JPS599273B2 - Electroslag welding wire - Google Patents

Electroslag welding wire

Info

Publication number
JPS599273B2
JPS599273B2 JP2052077A JP2052077A JPS599273B2 JP S599273 B2 JPS599273 B2 JP S599273B2 JP 2052077 A JP2052077 A JP 2052077A JP 2052077 A JP2052077 A JP 2052077A JP S599273 B2 JPS599273 B2 JP S599273B2
Authority
JP
Japan
Prior art keywords
wire
welding
electroslag welding
tensile strength
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2052077A
Other languages
Japanese (ja)
Other versions
JPS53106356A (en
Inventor
俊彦 渡辺
良知 藤猪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2052077A priority Critical patent/JPS599273B2/en
Publication of JPS53106356A publication Critical patent/JPS53106356A/en
Publication of JPS599273B2 publication Critical patent/JPS599273B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】 本発明は、溶接後の熱処理を行なつた場合に50に9/
一以上の引張強度を有し、しかも優れた衝撃値を有する
溶着金属を与える為のエレクトロスラグ溶接用ワイヤに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides that when heat treatment is performed after welding,
The present invention relates to an electroslag welding wire for providing a deposited metal having a tensile strength of 1 or more and an excellent impact value.

従来超厚板のエレクトロスラグ溶接においては、溶接終
了後に熱処理を行なつて溶着金属及びその熱影響部を調
質し、良好な衝値賃を得る様にしている。
Conventionally, in electroslag welding of extremely thick plates, heat treatment is performed after welding to refine the weld metal and its heat-affected zone in order to obtain a good impulse welding cost.

しかし高強度の母材を溶接する場合におい・ては、溶接
後に熱処理を行なつても良好な衝撃値が得られない場合
も多く、確実性が乏しいと言われている。また現在行な
われている上記熱処理法は加熱後急冷することを要点と
しており、オーステナイト化温度まで昇温したのち、衝
風冷却、水噴霧冷却、油冷却等の急冷方法が採用されて
いる。その為冷却装置や運搬装置等の大がかりな設備が
要求されるだけでなく急冷時の変形を避けることができ
ず、この点からしても良い方法とは言えない。この様な
ところから、徐冷法によつて高強度且つ高衝撃度の溶着
金属を得ようとすることも考えられたが、従来のエレク
トロスラグ溶接用ワイヤでは良好な結果が侍られないこ
とを知つた。
However, when welding high-strength base materials, good impact values are often not obtained even if heat treatment is performed after welding, and it is said to be less reliable. Furthermore, the key point of the currently used heat treatment method is rapid cooling after heating, and after raising the temperature to the austenitizing temperature, rapid cooling methods such as blast cooling, water spray cooling, oil cooling, etc. are adopted. Therefore, not only is large-scale equipment such as a cooling device and a transportation device required, but also deformation during rapid cooling cannot be avoided, and from this point of view it cannot be said to be a good method. For this reason, we considered trying to obtain a high-strength, high-impact weld metal using a slow cooling method, but we learned that good results could not be achieved using conventional electroslag welding wire. .

ちなみに第1表は従来汎用されているエレクトロスラグ
溶接用ワイヤの化学成分及びTlSO値(70C+14
Si+8.8Mn+3.5M0+1.8Cr:但し元素
記号は各成分の重量%を示す)を示し、その右欄は、こ
れらのワイヤを使用して厚板(SB49、板厚50mm
)をエレクトロスラグ溶接した場合において、900′
C/1時間保持後空冷し、更に625℃/2時間保持後
炉冷した時の引張強さ及び衝撃値(0℃)を示したもの
であるが、引張強さと衝撃値の関係は定性的にみてほぼ
反比例の関係にあり、両特性を共に満足する様なワイヤ
は存在しない。
By the way, Table 1 shows the chemical composition and TlSO value (70C+14
Si + 8.8Mn + 3.5M0 + 1.8Cr: However, the element symbol indicates the weight% of each component), and the right column shows the thickness of the thick plate (SB49, plate thickness 50 mm) using these wires.
) when electroslag welded, 900'
It shows the tensile strength and impact value (0°C) when air-cooled after holding C/1 hour and then furnace cooling after holding 625°C/2 hours, but the relationship between tensile strength and impact value is qualitative. The relationship is almost inversely proportional, and there is no wire that satisfies both characteristics.

即ち第1表に見られる通り、ワイヤA,B,D,Eでは
衝撃値が比較的良好であるにかかわらず十分な引張強さ
が得られておらず、又ワイヤC,F,G,H,Iでは良
好な引張強さが得られているにかかわらず衝撃値が低く
、結局満足し得るものではない。
That is, as can be seen in Table 1, wires A, B, D, and E do not have sufficient tensile strength even though their impact values are relatively good, and wires C, F, G, and H do not have sufficient tensile strength. , I, although good tensile strength was obtained, the impact value was low and ultimately unsatisfactory.

本発明はこの様な事情に着目してなされたものであつて
、溶接後の熱処理に際して徐冷法を採用しつつ、50k
g/Md以上の高い引張強さを有するだけでなく良好な
衝撃値を満足し得る様な溶着金属を与えるエレクトロス
ラグ溶接用ワイヤを提供しようとするものである。
The present invention has been made with attention to such circumstances, and uses a slow cooling method for heat treatment after welding, and
It is an object of the present invention to provide a wire for electroslag welding that provides a deposited metal that not only has a high tensile strength of g/Md or higher but also satisfies a good impact value.

この様な目的を達成するべく種々検討を重ねたところ、
ワイヤの化学成分特に、C,Mn,MO及びSiの含有
量が重大な役割を有していることを見出し絃に本発明の
完成をみるに至つた。
After conducting various studies to achieve this purpose, we found that
It was discovered that the chemical components of the wire, particularly the contents of C, Mn, MO, and Si, play an important role, leading to the completion of the present invention.

即ち本発明のワイヤとは、Cく0.10%、Mn:2.
00〜3.00%、MO:0.15〜0.70%、Si
:0.10・〜0.40%を必須成分とし、残部は不可
避の不純物及び鉄を含むと共に、70C+14Si+8
.8Mn+3.5M0≧27(但し元素記号は各成分の
重量?を示す)なる条件を満足し得るワイヤであつて、
このワイヤによつて引?隼さと衝撃値を同時に満足し得
る溶着金属を得ることができた。
That is, the wire of the present invention has C: 0.10%, Mn: 2.
00-3.00%, MO: 0.15-0.70%, Si
:0.10-0.40% is an essential component, the remainder contains unavoidable impurities and iron, and is 70C+14Si+8
.. A wire that can satisfy the condition 8Mn+3.5M0≧27 (however, the element symbol indicates the weight of each component),
Is it pulled by this wire? We were able to obtain a welded metal that satisfies both high performance and impact value.

又本研究の過程において、前記必須成分の他に、B<0
.015%、Ti<0.10%、Al<0.25%、V
く0.05%、Crく0.30%及びNiく6.0%か
らなる群より選ばれた1種以上の金属を含有する場合で
あつても、70C+14Si+8.8Mn+3.5M0
+1.8Cr+5.3Ni+26.3V〉27(但し元
素記号は各成分の重量?を示す)なる条件を満足し得る
ワイヤであれば本発明の目的が十分達成されることを知
つた。
Additionally, in the process of this research, in addition to the above essential components, B<0
.. 015%, Ti<0.10%, Al<0.25%, V
70C+14Si+8.8Mn+3.5M0
It has been found that the object of the present invention can be fully achieved with a wire that satisfies the following condition: +1.8Cr+5.3Ni+26.3V>27 (the element symbol indicates the weight of each component).

以下前記各要件を中心に本発明の構成及び作用効果を説
明するが、下記説明及び特許請求の範囲における実施態
様項として述べた説明は本発明を制限するものではなく
、前・後記の主旨に徴して変更実施することは本発明の
技術的範囲に属することである。
The structure and effects of the present invention will be explained below with a focus on each of the above-mentioned requirements. However, the following description and the description given as embodiments in the claims do not limit the present invention, and do not limit the present invention. However, it is within the technical scope of the present invention to carry out such modifications.

一般に50kg/Md以上の高張力鋼で且つ板厚が10
0mmを越える超厚板にあつては常温強度及び高温強度
を得る為に炭素量を高くすることが行なわれている。
Generally made of high tensile strength steel with a weight of 50 kg/Md or more and a plate thickness of 10
For extremely thick plates exceeding 0 mm, the amount of carbon is increased in order to obtain strength at room temperature and strength at high temperatures.

ところがエレクトロスラグ溶接においては大入熱が使用
され母材の溶け込み率が大きいので、母材中の炭素は必
然的に希釈され溶着金属中に移行してくる。ところが溶
着金属中に混在する炭素が衝撃値を低下させることは周
知の通りであるから、ここで使用されるエレクトロスラ
グ溶接用ワイヤにおける炭素含有量は予め低いめにして
おくことが望ましいと考えられる。第1図は、ワイヤ中
の炭素含有量と溶着金属の衝撃値との関係を示すグラフ
で、母材鋼種はSB49、ワイヤ中の他の成分はMn:
0.90〜1.40%、MO:0.10−0.35%、
Si:0.05〜0.30%、残部:不可避的不純物及
び鉄であつた。尚同図にプロツトした衝撃値は、安全性
を考慮し数多くの実験結果から最低値を選んでいる。第
1図から明白な様に、通常要求される衝撃値VEO〉2
,1k9−mを満足するには、ワイヤの炭素量として0
.10%以下にすることが必要であり、更に1級上位の
EO≧2.8k9−mを満足させる為には0.07%以
下にしなければならないことが判つた。次にMn及びM
Oであるが、これらの両金属は溶着金属の強度を増大さ
せると共に結晶粒を微細化させる作用を有し、例えばM
n量が2.00%未満であれば十分な強度が得られず、
又MOが0.15%未満であると母材によつて希釈され
る影響が大きく、やはり満足すべき強度が得られないこ
とを知つた。
However, in electroslag welding, a large heat input is used and the penetration rate of the base metal is high, so carbon in the base metal is inevitably diluted and transferred into the weld metal. However, it is well known that carbon mixed in the weld metal reduces the impact value, so it is considered desirable to keep the carbon content in the electroslag welding wire used here to a low level in advance. . Figure 1 is a graph showing the relationship between the carbon content in the wire and the impact value of the weld metal, where the base steel is SB49 and the other components in the wire are Mn:
0.90-1.40%, MO: 0.10-0.35%,
Si: 0.05-0.30%, remainder: unavoidable impurities and iron. The impact values plotted in the figure are the lowest values selected from numerous experimental results in consideration of safety. As is clear from Figure 1, the normally required impact value VEO〉2
, 1k9-m, the carbon content of the wire must be 0.
.. It was found that the content must be kept at 10% or less, and furthermore, in order to satisfy EO≧2.8k9-m, which is higher than the first class, the content must be kept at 0.07% or less. Next, Mn and M
However, both of these metals have the effect of increasing the strength of the weld metal and making the crystal grains finer. For example, M
If the n amount is less than 2.00%, sufficient strength cannot be obtained,
It was also found that if the MO content is less than 0.15%, the influence of dilution by the base material is large, and as a result, satisfactory strength cannot be obtained.

しかしMnやMOを余り多くすると硬さが増大するのみ
で却つて衝撃値を低下させる恐れがあり、夫々3.00
%及び0.70%を上限とみなすべきであることを知つ
た。11110MnやMOの効果についてはある程度知
られているが、前述の如き溶接後の熱処理を施す場合に
おいては、これらの効果が特に顕著にあられれることを
知つた。
However, if Mn or MO is too large, the hardness will only increase, but there is a risk that the impact value will decrease.
% and 0.70% should be considered as upper limits. Although the effects of 11110Mn and MO are known to some extent, it has been found that these effects are particularly noticeable when heat treatment is performed after welding as described above.

次に脱酸効果の高いSiであるが、0.10%未満では
脱酸効果が不十分で溶着金属中に気孔の発生を見ること
があり不都合である。他方上限については、脱酸効果に
のみ着目すればそれほど重要ではないが、焼準若しくは
高温焼鈍の如き熱処理を施す場合にはSlによる衝撃値
低下効果が著しく、0.40%を越えて含有させること
は好ましくない。以上の如くC.Mn.MO及びSiに
ついて夫夫規定された範囲内で含有するワイヤであれは
、溶接後の熱処理によつて衝撃値の改善が大幅に達成さ
れるが、本発明における他の目的(50kν籠以上の引
張強さを得ること)を達成する為には更に他の要件を満
足しなければならないことを知つた。
Next is Si, which has a high deoxidizing effect, but if it is less than 0.10%, the deoxidizing effect is insufficient and pores may be generated in the weld metal, which is disadvantageous. On the other hand, the upper limit is not so important if we focus only on the deoxidizing effect, but when heat treatment such as normalizing or high-temperature annealing is performed, the effect of reducing the impact value due to Sl is significant, so the content exceeds 0.40%. I don't like that. As above, C. Mn. If the wire contains MO and Si within the specified range, the impact value can be significantly improved by heat treatment after welding. I learned that in order to achieve this goal (obtaining strength), I had to meet other requirements.

この要件とは、例えば第1表からも帰納される如くTl
SO値(70C+14S1+8,8Mn+3.5M0+
1.8Cr:但しCr含有量が零である時は最終項も零
になる)が高いことであつた。そして数多くの実験を積
み重ねた結果、50k9/MfL以上の引張強さを得る
為には、TlSO値として少なくとも27以上になるこ
とが必要であることを知つた。この結果前記各条件を満
足するワイヤである限り本発明の目的は十分に達成され
ることを知つたが、本研究の過程において更に他の成分
についても重要な役割を占めることがあることを知つた
This requirement is, for example, as derived from Table 1, Tl
SO value (70C+14S1+8,8Mn+3.5M0+
1.8Cr: However, when the Cr content is zero, the final term is also zero). As a result of numerous experiments, we learned that in order to obtain a tensile strength of 50k9/MfL or higher, the TlSO value must be at least 27 or higher. As a result, we learned that the purpose of the present invention can be fully achieved as long as the wire satisfies each of the above conditions, but in the process of this research we also learned that other components may also play an important role. Ivy.

その成分とは、B,Tl,Al,,Cr,Niであり、
B〈0.015%、Ti<0.10%、Alく0.25
%、〈0.05%、Cr〈0.30%、Niく6.0%
の条件を満足する各元素を1種若しくは2種以上配合し
ている場合は更に好適な結果が得られた。これらの金属
は夫々強度を向上させる上で効果的であるが、特にB,
Tl,Al及びは単独で若しくは併用により柱状晶の粗
大化を防ぐだけでなく、Nlと同様溶着金属の衝撃値を
向上させる効果も著じるしい。もつともこれらの元素を
含有する場合でも前記TlSO値は27以上であること
が必要であるが、B,Ti,AlはTlSO値に与える
影響が少ないからほぼ無視してもよく、結局TlSO値
は下記計算式によつて与えられる。70C+14Si+
8.8Mn+3.5M0+1.8Cr+5.3Ni+2
6.3V尚TlSO値は前述の如く規定されるが、より
具体的には、溶着金属の強度レベルが母材の強度レベル
と同一若しくはそれ以上であることが望ましく、TlS
O+23(純鉄の完全焼きまし後の最低引張強さ値)が
母材の強度規格の最低値より大きいことが推奨される。
The components are B, Tl, Al, Cr, Ni,
B<0.015%, Ti<0.10%, Al 0.25
%, <0.05%, Cr<0.30%, Ni6.0%
More favorable results were obtained when one or more of the elements satisfying the following conditions were blended. Each of these metals is effective in improving strength, but B,
When used alone or in combination, Tl, Al, and the like not only prevent the coarsening of columnar crystals, but also have a remarkable effect of improving the impact value of the weld metal, similar to Nl. Of course, even if these elements are contained, the TlSO value must be 27 or more, but since B, Ti, and Al have little effect on the TlSO value, they can be almost ignored, and in the end, the TlSO value is as follows. It is given by a calculation formula. 70C+14Si+
8.8Mn+3.5M0+1.8Cr+5.3Ni+2
6.3VThe TlSO value is defined as mentioned above, but more specifically, it is desirable that the strength level of the weld metal is the same as or higher than the strength level of the base metal, and the TlSO value is
It is recommended that O+23 (minimum tensile strength value after complete annealing of pure iron) is greater than the minimum value of the base metal strength standard.

次に不可避的不純物のうち特に影響の大きい元素として
S及びNについて説明を加える。
Next, S and N will be explained as elements that have a particularly large influence among unavoidable impurities.

エレクトロスラグ溶接の特徴は超厚板と言えども1パス
で溶接する点にあり、溶着金属は熱履歴が少ない為に粗
大な柱状結晶になり易い。
A feature of electroslag welding is that even extremely thick plates are welded in one pass, and because the weld metal has little thermal history, it tends to form coarse columnar crystals.

その為低融点の不純物は粒界に集まり易く、特にSは割
れの誘因になる。しかも高炭素鋼を母材とし前述の如き
熱処理を加える場合には衝撃値低下効果が特に大きく、
これらの悪影響を避ける為にはSの含有量を0.03%
以下に抑えることが推められる。次にNであるが、当分
野においてよく知られている様にNは衝撃値を低下させ
る効果が大きい。第2図は、C:0.04〜0.1%、
Mn:0.90〜1.40%、MO:0.10−0.3
5%、Si:0.05〜0.30%のエレクトロスラグ
溶接用ワイヤを使用し第1図の場合と同じ母材を溶接し
同一条件で熱処理したときにおけるN含有量と衝撃値の
関係を示すもので、第1図の場合と同じく最低値をプロ
ツトしている。第2図から明白なようにN含有量が高ま
るにつれて衝撃値が低下しており、VEO〉2.11<
9−mを与える為には0.01%以下に抑えるべきであ
ることが判る。本発明は以上の如く構成されているので
、溶接条件、熱処理温度、徐冷条件等にかかわりなく、
常に高い引張強さと衝撃値が得られており、エレクトロ
スラグ溶接の適応範囲を更に広め得ることとなつた。
Therefore, impurities with a low melting point tend to gather at grain boundaries, and S in particular causes cracking. Moreover, when using high carbon steel as a base material and applying the heat treatment as described above, the impact value reduction effect is particularly large.
In order to avoid these negative effects, the S content should be reduced to 0.03%.
It is recommended to keep it below. Next is N. As is well known in the art, N has a great effect of lowering the impact value. Figure 2 shows C: 0.04-0.1%,
Mn: 0.90-1.40%, MO: 0.10-0.3
5%, Si: 0.05 to 0.30% electroslag welding wire, welded the same base metal as in Figure 1, and heat treated under the same conditions. As in the case of FIG. 1, the lowest value is plotted. As is clear from Fig. 2, the impact value decreases as the N content increases, and VEO>2.11<
It can be seen that in order to provide 9-m, the content should be suppressed to 0.01% or less. Since the present invention is configured as described above, regardless of welding conditions, heat treatment temperature, slow cooling conditions, etc.
Consistently high tensile strength and impact values have been obtained, making it possible to further expand the scope of application of electroslag welding.

次に本発明の実施例を説明する。Next, embodiments of the present invention will be described.

実施例 1 板厚120mmの母材(SB49N)を下記の条件でエ
レクトロスラグ溶接し次いで熱処理を行ない、下記に示
す結果を得た。
Example 1 A base material (SB49N) with a plate thickness of 120 mm was electroslag welded under the following conditions, and then heat treated, and the results shown below were obtained.

ワイヤの化学成分: C:0.060%、Mn:2.29%、MO:0.55
%、Si:0.28%、N:0.004%TlSO=3
0.19 母材の化学成分: C:0.25%、Mn:0.82%、Si:0.22%
フシツクスの化学成分:CaO:19%、CaF2:1
0%、MgO:4%、SlO2:39%、MnO:21
%ワイヤ径:3.2m7!Lφ 極数.2本 極間距離:75mu 電流・電圧:500A,45V 開先間隔:35mm 熱処理:9000C/4時間保持炉冷+6254C/8
時間保持後炉冷継手強度 引張強さ:51.5k9/M77l 衝撃値(VEO):5.11kg−m 実施例 2 板厚111mmの母材(A5l6G7O)を使用し下記
の結果を得た。
Chemical composition of wire: C: 0.060%, Mn: 2.29%, MO: 0.55
%, Si: 0.28%, N: 0.004% TlSO=3
0.19 Chemical composition of base material: C: 0.25%, Mn: 0.82%, Si: 0.22%
Chemical composition of Fusitsukus: CaO: 19%, CaF2:1
0%, MgO: 4%, SlO2: 39%, MnO: 21
% Wire diameter: 3.2m7! Lφ Number of poles. Distance between two poles: 75mu Current/voltage: 500A, 45V Groove spacing: 35mm Heat treatment: 9000C/4 hours holding furnace cooling +6254C/8
Furnace cold joint strength after time holding Tensile strength: 51.5k9/M77l Impact value (VEO): 5.11kg-m Example 2 The following results were obtained using a base material (A5l6G7O) with a plate thickness of 111 mm.

ワイヤの化学成分: C:0.055%、Mn:2.60%、MO:0.44
%.Si:0.38%、N:0.005%T,SO−3
3.6 母材の化学成分: C:0.24%、Mn:1.13%、Si:0.27%
フラツクスの化学成分:実施例1と同じワイヤ径:3.
2mmφ 極数:2本 極間距離:65m1L 電流・電圧:500A,45 開先間隔:35mm 熱処理:90『C/3時間保持後炉冷+625.C/6
時間保持後炉冷継手強度. 引張強さ:54.6kg/Md 衝撃値(VEO):4,8kg−m 実施例 3 板厚90mmの母材(SB49N)を使用し下記の結果
を得た。
Chemical composition of wire: C: 0.055%, Mn: 2.60%, MO: 0.44
%. Si: 0.38%, N: 0.005%T, SO-3
3.6 Chemical composition of base material: C: 0.24%, Mn: 1.13%, Si: 0.27%
Chemical composition of flux: Same as Example 1 Wire diameter: 3.
2mmφ Number of poles: 2 Distance between poles: 65m1L Current/voltage: 500A, 45 Groove spacing: 35mm Heat treatment: 90'C/Furnace cooling after 3 hours holding +625. C/6
Furnace cold joint strength after time holding. Tensile strength: 54.6 kg/Md Impact value (VEO): 4.8 kg-m Example 3 Using a base material (SB49N) with a plate thickness of 90 mm, the following results were obtained.

ワイヤの化学成分: C:0.04%、Mn:2.12%、MO:0.26%
、Si:0.37%、Ni:1.88%TlSO−36
.9 母材の化学成分: C:0.25%、Mn:0.92%、Si:0.21%
フラツクスの化学成分:実施例1と同じワイヤ径:3.
2mmφ 極数:1本 電流・電圧:500A,45V 開先間隔:30mm 揺動幅:50m71L 熱処理:9000C/2時間保持後炉冷+620でC/
4時間保持後炉冷継手強度゛ 引張強さ:60,9k9/MIL 衝撃値(VEO):6.1k9−m 実施例 4 板厚100mmの母材(SM5OA)を使用し下記の結
果を得た。
Chemical composition of wire: C: 0.04%, Mn: 2.12%, MO: 0.26%
, Si: 0.37%, Ni: 1.88% TlSO-36
.. 9 Chemical composition of base material: C: 0.25%, Mn: 0.92%, Si: 0.21%
Chemical composition of flux: Same as Example 1 Wire diameter: 3.
2mmφ Number of poles: 1 Current/voltage: 500A, 45V Groove spacing: 30mm Oscillation width: 50m71L Heat treatment: 9000C/2 hours followed by furnace cooling +620C/
Furnace-cooled joint strength after holding for 4 hours Tensile strength: 60.9k9/MIL Impact value (VEO): 6.1k9-m Example 4 Using a base material (SM5OA) with a plate thickness of 100 mm, the following results were obtained. .

ワイヤの化学成分: C:0.06%、Mn:2.15%、MO:0.50%
、Sl:0.28%、Ti:0.070%、B:0.0
01%TlSO−28.1母材の化学成分: C:0.15%、Mn:1.35%、Si:0.35%
フラツクスの化学成分:実施例1と同じワイヤ径:3.
2mmφ 極数:2本 極間距離:65mTfL 電流・電圧:450A,50 開先間隔:35闘 熱処理:91『C/1時間保持後炉冷+620℃/4時
間保持後炉冷継手強度. 引張強さ:52。
Chemical composition of wire: C: 0.06%, Mn: 2.15%, MO: 0.50%
, Sl: 0.28%, Ti: 0.070%, B: 0.0
Chemical composition of 01% TlSO-28.1 base material: C: 0.15%, Mn: 1.35%, Si: 0.35%
Chemical composition of flux: Same as Example 1 Wire diameter: 3.
2mmφ Number of poles: 2 Distance between poles: 65mTfL Current/voltage: 450A, 50 Groove spacing: 35 Heat treatment: 91'C/Furnace cooling after 1 hour holding + 620℃/Furnace cold joint strength after 4 hour holding. Tensile strength: 52.

6k9/M7l 衝撃値:7.7kg−m6k9/M7l Impact value: 7.7kg-m

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図はいずれも本発明の結果を示すグラフである
Both FIGS. 1 and 2 are graphs showing the results of the present invention.

Claims (1)

【特許請求の範囲】 1 溶接後熱処理し次いで徐冷される厚肉鋼板溶接継手
のエレクトロスラグ溶接用ワイヤであつて、C≦0.1
0%、Mn:2.00〜3.00%、Mo:0.15〜
0.70%及びSi:0.10〜0.40%を必須成分
として含有し、残部は不可避的不純物及び鉄よりなると
共に、70C+14Si+8.8Mn+3.5Mo≧2
7(但し元素記号は各成分の重量%を示す)なる条件を
満足することを特徴とする、熱処理後50kg/mm^
2以上の引張強さの溶着金属を与えるエレクトロスラグ
溶接用ワイヤ。 2 C≦0.07%である特許請求の範囲第1項記載の
ワイヤ。 3 不可避的不純物としてのSを0.03%以下に抑え
てなる特許請求の範囲第1又は2項記載のワイヤ。 4 不可避的不純物としてのNを0.01%以下に抑え
てなる特許請求の範囲第1、2又は3項記載のワイヤ。 5 溶接後熱処理し次いで徐冷される厚肉鋼板溶接継手
のエレクトロスラグ溶接用ワイヤであつて、C≦0.1
0%、Mn:2.00〜3.00%、Mo:0.15〜
0.70%及びSi:0.10〜0.40%を必須成分
として含有し、且つB≦0.015%、Ti≦0.10
%、Al≦0.25%、V≦0.05%、Cr≦0.3
0%、Ni≦6.0%の1種以上を含有し、残部は不可
避的不純物及び鉄よりなると共に、70C+14Si+
8.8Mn+3.5Mo+1.8Cr+5.3Ni+2
6.3V≧27(但し元素記号は各成分の重量%を示す
)なる条件を満足することを特徴とする。 熱処理後50kg/mm^2以上の引張強さの溶着金属
を与えるエレクトロスラグ溶接用ワイヤ。6 C≦0.
07%である特許請求の範囲第5項記載のワイヤ。 7 不可避的不純物としてのSを0.03%以下に抑え
てなる特許請求の範囲第5又は6項記載のワイヤ。 8 不可避的不純物としてのNを0.01%以下に抑え
てなる特許請求の範囲第5、6又は7項記載のワイヤ。
[Claims] 1. A wire for electroslag welding of a welded joint of thick-walled steel plates that is heat treated after welding and then slowly cooled, the wire having C≦0.1.
0%, Mn: 2.00-3.00%, Mo: 0.15-
0.70% and Si: 0.10 to 0.40% as essential components, the remainder consists of inevitable impurities and iron, and 70C + 14Si + 8.8Mn + 3.5Mo≧2
50kg/mm^ after heat treatment, characterized by satisfying the following conditions: 7 (however, the element symbol indicates the weight% of each component)
An electroslag welding wire that provides deposited metal with a tensile strength of 2 or more. 2. The wire according to claim 1, wherein C≦0.07%. 3. The wire according to claim 1 or 2, in which S as an unavoidable impurity is suppressed to 0.03% or less. 4. The wire according to claim 1, 2 or 3, in which N as an unavoidable impurity is suppressed to 0.01% or less. 5 Electroslag welding wire for welded joints of thick steel plates that is heat treated after welding and then slowly cooled, C≦0.1
0%, Mn: 2.00-3.00%, Mo: 0.15-
Contains 0.70% and Si: 0.10 to 0.40% as essential components, and B≦0.015%, Ti≦0.10
%, Al≦0.25%, V≦0.05%, Cr≦0.3
0%, Ni≦6.0%, the remainder consists of unavoidable impurities and iron, and 70C+14Si+
8.8Mn+3.5Mo+1.8Cr+5.3Ni+2
It is characterized by satisfying the following condition: 6.3V≧27 (however, the element symbol indicates the weight percent of each component). Electroslag welding wire that provides weld metal with a tensile strength of 50 kg/mm^2 or more after heat treatment. 6 C≦0.
The wire according to claim 5, wherein the wire is 0.07%. 7. The wire according to claim 5 or 6, in which S as an unavoidable impurity is suppressed to 0.03% or less. 8. The wire according to claim 5, 6 or 7, in which N as an unavoidable impurity is suppressed to 0.01% or less.
JP2052077A 1977-02-26 1977-02-26 Electroslag welding wire Expired JPS599273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2052077A JPS599273B2 (en) 1977-02-26 1977-02-26 Electroslag welding wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2052077A JPS599273B2 (en) 1977-02-26 1977-02-26 Electroslag welding wire

Publications (2)

Publication Number Publication Date
JPS53106356A JPS53106356A (en) 1978-09-16
JPS599273B2 true JPS599273B2 (en) 1984-03-01

Family

ID=12029427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2052077A Expired JPS599273B2 (en) 1977-02-26 1977-02-26 Electroslag welding wire

Country Status (1)

Country Link
JP (1) JPS599273B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62289762A (en) * 1986-06-10 1987-12-16 Tosoh Corp Biochemical reaction measuring instrument
CN112247399A (en) * 2020-11-19 2021-01-22 天津大桥焊丝有限公司 700 MPa-level annealing-free drawing high-strength steel gas protection solid welding wire

Also Published As

Publication number Publication date
JPS53106356A (en) 1978-09-16

Similar Documents

Publication Publication Date Title
JPS629646B2 (en)
JP2004149821A (en) Base material for clad steel plate excellent in low-temperature toughness at weld heat-affected zone, and method for producing the clad steel plate
JP2002256379A (en) Steel for high heat input welding
JPH01159356A (en) High tension steel having superior tougeness at weld heat-affected zone
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JPH0765097B2 (en) Method for producing H-section steel excellent in fire resistance and weld toughness
JPS599273B2 (en) Electroslag welding wire
JP2688312B2 (en) High strength and high toughness steel plate
JP3319222B2 (en) Manufacturing method of high chromium ferritic steel with excellent creep characteristics of welded joint
JPH10102212A (en) Ferritic stainless steel sheet excellent in penetration at welding
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JPH0892649A (en) Production of high strength hot bend steel tube
JP2706159B2 (en) Method for producing low yield ratio high strength steel with good weldability
JPH04157117A (en) Production of rolled shape steel having excellent toughness of base metal and weld zone
JPS58391A (en) Submerged arc welding method for high temperature steel
JPH07278653A (en) Production of steel excellent in cold toughness on welding heat affected zone
JP2743765B2 (en) Cr-Mo steel plate for pressure vessel and method for producing the same
JPS5828028B2 (en) High current MIG welding method
JPH10168518A (en) Manufacture of high tensile strength steel plate with tapered thickness
JPH0578740A (en) Manufacture of steel excellent in low temperature toughness in weld heat affected zone
JPH0247525B2 (en)
JPH04103742A (en) Low temperature high toughness steel for welding
JP2587564B2 (en) Manufacturing method of steel with excellent low-temperature toughness of weld heat affected zone
JP2889022B2 (en) Steel for pressure vessels with excellent electron beam welding properties
JP2020204072A (en) High strength steel sheet for high heat input welding