JPS5992095A - Biological nitrification-denitrification of waste water - Google Patents

Biological nitrification-denitrification of waste water

Info

Publication number
JPS5992095A
JPS5992095A JP20206482A JP20206482A JPS5992095A JP S5992095 A JPS5992095 A JP S5992095A JP 20206482 A JP20206482 A JP 20206482A JP 20206482 A JP20206482 A JP 20206482A JP S5992095 A JPS5992095 A JP S5992095A
Authority
JP
Japan
Prior art keywords
denitrification
nitrification
solid
liquid separation
mlss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20206482A
Other languages
Japanese (ja)
Other versions
JPH0228396B2 (en
Inventor
Takayuki Suzuki
隆幸 鈴木
Katsuyuki Kataoka
克之 片岡
Keigo Watanabe
渡辺 恵吾
Taisuke Toya
遠矢 泰典
Ryozo Kojima
小島 良三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP20206482A priority Critical patent/JPH0228396B2/en
Publication of JPS5992095A publication Critical patent/JPS5992095A/en
Publication of JPH0228396B2 publication Critical patent/JPH0228396B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To curtail the amount of an additive such as methanol, while making a denitrification tank small size, by nitrifying and denitrifying waste water in a high MLSS step under a high load, and nitrifying and denitrifying separated water from the step of solid-liquid separation in a low MLSS step. CONSTITUTION:Waste water 1 flows together with returned sludge 2 and a circulatory digested liquid 3 into the first denitrification step 4 under an anaerobic condition. After NOX in the circulatory digested liquid 3 is denitrified by BOD components in the waste water 1, the mixed liquid flows into the first nitrification step 5 under an aerobic condition, to nitrify NH3 in the waste water 1 into NOX. A part of the mixed liquid is then circulated to the first denitrification step 4, while the remainder is let flow into the second denitrification step 6 to denitrify NOX. Separated water 12 in the first solid-liquid separation step 8 flows into the third denitrification step 9 to denitrify NOX formed by nitrification in the second nitrification step 7. The denitrified mixed liquid flows into a reaeration step 10 to remove remaining BOD, and then sludge is separated by solid-liquid separation in the second solid-liquid separation step 11.

Description

【発明の詳細な説明】 本発明は、廃水の生物学的硝化脱窒法に関する。[Detailed description of the invention] The present invention relates to a biological nitrification-denitrification method for wastewater.

廃水の生物学的硝化脱窒法は、廃水の窒素(以下、NH
3と略する)を好気的条件下で硝化菌によってNoよ(
N02及び/又はN03)に硝化したのち、嫌気的条件
下で脱窒菌によりNO,をN2ガスにまで還元分解する
ものである。
The biological nitrification and denitrification method of wastewater is a method that uses nitrogen (hereinafter referred to as NH) in wastewater.
3) by nitrifying bacteria under aerobic conditions.
After being nitrified to N02 and/or N03), NO is reduced and decomposed to N2 gas by denitrifying bacteria under anaerobic conditions.

NO,を脱窒する際には還元剤となる物質が脱窒菌に利
用されるが、還元剤になるものとして廃水中に含有され
るBOD成分のほかメタノール、エタノールなどの炭素
性有機化合物、さらに活性汚泥微生物自体の保有する細
胞内物質がある。メタノール、エタノールなどの外部よ
り添加される還元剤による脱窒は、外生呼吸型脱窒と呼
ばれているもので、脱窒速度は大きいが、有価の工業薬
品を使用するため脱窒費用が高くなるという欠点がある
When denitrifying NO, substances that act as reducing agents are used by denitrifying bacteria, but the reducing agents include BOD components contained in wastewater, carbonaceous organic compounds such as methanol and ethanol, and even carbonaceous organic compounds such as methanol and ethanol. There are intracellular substances possessed by activated sludge microorganisms themselves. Denitrification using an externally added reducing agent such as methanol or ethanol is called exogenous respiration denitrification, and although the denitrification rate is high, denitrification costs are high because valuable industrial chemicals are used. The disadvantage is that it is expensive.

一方、活性汚泥微生物自体を還元剤として利用する脱窒
は内生呼吸型脱窒と呼ばれている。この型の脱窒は外部
から還元剤を添加しないため経済的であり、また内生呼
吸によシ汚泥が減少するので余剰汚泥発生量が少なく汚
泥処理のうえからも有利であるが、脱窒速度が外生呼吸
型に比べはるかに小さいため、その分脱窒槽が大きくな
り、さらに内生呼吸に際して活性汚泥からNH3が溶出
してくるので窒素除去率が低下するという欠点があり、
採用例は少ない。
On the other hand, denitrification that uses activated sludge microorganisms themselves as reducing agents is called endogenous respiration denitrification. This type of denitrification is economical because it does not require the addition of a reducing agent from the outside, and because sludge is reduced through endogenous respiration, the amount of excess sludge generated is small and is advantageous from a sludge treatment perspective. Since the speed is much lower than that of the exogenous respiration type, the denitrification tank is correspondingly larger, and NH3 is eluted from the activated sludge during endogenous respiration, resulting in a lower nitrogen removal rate.
There are few examples of adoption.

本発明は、−E記内生呼吸型脱窒の長所を生かすと共に
、その欠点を補うべく想到されたものであり、廃水を生
物学的硝化脱窒素処理する方法において、前段に高濃度
の活性汚泥を利用する硝化脱窒素工程と固液分離工程r
l)からなる高MLSS工程を、その後段に低濃度の活
性汚泥を利用する硝化脱窒素工程と固液分離工程(IN
)からなる低M L S S工程を配備し、廃水を前記
高M L S S工程にて高負荷で硝化脱空素処理し、
前記固液分離工程(夏)による分離水を前記低MLSS
工程にて硝化脱窒工程理することを特徴とする廃水の生
物学的硝化脱窒法である。
The present invention was conceived to take advantage of the advantages of endogenous respiration type denitrification described in -E and to compensate for its disadvantages. Nitrification and denitrification process and solid-liquid separation process using sludge
The high MLSS process consisting of 1) is followed by a nitrification denitrification process using low concentration activated sludge and a solid-liquid separation process (IN).
), the wastewater is subjected to nitrification and deaeration treatment at high load in the high MLS S process,
The separated water from the solid-liquid separation step (summer) is converted into the low MLSS
This is a biological nitrification and denitrification method for wastewater, which is characterized by a nitrification and denitrification process in the process.

次に、本発明を完成するに至った経緯について説明する
Next, the circumstances that led to the completion of the present invention will be explained.

発明者らは、外生呼吸型脱窒の一〜1//10の脱窒速
度しか有さガい内生呼吸型脱窒を積極的に利用する方法
として、単位容積あたりの脱窒量を外生呼吸型脱窒と同
等程度にするだめ、脱窒槽のMLSS濃度を従来の2〜
7倍の20000 q、4という極めて高濃度の条件で
硝化脱窒処理試験を行った。
The inventors have proposed a method to actively utilize endogenous respiration denitrification, which has a denitrification rate of only 1 to 1/10 of the denitrification rate of exogenous respiration denitrification. In order to achieve the same level as exogenous respiration type denitrification, the MLSS concentration in the denitrification tank should be increased from 2 to 2.
A nitrification and denitrification treatment test was conducted under extremely high concentration conditions of 20,000 q and 4 times the concentration.

その結果、単位容積あたりの脱窒量は増加することはで
きたが、内生呼吸型脱窒時に汚泥から溶出するNH3濃
度が汚泥濃度と脱窒時間に比例して増加するため、高汚
泥濃度では脱窒処理水中のNH3−N濃度が高くなると
いう欠点を見い出しだ。
As a result, although the amount of denitrification per unit volume was able to increase, the NH3 concentration eluted from sludge during endogenous respiration type denitrification increases in proportion to the sludge concentration and denitrification time, resulting in a high sludge concentration. Now, we have found the drawback that the NH3-N concentration in the denitrified water increases.

そこで、脱窒処理水中のNH3を再び硝化、脱窒する槽
を設は前段の硝化、脱窒槽と同じく高濃度で硝化、脱窒
したところ硝化に際し活性汚泥中の窒素が硝化して生じ
たNO,の方が前段の脱窒槽で溶出したN1−13が硝
化されて生じたNo工よりも多くなり、これらのNO,
を脱窒するに際して再びNH3が溶出し、処理水のN■
13を低減することが困難であった。
Therefore, we set up a tank to nitrify and denitrify the NH3 in the denitrification treated water again.As with the previous stage nitrification and denitrification tank, we performed nitrification and denitrification at a high concentration. , is larger than the NO produced by nitrification of N1-13 eluted in the previous stage denitrification tank, and these NO,
During denitrification, NH3 is eluted again, and N■
13 was difficult to reduce.

このため、二段目の硝化脱窒工程の活性汚泥濃度を前段
(一段)目の4の500044に下げて硝化。
For this reason, the activated sludge concentration in the second nitrification and denitrification process was lowered to 500,044 in the previous stage (first stage) 4 for nitrification.

脱窒処理したところ硝化工程において活性汚泥中の窒素
が硝化して生成するNO,量が減少して脱窒工程のNO
,負荷がドがり、まだ脱窒槽においても溶出するNH3
−N 9度を低くおさえることができ、良好な処理水を
得ることがわかった。
After denitrification treatment, the amount of NO produced by nitrification of the nitrogen in activated sludge during the nitrification process decreased, and the amount of NO generated during the denitrification process decreased.
, NH3 is still eluted even in the denitrification tank due to low load.
It was found that -N could be kept low at 9 degrees and good treated water could be obtained.

次に、本発明の各実施態様を第1図〜第6図に基づいて
説明する。
Next, each embodiment of the present invention will be described based on FIGS. 1 to 6.

まず第1図例について説明すると、廃水1は返送汚泥2
、循環硝化液3とともに嫌気条件にある第1脱窒工程4
に流入し、循環硝化液3中のNOxは廃水10BOD成
分によって脱窒−されたのち、好気的条件にある第1硝
化工程5に流入し、廃水1のN1−13がNOxに硝化
されたのち、その一部分は第1脱窒工程4に循環され、
残部は第2脱窒工程6に流入し、主に内生呼吸によって
NOxは脱窒されるが、該第2脱窒工程6では水温30
℃で約o、iq・NH3−N/r−MLSS#hrのN
1−13−Nが溶出する。内生呼吸による脱窒速度は0
.5〜1.Ot7+/r−MLSS−br テアルカら
、例えばxoo+vz/zのNoz−Nの除去に際し1
0〜20my/lのNH3−Nが第2脱窒工程6で溶出
することになる。溶出したNH3−Nは次の第2硝化工
程7で硝化されNO,に転換したのち、混合液は第1固
液分離工程8に流入し汚泥は濃縮分離され濃縮汚泥の一
部は第1脱窒工程4への返送汚泥2となる。
First, to explain the example in Figure 1, wastewater 1 is returned to sludge 2.
, the first denitrification step 4 under anaerobic conditions together with the circulating nitrification solution 3
After the NOx in the circulating nitrification liquid 3 was denitrified by the BOD component of the wastewater 10, it flowed into the first nitrification step 5 under aerobic conditions, where N1-13 of the wastewater 1 was nitrified to NOx. Afterwards, a part of it is recycled to the first denitrification step 4,
The remainder flows into the second denitrification process 6, where NOx is mainly denitrified by endogenous respiration, but in the second denitrification process 6, the water temperature is 30
About o, iq・NH3-N/r-MLSS#hr N at °C
1-13-N elutes. Denitrification rate due to endogenous respiration is 0
.. 5-1. Ot7+/r-MLSS-br Tealka et al., e.g.
0 to 20 my/l of NH3-N will be eluted in the second denitrification step 6. The eluted NH3-N is nitrified and converted to NO in the next second nitrification step 7, and then the mixed liquid flows into the first solid-liquid separation step 8, where the sludge is concentrated and separated. The sludge 2 is returned to the nitrification process 4.

以上の第1脱窒工程4から第1固液分離工程8までの各
工程が、高濃度のMLSS (活性汚泥)が保持され高
負荷の処理が行われる高M L S S工程Aを構成し
、MLSSは1oooo my/1以上、好ましくは1
0000〜30000 yvytの高濃度に保たれる。
Each process from the first denitrification process 4 to the first solid-liquid separation process 8 described above constitutes a high MLSS process A in which highly concentrated MLSS (activated sludge) is retained and high-load processing is performed. , MLSS is 1oooo my/1 or more, preferably 1
The concentration is maintained at a high concentration of 0,000 to 30,000 yvyt.

第1固液分離工程8には沈殿槽を採用してもよいが、遠
心分離法、加圧浮上法などの機緘的固液分離法を採用す
れば沈殿法よりも高濃度の汚泥を保持することが可能で
ある。工程内に高濃度のMLSSを保持するには、返送
汚泥2の濃度及び/又は流量を大きくとればよい。
A sedimentation tank may be used in the first solid-liquid separation step 8, but if a mechanical solid-liquid separation method such as centrifugation or pressure flotation is used, the sludge will be retained at a higher concentration than the sedimentation method. It is possible to do so. In order to maintain a high concentration of MLSS within the process, the concentration and/or flow rate of the returned sludge 2 may be increased.

第1固液分離工程8の分離水12は第3脱空工程9に流
入し、第2硝化工程7の硝化によって生成したNOよが
脱窒される。この第3脱窒工程9ではアルコールなどの
還元剤14を用いてもよいし、内生呼吸により脱窒して
もよい。脱窒混合液は再げっ気工程10に流入し残留B
ODが除去されたのち、第2固液分離工程11で汚泥が
固液分離され、分離水12′は放流され、あるいはさら
に高度の処理を受ける。第2固液分離工程11で濃縮分
離された余剰汚泥13は汚泥の処理・処分工程へ送られ
る。
Separated water 12 from the first solid-liquid separation step 8 flows into a third deairing step 9, where NO produced by nitrification in the second nitrification step 7 is denitrified. In this third denitrification step 9, a reducing agent 14 such as alcohol may be used, or denitrification may be performed by endogenous respiration. The denitrification mixture flows into the aeration step 10 again and the residual B
After the OD is removed, the sludge is subjected to solid-liquid separation in a second solid-liquid separation step 11, and the separated water 12' is discharged or subjected to further advanced treatment. Excess sludge 13 concentrated and separated in the second solid-liquid separation step 11 is sent to a sludge treatment/disposal step.

以上の第3脱窒工程9から第2固液分離工程11までの
各工程が低MLSS工程Bを構成し、低MLSS工程B
のMLSSは高MLSS工程Aの50%以下〜1000
1μ以下に保たれる。
Each process from the third denitrification process 9 to the second solid-liquid separation process 11 above constitutes a low MLSS process B.
MLSS is less than 50% of high MLSS process A ~ 1000
It is kept below 1μ.

第3脱窒工程9の脱窒は内生呼吸で行ってもよいが、ア
ルコールあるいは他の物質を還元剤14として添加する
と分離水12′の窒素濃度をさらに低減することができ
る。また再ばつ気工程10において汚泥中の窒素分が自
己酸化によって溶出してNO。
Denitrification in the third denitrification step 9 may be performed by endogenous respiration, but if alcohol or other substances are added as the reducing agent 14, the nitrogen concentration in the separated water 12' can be further reduced. Further, in the re-aeration step 10, the nitrogen content in the sludge is eluted by self-oxidation and becomes NO.

が生成する場合には、自己酸化によるNO,を脱窒する
ため再ばっ気液を第3脱窒工程9への循環再ばっ気液1
5としてもよい。
is generated, the re-aeration liquid 1 is circulated to the third denitrification step 9 to denitrify NO due to self-oxidation.
It may be set to 5.

第2固液分肉1を工程11の余剰汚泥13の濃度が高M
LSS工程への返送汚泥2より低い場合には、余剰汚泥
13は破線で示した如く第1固液分離工程8に移送し高
濃度にしてから引抜く(余剰汚泥13′)と汚泥処理に
とって都合がよい。との場合余剰汚泥13の夕月゛が第
3脱窒工程9に流入するが何ら支障はない。余剰汚泥1
3を第1固液分離工程8に移送しない場合は返送汚泥が
ないので、第2固液分離工程11への流入水に有機及び
/又は無機の凝集剤を使用することにより分離水12′
中のCOD 、色度成分あるいはリン全除去することが
でき、また同時に汚泥も凝集できるので固液分離にとっ
ても極めて好都合であり、余剰汚泥13の脱水時の凝集
剤添加債を激減させることができる。さらに、凝集剤の
添加により第2固液分離工程11の固液分離用に脱水機
を使用することも可能となるので、余剰汚泥13として
含水率の低い脱水ケーキを第2固液分離工程11から直
接排出することができる。
The concentration of excess sludge 13 in step 11 is high in the second solid-liquid portion 1.
If it is lower than the sludge 2 returned to the LSS process, the excess sludge 13 is transferred to the first solid-liquid separation process 8 as shown by the broken line, and is made into a high concentration before being pulled out (excess sludge 13'), which is convenient for sludge treatment. Good. In this case, the Yugetsu of the surplus sludge 13 flows into the third denitrification process 9, but there is no problem. Surplus sludge 1
3 is not transferred to the first solid-liquid separation process 8, there is no returned sludge, so by using an organic and/or inorganic flocculant in the water flowing into the second solid-liquid separation process 11, the separated water 12'
It is possible to completely remove COD, chromaticity components, or phosphorus in the sludge, and at the same time coagulate the sludge, so it is extremely convenient for solid-liquid separation, and the amount of coagulant added during dewatering of excess sludge 13 can be drastically reduced. . Furthermore, by adding a flocculant, it becomes possible to use a dehydrator for solid-liquid separation in the second solid-liquid separation step 11, so that the dehydrated cake with a low water content can be used as the excess sludge 13 in the second solid-liquid separation step 11. can be discharged directly from

低MLSS工程BのMLSS濃度は高M L S S工
程Aで発生する余剰汚泥の発生量で決まり、例えば余剰
汚泥発生量が2 Ky/(n?・廃水)であれば、低M
LSS工程BのMLSS 濃度は2ooo1n/Aとな
る。低M I、S S工程BのMLSSは第1固液分離
工程8の分離水12のM L S Sによって補給され
る。高MLSS工程へのMLSSi度が高くなると、第
1固液分離工程8の汚泥負荷が増加するので、分離水1
2中のMLSSが増加し、逆に高M LSSSS工程M
 L S S濃度が低下すると第1固液分離工程8の汚
泥負荷が減少するため固液分離が充分となり、分離水1
2中のMl、SSは減少し、その結果高MLSS工稈A
1低MLSS工程I3のML、SS濃度は一定値に収束
し平衡(でなる。
The MLSS concentration in the low MLSS process B is determined by the amount of surplus sludge generated in the high MLSS process A. For example, if the amount of surplus sludge generated is 2 Ky/(n?・wastewater), the MLSS concentration in the low MLSS process B is determined by the amount of surplus sludge generated in the high MLSS process A.
The MLSS concentration in LSS process B is 2ooo1n/A. The MLSS of the low MI, SS step B is replenished by the MLSS of the separated water 12 of the first solid-liquid separation step 8. As the MLSSi degree increases in the high MLSS process, the sludge load in the first solid-liquid separation process 8 increases, so the separated water 1
MLSS in 2 increases, and conversely, high MLSSSS process M
When the LSS concentration decreases, the sludge load in the first solid-liquid separation step 8 decreases, so solid-liquid separation becomes sufficient, and the separated water 1
Ml and SS in 2 decreased, resulting in high MLSS culm A.
1. The ML and SS concentrations in the low MLSS step I3 converge to a constant value and reach equilibrium.

高MLSS工程AのMLSS濃度は当然第1固液分離工
程8の濃縮分離性能によって決定されるが、低MLSS
工程■3のM L S Sは前述の如く廃水単位容量あ
たりの汚泥発生量から決−まってくるもので、第1固液
分離工程8の性能とは無関係である。
The MLSS concentration in the high MLSS step A is naturally determined by the concentration separation performance of the first solid-liquid separation step 8, but in the low MLSS
As mentioned above, MLS in step 3 is determined from the amount of sludge generated per unit volume of wastewater, and is unrelated to the performance of the first solid-liquid separation step 8.

なお、高MLSS工程AのMLSSを第1固液分離工程
8を経由せず移送するには、第2硝化工程7流出液を直
接第3脱窒工程9へ補給すればよい。
In addition, in order to transfer the MLSS of the high MLSS process A without going through the first solid-liquid separation process 8, the effluent from the second nitrification process 7 may be directly supplied to the third denitrification process 9.

すなわち、汚泥補給配管16の利用1(よって、一時的
に低MLSS工程BのMLSS濃度を増加することがで
きるので、廃水1の流量低下により一時的に第1固液分
離工程8の汚泥負荷が減少して固液分離が完全と々シ低
MLSS工程BのMLSS濃度が低下したときに、汚泥
補給を行って低MLSS工程BのMLSS濃度を制御す
ることができる。
In other words, the sludge replenishment pipe 16 can be used 1 (therefore, the MLSS concentration in the low MLSS process B can be temporarily increased, so the sludge load in the first solid-liquid separation process 8 can be temporarily reduced due to the decrease in the flow rate of the wastewater 1). When the MLSS concentration in the low MLSS process B decreases and solid-liquid separation is complete, the MLSS concentration in the low MLSS process B can be controlled by replenishing sludge.

次に、本発明の第2の実施態様を第2図により説明する
。これは、窒素濃度が高く汚泥発生基−の比較的少ない
廃水1の処理に適するもので、第1図例の如く一過性(
OneThrough )の方法では低N1LSS工程
のMLSS濃度が充分保持できない場合に採用される。
Next, a second embodiment of the present invention will be explained with reference to FIG. This is suitable for the treatment of wastewater 1 which has a high nitrogen concentration and relatively few sludge-forming groups, and is suitable for treating wastewater 1 that has a high nitrogen concentration and relatively few sludge-forming groups.
OneThrough's method is employed when the MLSS concentration in the low N1LSS process cannot be maintained sufficiently.

この実施態様の構成・機能については、その高MLSS
工程は第1図例と同様であり、低M LSS工程は第1
図例とほぼ同様である。以下、低MLSS工程について
説明する。
Regarding the configuration and functions of this embodiment, its high MLSS
The process is the same as the example in Figure 1, and the low M LSS process is the first
It is almost the same as the example shown. The low MLSS process will be explained below.

分離水12は返送汚泥2′とともに第3脱窒工程9に流
入し、還元剤14の添加あるいは無添加で脱窒されたの
ち、再ばっ気工程10を経由して第2固液分離工程11
に流入し、分離汚泥の一部は第3脱窒工程9への返送汚
泥2′となる。なお、第2固液分離工程11では第1図
例のように凝集剤を添加し第2固液分離工程11に脱水
機を適用することはできない。
The separated water 12 flows into the third denitrification process 9 together with the returned sludge 2', where it is denitrified with or without the addition of a reducing agent 14, and then passes through the re-aeration process 10 to the second solid-liquid separation process 11.
A part of the separated sludge becomes return sludge 2' to the third denitrification process 9. Note that, in the second solid-liquid separation step 11, a flocculant is added as in the example in FIG. 1, and a dehydrator cannot be applied to the second solid-liquid separation step 11.

次に本発明の第3.第4.第5及び第6の実施態様をそ
れぞれ第3図、第4図、第5図及び第6図に基づいて説
明する。
Next, the third aspect of the present invention. 4th. The fifth and sixth embodiments will be explained based on FIGS. 3, 4, 5, and 6, respectively.

第3図例、第4図例ともに第1固液分離工程8の前段に
第1再ばっ気工稈10a1後段に第2硝化工程7を配備
したものであり、第2脱窒工程6で溶出し九NH3の硝
化を主に第1固液分離工程8の稜段で行わんとするもの
である。
In both the example shown in FIG. 3 and the example shown in FIG. The nitrification of NH3 is mainly carried out at the ridge stage of the first solid-liquid separation step 8.

第5図、第6図に示す実施態様は、廃水1中に脱窒に利
用できるBOD成分がない場合に採用される。このよう
な廃水1を処理する場合、第1図乃至第4図に示すフロ
ーの第1脱窒工程4にアルコールその他の還元剤を添加
して脱窒してもよいが第5図、第6図に示すフローの方
がプロセス的に簡略化される。なお、循環脱窒液17は
第1硝化工程5に循環してNH3の硝化によって低下す
る第1硝化工程5のpHをそのアルカリ分によって中和
し、硝化菌のpH低下による活性低下を防止しようとす
るものである。したがって、NH3濃度の低い廃水、p
H緩衝能の高い廃水であって硝化によってpHが低下し
ないものの処理には脱窒液の循環は不要である。
The embodiments shown in FIGS. 5 and 6 are adopted when there is no BOD component available for denitrification in the wastewater 1. When treating such wastewater 1, denitrification may be carried out by adding alcohol or other reducing agent to the first denitrification step 4 of the flow shown in FIGS. 1 to 4. The flow shown in the figure is simpler in terms of process. Note that the circulating denitrification liquid 17 is circulated to the first nitrification step 5 to neutralize the pH of the first nitrification step 5, which decreases due to nitrification of NH3, with its alkaline content, thereby preventing a decrease in activity due to a decrease in the pH of nitrifying bacteria. That is. Therefore, wastewater with low NH3 concentration, p
The circulation of a denitrifying solution is not necessary for the treatment of wastewater that has a high H buffering capacity and whose pH does not decrease due to nitrification.

なお、第3図、第4図及び第6図において10bは第2
再ばっ気工程である。
In addition, in FIGS. 3, 4, and 6, 10b is the second
This is the re-aeration process.

上記第1図例乃至第6図例において配備されている再ば
っ気工程匍〒椿は、滞留時間が流入水に対し1〜3時間
程度の小さな槽であり、脱窒液中の微細N2ガス、溶存
N2ガスをばっ気・放散して固液分離を円滑にすること
、脱窒液に残留する[lOD成分を除去することを主目
的とするものであるが、固液分離の方法、要求水質によ
っては不要であり、再ばっ気工程笹〒毎については本発
明の適用にあたって要、不要を事前に検討するとよい。
The re-aeration process tank installed in the examples in Figures 1 to 6 above is a small tank with a residence time of about 1 to 3 hours for the inflow water, and the fine N2 gas in the denitrification liquid is The main purpose is to aerate and dissipate dissolved N2 gas to facilitate solid-liquid separation, and to remove the OD component that remains in the denitrification solution, but the method and requirements for solid-liquid separation are Depending on the quality of the water, this may not be necessary, and it is advisable to consider in advance whether the re-aerating process is necessary or not when applying the present invention.

また、本発明は他の脱窒法、例えば好気的脱窒法を用い
たプロセスにも充分適用することができる。
Further, the present invention can be fully applied to processes using other denitrification methods, such as aerobic denitrification methods.

次に、本発明の実施例について記述する。Next, embodiments of the present invention will be described.

第1図、第2図の両フローについて行った。また、第2
図に従った実施例において、汚泥補給配管16を経由す
る補給用活性汚泥は第1固液分離工程8として採用した
沈殿槽から溢流するSSを充当し、敢えてポンプで第3
脱窒工程9へ移送することはしなかった。廃水としては
除渣し尿および人工廃水を採用した。
This was done for both the flows shown in Figures 1 and 2. Also, the second
In the embodiment according to the figure, the activated sludge for replenishment via the sludge replenishment pipe 16 is used as the SS overflowing from the settling tank adopted as the first solid-liquid separation step 8, and the third
It was not transferred to denitrification step 9. The wastewater used was sludge-removed human urine and artificial wastewater.

処理条件を第1表、処理水質を第2表に示す。。The treatment conditions are shown in Table 1, and the treated water quality is shown in Table 2. .

第2表は、第3脱窒工程9にエタノールを添加17なか
ったときの処理水質を示している。
Table 2 shows the treated water quality when ethanol was not added 17 in the third denitrification step 9.

第1表処理条件 第2表処理水質 (単位 へl) 〔注〕 (1)  * I  T−N:NHa−N+N0x−N
(2)*−2分離水12に該当する1゜(3)  *−
s  分離水12′に該当する。
Table 1 Treatment conditions Table 2 Treated water quality (unit: liters) [Note] (1) *IT-N:NHa-N+N0x-N
(2) *-2 1° corresponding to separated water 12 (3) *-
s corresponds to separated water 12'.

(4)第2脱窒水が、従来の高MLSSの内呼1yk型
脱窒を利用した処理水質となる、1 次に、第1図のフローに従って除渣し尿を低水温で処理
した実施例について付記する。
(4) Second denitrified water has the quality of treated water using conventional high MLSS internal 1yk type denitrification. Next, an example in which the removed human urine was treated at low water temperature according to the flow shown in Figure 1. I would like to add a note about this.

このときの処理条件は処理量50t/日、水温加℃でそ
の他は第1表の除渣し尿の条件と同一である。
The treatment conditions at this time were a throughput of 50 t/day, a water temperature of 0.degree. C., and the other conditions were the same as those for the sludge-removed human waste shown in Table 1.

なお、用いた除渣し尿のNH3−Nは第2表のものとほ
ぼ同一であったが、SS濃度は第2表のものより高濃度
であった。
Note that although the NH3-N of the slag-removed human urine used was almost the same as that in Table 2, the SS concentration was higher than that in Table 2.

処理水の水質は第2表実施煮■とほぼ同等であり、NH
3−N2η4.NOエニー31ダ4であった。またML
SS濃度は第1硝化槽、第2脱窒槽で31000 q汐
、第2硝化槽で9900mVtであった。
The quality of the treated water is almost the same as in Table 2, NH
3-N2η4. It was NO ANY 31 DA 4. Also ML
The SS concentration was 31000 qS in the first nitrification tank and the second denitrification tank, and 9900 mVt in the second nitrification tank.

第1硝化槽o MLSS 濃度を35000 myA程
度にあげた実験も試みたが、高MLSS濃度のため粘性
が高くなって硝化液中からばっ気空気が抜けずらくなシ
、その空気が脱窒槽に同伴されて、脱窒を阻害した。こ
れより、高濃度の活性汚泥を利用する硝化脱窒工程のM
LSS濃度は実施例から10000〜32000■4が
好ましいと判断される。また低水温の実施例において第
2硝化槽のMLSS濃度9900■汐のときのT−Nは
5堅4となっている。との値は第2表の処理水水質とほ
ぼ同等であるが、幾分悪化している。これより、低濃度
の活性汚泥を利用する硝化脱窒工程のMLSS濃度は好
ましくけ10000〜4以下、更に望ましくは第2表に
示した範囲すなわち1500〜7500#vAトナル。
An experiment was attempted in which the MLSS concentration in the first nitrification tank was raised to about 35,000 myA, but the high MLSS concentration increased the viscosity and made it difficult for the aerated air to escape from the nitrification tank. entrained and inhibited denitrification. From this, the M of the nitrification and denitrification process that uses highly concentrated activated sludge
It is determined from the examples that the LSS concentration is preferably 10,000 to 32,000 4. In addition, in the low water temperature example, when the MLSS concentration in the second nitrification tank is 9900 cm, T-N is 5 and 4. The value is almost the same as the treated water quality in Table 2, but it is somewhat worse. From this, the MLSS concentration in the nitrification and denitrification process using low-concentration activated sludge is preferably 10,000 to 4 or less, more preferably within the range shown in Table 2, that is, 1,500 to 7,500#vA tonal.

以上述べたように本発明は、処理工程内に高濃度のML
SSを維持することによって内生呼吸による脱窒槽の縮
小化、メタノール、エタノールなどの添加剤の費用の大
幅な削減あるいは無添加が可能となるうえ、処理水の総
無機性窒素が従来の高M LSS濃度の内生呼吸型脱窒
法による場合の署。以下となり極めて高率の窒素除去を
行うことができるなど、多大の効果が得られるものであ
る。
As described above, the present invention has a high concentration of ML in the treatment process.
By maintaining SS, it is possible to reduce the size of the denitrification tank through endogenous respiration, significantly reduce the cost of additives such as methanol and ethanol, or eliminate them. Signs of LSS concentration by endogenous respiration denitrification method. It is possible to achieve great effects, such as being able to remove nitrogen at an extremely high rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第6図は、本発明の各実施態様を示すフロー
シートである。 A・・・高ML S S工程、B・・低M L S S
工程、1・・・廃水、2,2′・・・返送汚泥、3・・
・循環硝化液、4・・・第1脱窒工程、5・・・第1硝
化工程、6・・・第2脱輩工程、7・・・第2硝化工程
、8・・・第1固液分離工程、9・・・第3脱窒工程、
10・・・再ばっ気工程、10a・・・第1再ばっ気工
程、10b・・・第2再ばっ気工程、11・・・第2固
液分離工程、12 、12’・・・分離水、13 、1
3’・・・余剰汚泥、14・・・還元剤、15・・・循
環再ばっ気液、16・・・汚泥補給配管、17・・・循
環脱窒液。 特許出願人  荏原インフィルコ株式会社代理人弁理士
 千  1)   稔
1 to 6 are flow sheets showing each embodiment of the present invention. A...High MLSS process, B...Low MLSS
Process, 1...wastewater, 2,2'...return sludge, 3...
・Circulating nitrification liquid, 4... First denitrification process, 5... First nitrification process, 6... Second shedding process, 7... Second nitrification process, 8... First solidification Liquid separation step, 9...Third denitrification step,
10... Re-aeration step, 10a... First re-aeration step, 10b... Second re-aeration step, 11... Second solid-liquid separation step, 12, 12'... Separation water, 13, 1
3'... Surplus sludge, 14... Reducing agent, 15... Circulating re-aeration liquid, 16... Sludge supply piping, 17... Circulating denitrification liquid. Patent applicant Minoru Sen 1) Patent attorney representing Ebara Infilco Co., Ltd.

Claims (1)

【特許請求の範囲】 1、廃水を生物学的硝化脱窒床処理する方法において、
前段に高濃度の活性汚泥を利用する硝化脱窒素工程と固
液分離工程(1)からなる高MLSS工程を、その後段
に低濃度の活性汚泥を利用する硝化脱窒素工程と固液分
離工程(It)からなる低MLSS工程を配備し、廃水
を前記高MLSS工程にて高負荷で硝化脱窒未処理し、
前記固液分離工程(1)による分離水を前記低MLSS
工程にて硝化脱窒未処理することを特徴とする廃水の生
物学的硝化脱窒法。 2、前記高MLSS工程が第1脱窒工程、第1硝化工程
、第2脱窒工程、第2硝化工程及び前記固液分離工程(
1)をこの順序に組み合わせて構成されたものであり、
前記低MLSS工程が第3脱窒工程、再ばっ気工程及び
前記固液分離工程(II)をこの順序に組み合わせて構
成され1.たものである特許請求の範囲第1項記載の方
法。 3、 前記第3脱窒工程が、前記固液分離工程(if)
による濃縮汚泥を返送して行なわれるものである特許請
求の範囲第2項記載の方法。 4、前記高MLSS工程が第1脱窒工程、第1硝化工程
、第2脱窒工程、第1再ばっ気工程。 前記固液分離工程(1)をこの順序に組み合わせて構成
されたものであシ、前記低MLSS工程が第2硝化工程
、第3脱窒工程、第2再ばっ気工程及び前記固液分離工
程(n)をこの順序に組み合わせて構成されたものであ
る特許請求の範囲第1項記載の方法。 5、前記第2硝化工程が、前記固液分離工程([)によ
る濃縮汚泥を返送して行なわれるものである特許請求の
範囲第4項記載の方法。 6、 前記高M L S S工程が第1硝化工程、第1
脱窒工程、第2硝化工程及び前記固液分離工程(1)を
この順序に組み合わせて構成されたものであり、前記低
ML S S工程が第2脱窒工程。 再ばっ気工程及び前記固液分離工程(■)をこの順序に
組み合わせて構成されたものである特許請求の範囲第1
項記載の方法。 7、 前記高MLSS工程が第1硝化工程、第1脱窒工
程、第1再げっ気工程及び前記固液分離工程(1)をこ
の順序に組み合わせて′構成されたものであり、前記低
MLSS工程が第2硝化工程、第2脱窒工程、第2再ば
つ気工程及び前記固液分離工程([’lをこの順序に組
み合わせて構成されたものである特許請求の範囲第1項
記載の方法。 8、 前記高M L S S工程の硝化脱窒素工程をM
LSS10000〜32000 mf/lで、前記低M
LSS工程の硝化脱窒素工程をMLSS1500〜75
0094でそれぞれ行なう特許請求の範囲第2項、第4
項。 第6項又は第7項記載の方法。
[Claims] 1. A method for biological nitrification-denitrification bed treatment of wastewater,
The first stage is a high MLSS process consisting of a nitrification-denitrification process and solid-liquid separation process (1) that uses high-concentration activated sludge, and the second stage is a nitrification-denitrification process and solid-liquid separation process (1) that uses low-concentration activated sludge. A low MLSS process consisting of It) is installed, and the wastewater is subjected to nitrification and denitrification treatment at a high load in the high MLSS process,
The separated water from the solid-liquid separation step (1) is converted into the low MLSS
A biological nitrification and denitrification method for wastewater that is characterized by not undergoing nitrification and denitrification treatment during the process. 2. The high MLSS step includes a first denitrification step, a first nitrification step, a second denitrification step, a second nitrification step, and the solid-liquid separation step (
It is constructed by combining 1) in this order,
1. The low MLSS step is configured by combining the third denitrification step, the re-aeration step, and the solid-liquid separation step (II) in this order. The method according to claim 1, which is a method according to claim 1. 3. The third denitrification step is the solid-liquid separation step (if)
3. The method according to claim 2, wherein the method is carried out by returning the thickened sludge produced by the method. 4. The high MLSS process is a first denitrification process, a first nitrification process, a second denitrification process, and a first re-aeration process. The solid-liquid separation step (1) is combined in this order, and the low MLSS step includes a second nitrification step, a third denitrification step, a second re-aeration step, and the solid-liquid separation step. The method according to claim 1, which is constructed by combining (n) in this order. 5. The method according to claim 4, wherein the second nitrification step is performed by returning the concentrated sludge from the solid-liquid separation step ([). 6. The high MLSS step is the first nitrification step, the first
The denitrification step, the second nitrification step, and the solid-liquid separation step (1) are combined in this order, and the low ML S S step is the second denitrification step. Claim 1, which is configured by combining the re-aeration step and the solid-liquid separation step (■) in this order.
The method described in section. 7. The high MLSS step is configured by combining the first nitrification step, the first denitrification step, the first re-aeration step, and the solid-liquid separation step (1) in this order, and the low MLSS step Claim 1, wherein the steps are a second nitrification step, a second denitrification step, a second re-aeration step, and the solid-liquid separation step (['l] are combined in this order). Method. 8. The nitrification and denitrification step of the high MLS S step is
At LSS10000-32000 mf/l, the low M
The nitrification and denitrification process of the LSS process is performed using MLSS1500-75.
Claims 2 and 4, respectively, filed under 0094
Section. The method described in paragraph 6 or 7.
JP20206482A 1982-11-19 1982-11-19 HAISUINOSEIBUTSUGAKUTEKISHOKADATSUCHITSUHO Expired - Lifetime JPH0228396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20206482A JPH0228396B2 (en) 1982-11-19 1982-11-19 HAISUINOSEIBUTSUGAKUTEKISHOKADATSUCHITSUHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20206482A JPH0228396B2 (en) 1982-11-19 1982-11-19 HAISUINOSEIBUTSUGAKUTEKISHOKADATSUCHITSUHO

Publications (2)

Publication Number Publication Date
JPS5992095A true JPS5992095A (en) 1984-05-28
JPH0228396B2 JPH0228396B2 (en) 1990-06-22

Family

ID=16451342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20206482A Expired - Lifetime JPH0228396B2 (en) 1982-11-19 1982-11-19 HAISUINOSEIBUTSUGAKUTEKISHOKADATSUCHITSUHO

Country Status (1)

Country Link
JP (1) JPH0228396B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4850906A (en) * 1985-08-09 1989-07-25 Sanshin Kogyo Kabushiki Kaisha Engine control panel for a watercraft propelled by a plurality of motors
JPH02245296A (en) * 1989-03-17 1990-10-01 Ebara Infilco Co Ltd Treatment of organic waste water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4850906A (en) * 1985-08-09 1989-07-25 Sanshin Kogyo Kabushiki Kaisha Engine control panel for a watercraft propelled by a plurality of motors
JPH02245296A (en) * 1989-03-17 1990-10-01 Ebara Infilco Co Ltd Treatment of organic waste water
JPH0463760B2 (en) * 1989-03-17 1992-10-12 Ebara Infuiruko Kk

Also Published As

Publication number Publication date
JPH0228396B2 (en) 1990-06-22

Similar Documents

Publication Publication Date Title
US11319230B2 (en) Method and apparatus for treating municipal sewage by AOA process via endogenous partial denitrification coupled with anammox in anoxic zone
US4500427A (en) Activated-sludge process for wastewater treatment
JPS5992095A (en) Biological nitrification-denitrification of waste water
JPH0722757B2 (en) Biological removal method of nitrogen and phosphorus and its treatment device
JPH0639396A (en) Method for treating waste water
JPS645959B2 (en)
JPS6222678B2 (en)
JPH0134119B2 (en)
JPS5980398A (en) Biological waste water disposal
JPS58146495A (en) Treatment of organic waste liquid
JP3155458B2 (en) Nitrification and denitrification treatment method of organic wastewater
JPS6099394A (en) Biological denitrification and dephosphorization apparatus of sewage
JPH01215400A (en) Biological denitrifying and dephosphorizing method for waste water
JP2932045B2 (en) Sewage denitrification / phosphorus removal method and apparatus used therefor
JPH0116559B2 (en)
JPH07115031B2 (en) Nitrification and denitrification method of organic wastewater
JPS61230793A (en) Biological treatment of waste water
JPS6094196A (en) Biological denitrification and dephosphorization process for organic waste water
WO1998000370A1 (en) Low temperature biological nitrification of wastewater
JPS6012196A (en) Excretion treating method
JPH0137197B2 (en)
JPH0218155B2 (en)
JPS6216159B2 (en)
JPS6345270B2 (en)
JPH05220494A (en) Method for denitrifying and dephosphorizing organic waste water