JPS5992603A - Out-band spurious suppressing circuit - Google Patents

Out-band spurious suppressing circuit

Info

Publication number
JPS5992603A
JPS5992603A JP20307282A JP20307282A JPS5992603A JP S5992603 A JPS5992603 A JP S5992603A JP 20307282 A JP20307282 A JP 20307282A JP 20307282 A JP20307282 A JP 20307282A JP S5992603 A JPS5992603 A JP S5992603A
Authority
JP
Japan
Prior art keywords
sampling clock
voltage
filter
frequency
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20307282A
Other languages
Japanese (ja)
Inventor
Takao Shima
島 隆雄
Takao Sakata
坂田 隆男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP20307282A priority Critical patent/JPS5992603A/en
Publication of JPS5992603A publication Critical patent/JPS5992603A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J3/00Continuous tuning
    • H03J3/02Details
    • H03J3/16Tuning without displacement of reactive element, e.g. by varying permeability
    • H03J3/18Tuning without displacement of reactive element, e.g. by varying permeability by discharge tube or semiconductor device simulating variable reactance
    • H03J3/185Tuning without displacement of reactive element, e.g. by varying permeability by discharge tube or semiconductor device simulating variable reactance with varactors, i.e. voltage variable reactive diodes

Abstract

PURPOSE:To obtain a circuit which varies the band of a filter automatically according to a bit rate by obtaining a DC voltage proportional to a sampling clock frequency and controlling a voltage variable capacity element on the basis of the voltage. CONSTITUTION:A sampling clock (a) is delayed by using an internal fast clock (b) as timing signals of D-type flip-flops FF1 and FF2 and a clock waveform with a delay difference corresponding to one cycle of the internal fast clock (b) is ORed exclusively by an exclusive OR circuit G to obtain a pulse waveform (e) of repetitive frequency proportional to the sampling clock frequency while having pulse width equal to one cycle of the internal fast clock (b). This pulse waveform (e) is converted by an RC smoothing circuit into the DC voltage proportional to the sampling clock period. Then, this DC voltage is impressed to the voltage variable capacity element Cv constituting the filter, whose pass band is varied corresponding to the sampling clock frequency.

Description

【発明の詳細な説明】 (B)8発明の技術分野 本発明は変調器に係り、特にディジタル処理方式のビッ
ト・レート可変な変調器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (B) 8 Technical Field of the Invention The present invention relates to a modulator, and particularly to a digital processing type modulator with variable bit rate.

(b)、従来技術と問題点 変調波をディジタル信号処理で発生しようとすると、入
力データを標本化クロック周波数で標本化ホールドする
必要があり、此の標本化クロックに起因する雑音成分は
変調波に於ける帯域外スプリアスとなって残留する為フ
ィルタによって減衰させる必要がある。
(b), Conventional technology and problems When trying to generate a modulated wave by digital signal processing, it is necessary to sample and hold the input data at the sampling clock frequency, and the noise component caused by this sampling clock is generated by the modulated wave. Since it remains as an out-of-band spurious in the signal, it is necessary to attenuate it with a filter.

ビット・レート可変な変調器の場合、此のフィルタの帯
域は、後述する理由によりビット・レート毎に異なる。
In the case of a variable bit rate modulator, the band of this filter differs for each bit rate for reasons explained below.

此の為従来ビット・レートが変わるとフィルタの帯域も
変わるので、フィルタの交換或いはフィルタを構成する
素子の切り換えによりフィルタの帯域を変更する必要が
あり、此の事は操作上大変繁雑であった。
For this reason, conventionally, when the bit rate changes, the filter band also changes, so it was necessary to change the filter band by replacing the filter or switching the elements that make up the filter, which was very complicated in terms of operation. .

(C)9発明の目的 本発明の目的は従来技術の持つ上記の欠点を改善し、ビ
ット・レートに応じてフィルタの帯域を自動的に変化さ
せる為の回路を提供することである。
(C)9 OBJECTS OF THE INVENTION An object of the present invention is to improve the above-mentioned drawbacks of the prior art and to provide a circuit for automatically changing the filter band according to the bit rate.

cd)0発明の構成 上記の目的は本発明によれば、ビット・レート可変のデ
ィジタル変調器に於いて、標本化クロック波形と該標本
化クロック波形を遅延させたクロック波形との排他的論
理和を取ることにより、繰り返し周波数が該標本化クロ
ック周波数に比例したパルス波形を発生させ、該パルス
波形を平滑化することにより該標本化クロック周波数に
比例した直流電圧を得、該直流電圧を利用して電圧可変
容量素子を制御することにより、該電圧可変容量素子を
含む濾波器の通過帯域を該標本化クロックに対応して変
化させることを特徴とする帯域外スプリアス抑圧回路を
提供することにより達成される。
cd)0 Structure of the Invention According to the present invention, the above object is to provide an exclusive OR of a sampling clock waveform and a clock waveform obtained by delaying the sampling clock waveform in a bit rate variable digital modulator. By taking the pulse waveform, a pulse waveform whose repetition frequency is proportional to the sampling clock frequency is generated, and by smoothing the pulse waveform, a DC voltage proportional to the sampling clock frequency is obtained, and the DC voltage is used. This is achieved by providing an out-of-band spurious suppression circuit characterized in that the pass band of a filter including the voltage variable capacitance element is changed in accordance with the sampling clock by controlling the voltage variable capacitance element using the voltage variable capacitance element. be done.

(e)9発明の実施例 第1図は本発明の一実施例を示す図で、図中FFI、F
F2はD型フリップ・フロップ、Gは排他的論理和回路
、A1は増幅器、R1〜3は抵抗、01〜3はコンデン
サ、Ll、L2はコイル、Cvは電圧可変容量素子、A
2は演算増幅器であり、a端子には標本化クロック、b
端子には最高内部クロック、f端子にはベース・バンド
信号が印加され、g端子は出力で搬送波への変換回路に
接続される。
(e) 9 Embodiments of the Invention FIG. 1 shows an embodiment of the present invention, in which FFI, F
F2 is a D-type flip-flop, G is an exclusive OR circuit, A1 is an amplifier, R1-3 are resistors, 01-3 are capacitors, Ll, L2 are coils, Cv is a voltage variable capacitance element, A
2 is an operational amplifier, a sampling clock is connected to the a terminal, and b
The highest internal clock is applied to the terminal, the baseband signal is applied to the f terminal, and the g terminal is connected at the output to a conversion circuit to a carrier wave.

第2図、第3図、第4図は共に第1図に示す実施例を説
明する為の参考図であり、第2図のfa1図、(b1図
、(C1図、td1図、!e1図は夫々第1図のa端子
、b端子、0点、d点、e点の波形を表す。
Figures 2, 3, and 4 are all reference diagrams for explaining the embodiment shown in Figure 1. The figures represent waveforms at terminal a, terminal b, point 0, point d, and point e in FIG. 1, respectively.

ディジタル処理方式の変調器に於いては、通常変調波ス
ペクトラムを狭帯域化して、他のチャンネルへの干渉を
無くする目的で、信号波は送信帯域制限フィルタにより
スペクトラム整形される。此処で用いられる第一のフィ
ルタは帯域制限による符号量干渉が最小となる様にコサ
イン・ロール・オフ、ガウス特性等のものが使用される
In a digital processing type modulator, the signal wave is normally spectrum-shaped by a transmission band-limiting filter in order to narrow the modulated wave spectrum and eliminate interference with other channels. The first filter used here has cosine roll-off, Gaussian characteristics, etc. so that code amount interference due to band limitation is minimized.

然し第一のフィルタ通過後の信号はディジタル信号処理
で行われるので、標本化クロックによる雑音成分はD/
A変換後第二のフィルタにより抑圧する必要がある。
However, since the signal after passing through the first filter is processed by digital signal processing, the noise component due to the sampling clock is
After the A conversion, it is necessary to suppress the signal using a second filter.

此の雑音成分の生ずる周波数は、標本化クロックのビッ
ト数S1データ周期T及びn=1.2.3・・・とすれ
ば、下の式で表される。
The frequency at which this noise component occurs is expressed by the following equation, assuming that the number of bits of the sampling clock S1 is the data period T and n=1.2.3...

fs=nx2  XI/T 雑音レベルは高調波の次数nが大きくなる程低くなる。fs=nx2 XI/T The noise level becomes lower as the harmonic order n becomes larger.

又Sが大きくなる程、即ち標本化クロック周波数が高く
なる程、雑音レベルは小さくなるが、論理素子の応答速
度から来る制限によりSの値は画定される。
Also, the larger S, that is, the higher the sampling clock frequency, the smaller the noise level, but the value of S is determined by the limit imposed by the response speed of the logic element.

従って第二のフィルタは fs=2  xl/T式に於
いて充分に減衰量があり、而も符号量干渉を起こさない
為に、第一のフィルタよりも十分広い帯域中を持つ必要
がある。
Therefore, the second filter needs to have a sufficient amount of attenuation in the fs=2 xl/T equation, and to have a sufficiently wider band than the first filter so as not to cause code amount interference.

ビット・レートが可変な変調器に於いて、常に上記の条
件を満足する為にはビット・レートに応じて第二のフィ
ルタの帯域を変化する必要がある。
In a modulator whose bit rate is variable, in order to always satisfy the above conditions, it is necessary to change the band of the second filter according to the bit rate.

此れを自動的に行うには第1図に示す様にD型フリップ
・フロップのタイミングとして、内部高速クロック〔第
2図の山)図〕を用いて標本化クロック〔第2図のia
1図〕を遅延させ、内部高速クロックの一周期分の遅延
差のあるクロック波形の排他的論理和を作ることにより
、パルス中が内部高速クロックの一周期分に等しく、且
つ繰り返し周波数が標本化クロック周波数に比例したパ
ルス波形〔第2図の(e1図〕が得られる。此のパルス
波形をR,C平滑回路により標本化クロック周期に比例
した直流電圧に変換する。
To do this automatically, as shown in Figure 1, the internal high-speed clock (the peak in Figure 2) is used as the timing of the D-type flip-flop, and the sampling clock [ia in Figure 2] is used as the timing for the D-type flip-flop.
Figure 1] is delayed, and by creating an exclusive OR of clock waveforms with a delay difference of one cycle of the internal high-speed clock, the pulse duration is equal to one cycle of the internal high-speed clock, and the repetition frequency is sampled. A pulse waveform [(e1) in FIG. 2] proportional to the clock frequency is obtained. This pulse waveform is converted into a DC voltage proportional to the sampling clock period by the R, C smoothing circuit.

一方第二のフィルタを第1図に示す様に電圧可変容量素
子を含む回路により構成すれば、フィルタの帯域を標本
化クロック周波数に対応して変化させることが出来る。
On the other hand, if the second filter is constituted by a circuit including a voltage variable capacitance element as shown in FIG. 1, the band of the filter can be changed in accordance with the sampling clock frequency.

即ち第二のフィルタを第1図に示す様に差動増幅器を使
用する一次の低域濾波器とすると、カット・オフ周波数
rcは周知の様に、下式で与えられる。     fc
=1/2πCv−R従って標本化クロック周波数が高く
なれば、Cvが減少する様にすれば良く、これは第3図
に示す様な特性を持つ電圧可変容量素子を使用すること
により充分実現可能である。
That is, if the second filter is a first-order low-pass filter using a differential amplifier as shown in FIG. 1, the cut-off frequency rc is given by the following equation, as is well known. fc
= 1/2πCv-R Therefore, as the sampling clock frequency increases, Cv should be reduced, and this can be fully realized by using a voltage variable capacitance element with the characteristics shown in Figure 3. It is.

第1図の02、C3は直流ブロックの為のコンデンサで
Cvに比較して充分大きくしであるので、R= 1 /
 2 rc f、yCv となる。但しVr = k、X f sIk、は定数、 f、は標本化クロック周波数とする。
02 and C3 in Figure 1 are capacitors for the DC block and are sufficiently large compared to Cv, so R = 1 /
2 rc f, yCv. However, Vr = k, X f sIk, is a constant, and f is the sampling clock frequency.

又第3図に示す様に電圧可変容量素子は下式で表Cv 
XVr =に、a  (k、は定数〕わされる特性を持
っているものが容易に入手出来るので、Rは次式を満足
する様に選べば良い。
Also, as shown in Figure 3, the voltage variable capacitance element is expressed by the following formula, Cv.
Since it is easily available that has the characteristic that XVr = is multiplied by a (k is a constant), R should be selected so as to satisfy the following equation.

R= k、・fs+/2πfC−にユ 以」二説明した様に本発明によれば、標本化クロック周
波数に対応してフィルタの通過帯域を変化させることが
可能となる。
As explained above, according to the present invention, it is possible to change the passband of the filter in accordance with the sampling clock frequency.

(f)1発明の効果 以上詳細に説明した様に本発明によれば、ビット・レー
トに対応してフィルタ帯域を自動的に変化出来るので良
好な帯域外スプリアス抑圧回路を提供することが出来る
と云う大きい効果がある。
(f) 1. Effects of the Invention As explained in detail above, according to the present invention, the filter band can be automatically changed in accordance with the bit rate, so it is possible to provide a good out-of-band spurious suppression circuit. There is a big effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図で、図中FFI、F
F2はD型フリップ・フロップ、Gは排他的論理和回路
、A1は増幅器、R1〜3は抵抗、01〜3はコンデン
サー、Ll、L2はコイル、Cvは電圧可変容量素子、
A2は演算増幅器であり、a端子には標本化クロ・ツク
、b端子には最高内部クロック、f端子にはベース・バ
ンド信号が印加され、g端子は出力で搬送波への変換回
路に接続される。 第2図、第3図、第4図は共に第1図に示す実施例を説
明する為の参考図である。 11 手続補正書防式) 1.事件の表示 昭和!7年特許願第2o3o7λ号 3、補正をする者 事件との関係     特許出願人 住所 神奈川県用崎市中原区上小田中1015番地(5
22)名称富士通株式会社 4、代  理  人     住所 神奈川県川崎市中
原区上小lJ中1015番地富士通株式会社内 5、補正命令の[1付 昭和5゛y年 2月 22目(発送日)6、補正により
増h1ける発明の数 なし?、 補 正 の 対 象 
明細書の図面の簡単な説明の欄およVl!lff1第1
図8、補正の内容別紙の通り (1)明細書第8頁7行乃至8行の「第2図、第3図、
第4図は共に第1図に示す実施例を説明する為の参考図
である。」を下記の通り補正する。 「第2図は第1図の中のa端子、b端子、0点、d点、
e点の波形を示す図である。 第3図は電圧可変容量素子の容量が電圧により変化する
状況を示す図である。 第4図は標本化クロック周波数fslと電圧との関係を
示す図である。」 (2)図面の第1図は別紙の如く補正する。
FIG. 1 is a diagram showing an embodiment of the present invention, in which FFI, F
F2 is a D-type flip-flop, G is an exclusive OR circuit, A1 is an amplifier, R1-3 are resistors, 01-3 are capacitors, Ll, L2 are coils, Cv is a voltage variable capacitance element,
A2 is an operational amplifier, the sampling clock is applied to the a terminal, the highest internal clock is applied to the b terminal, the baseband signal is applied to the f terminal, and the g terminal is connected to the conversion circuit to a carrier wave at the output. Ru. FIG. 2, FIG. 3, and FIG. 4 are all reference views for explaining the embodiment shown in FIG. 1. 11 Procedural Amendment Form) 1. Incident display Showa! 7 Year Patent Application No. 2 o3 o 7
22) Name Fujitsu Ltd. 4, Agent Address Fujitsu Ltd. 5, 1015 Kami Elementary School, Nakahara-ku, Kawasaki City, Kanagawa Prefecture, Amended Order [1 attached February 22, 1939 (shipping date) 6 , the number of inventions increased by h1 due to amendment None? , Target of correction
The brief description column of drawings in the specification and Vl! lff1 1st
Figure 8, contents of the amendment As shown in the attached sheet (1) “Figure 2, Figure 3,
FIG. 4 is a reference diagram for explaining the embodiment shown in FIG. 1. ' shall be corrected as follows. ``Figure 2 shows terminal a, terminal b, point 0, point d, in figure 1,
It is a figure which shows the waveform of e point. FIG. 3 is a diagram showing how the capacitance of the voltage variable capacitance element changes depending on the voltage. FIG. 4 is a diagram showing the relationship between sampling clock frequency fsl and voltage. (2) Figure 1 of the drawings shall be amended as shown in the attached sheet.

Claims (1)

【特許請求の範囲】[Claims] ビット・レート可変のディジタル変調器に於いて、標本
化クロック波形と該標本化クロック波形を遅延させたク
ロック波形との排他的論理和を取ることにより、繰り返
し周波数が該標本化クロック周波数に比例したパルス波
形を発生させ、該パルス波形を平滑化することにより該
標本化クロック周波数に比例した直流電圧を得、該直流
電圧を利用して電圧可変容量素子を制御することにより
、該電圧可変容量素子を含む濾波器の通過帯域を該標本
化クロックに対応して変化させることを特徴とする帯域
外スプリアス抑圧回路。
In a digital modulator with variable bit rate, the repetition frequency can be made proportional to the sampling clock frequency by taking the exclusive OR of the sampling clock waveform and a clock waveform obtained by delaying the sampling clock waveform. By generating a pulse waveform, smoothing the pulse waveform to obtain a DC voltage proportional to the sampling clock frequency, and controlling the voltage variable capacitance element using the DC voltage, the voltage variable capacitance element is controlled. An out-of-band spurious suppression circuit characterized in that the passband of a filter including a filter is changed in accordance with the sampling clock.
JP20307282A 1982-11-19 1982-11-19 Out-band spurious suppressing circuit Pending JPS5992603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20307282A JPS5992603A (en) 1982-11-19 1982-11-19 Out-band spurious suppressing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20307282A JPS5992603A (en) 1982-11-19 1982-11-19 Out-band spurious suppressing circuit

Publications (1)

Publication Number Publication Date
JPS5992603A true JPS5992603A (en) 1984-05-28

Family

ID=16467876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20307282A Pending JPS5992603A (en) 1982-11-19 1982-11-19 Out-band spurious suppressing circuit

Country Status (1)

Country Link
JP (1) JPS5992603A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0649230A1 (en) * 1993-10-19 1995-04-19 Telediffusion De France Digital modulator with a variable bit rate and its application in FM broadcasting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0649230A1 (en) * 1993-10-19 1995-04-19 Telediffusion De France Digital modulator with a variable bit rate and its application in FM broadcasting
FR2711464A1 (en) * 1993-10-19 1995-04-28 Telediffusion Fse Variable rate digital modulator and its use in FM broadcasting.
US5473290A (en) * 1993-10-19 1995-12-05 Telediffusion De France Variable-throughput digital modulator and its use in FM radio broadcasting

Similar Documents

Publication Publication Date Title
US4130806A (en) Filter and demodulation arrangement
US3500215A (en) Filter for bivalent pulse signals
US5263191A (en) Method and circuit for processing and filtering signals
US6032171A (en) Fir filter architecture with precise timing acquisition
US4123712A (en) Symmetrical polyphase network
JP2510490B2 (en) Digital modulator
JPS63318811A (en) Digital filter device
US4425548A (en) Digital signal processing circuit
US4808939A (en) Variable rate rectangular matched filter
JPS6142449B2 (en)
JPS5992603A (en) Out-band spurious suppressing circuit
JPH09325181A (en) Digital centerline filter
US3753115A (en) Arrangement for frequency transposition of analog signals
JPH1075267A (en) Pseudo gmsk modulator
US4633496A (en) Low-pass filter circuit
US5488576A (en) Amplitude adaptive filter
JPS63252017A (en) Da converter
MXPA00008266A (en) Sin(x)/x compensation circuitry.
JPH0472905A (en) Sampling frequency converter
KR950002075B1 (en) Digital nyquist filter
EP1209578B1 (en) Sampling function waveform data generating device
JPH0241012A (en) Analog signal delay circuit
JPH01251919A (en) Digital/analog converter circuit
JPH04247732A (en) Frequency devision multiple signal processor
JPH03136515A (en) Multiplying circuit