP6481621B2 (en) Power converter and three-phase AC power supply
CN108429469B (en) Z-source two-stage matrix converter modulation method based on carrier PWM
Wang et al. Current ripple analysis and prediction for three-level T-type converters
CN108448581B (en) Method for controlling grid-connected current specific harmonic of parallel current source inverter
JPH08126352A (en) Power converter
CN108322074B (en) Dodecagon space voltage vector-based SVPWM (space vector pulse width modulation) modulation method for cascaded two-level inverter
Eya et al. Assessment of total harmonic distortion in buck-boost DC-AC converters using triangular wave and saw-tooth based unipolar modulation schemes
CN109617442B (en) Four-bridge-arm double-output inverter carrier PWM (pulse-width modulation) method under unbalanced load
JPS5992774A (en) Pwm controlling method for inverter
Nguyen et al. A carrier-based pulse width modulation method for indirect matrix converters
Roy et al. A new technique to implement conventional as well as advanced Pulse Width Modulation techniques for multi-level inverter
JP5963531B2 (en) Inverter device and photovoltaic power generation system
Sharma et al. ANN based SVPWM for three-phase improved power quality converter under disturbed AC mains
CN109713928B (en) SVPWM modulation method for four-bridge-arm dual-output inverter under unbalanced load
Roy et al. A Simplified Space Vector Pulse Width Modulation for three phase three-level diode clamped Inverter
Kokate et al. Comparison of simulation results three-level and five-level H-bridge inverter and hardware implementation of single leg H-bridge three-level inverter
CN106549592A (en) A kind of asymmetric three-level inverter modulator approach of DC voltage
Saravanan et al. Effectual SVPWM techniques and implementation of FPGA based induction motor drive
JP3409039B2 (en) Control device for power converter
CN113517803B (en) Modulation method for reducing direct-current side capacitance of single-phase matrix type wireless power transmission system
Alzuabidi Study and implementation sinusoidal PWM inverter fed 3-phase induction motor
JP2000324842A (en) Controller for power converter
Wang et al. Model-predictive control to realize the switching-cycle capacitor voltage control for the modular multilevel converters
Manivannan et al. DDR-Based PWM technique for fixed frequency three-phase to variable frequency K-phase power conversion using QZSDMC
Abid et al. Optimized Modulation Scheme for Four-Leg Quasi Z-Source Inverter: Reducing Power Loss and Improving Output Quality