JPS599186A - Electrolytic cell of vertical cell and electrolyzing method - Google Patents

Electrolytic cell of vertical cell and electrolyzing method

Info

Publication number
JPS599186A
JPS599186A JP57116665A JP11666582A JPS599186A JP S599186 A JPS599186 A JP S599186A JP 57116665 A JP57116665 A JP 57116665A JP 11666582 A JP11666582 A JP 11666582A JP S599186 A JPS599186 A JP S599186A
Authority
JP
Japan
Prior art keywords
cathode
chamber
gas
electrolytic cell
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57116665A
Other languages
Japanese (ja)
Other versions
JPH0216389B2 (en
Inventor
Tsutomu Nishio
勉 西尾
Yasushi Samejima
鮫島 靖志
Minoru Shiga
稔 志賀
Toshiji Kano
叶 敏次
Koji Saiki
幸治 斎木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP57116665A priority Critical patent/JPS599186A/en
Publication of JPS599186A publication Critical patent/JPS599186A/en
Publication of JPH0216389B2 publication Critical patent/JPH0216389B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To expell quickly cathodic gas and to decrease electrolytic voltage in the stage of electrolyzing an aq. soln. of an alkali halide metal by an electrolytic cell of an ion exchange membrane method by using a non-porous cathode plate. CONSTITUTION:A generation chamber 7a for cathodic gas wherein the a cation exchange membrane 4 and a cathode plate 1 is spaced as narrow as <=2mm. and a non- porous cathode manufactured of Fe, Ni, etc. is used for the cathode 1 in an electrolytic cell of an ion exchange membrane type for an aq. soln. of an alkali halide metal such as NaCl. The cathode gas of hydrogen or the like generated on the surface 1a of the cathode 1 facing to the membrane 4 is like small foam, ascends quickly in the chamber 7a; at the same time, the electrolyte ascends as well and both enter through an opening 2 into the gas sepn. chamber 7b on the opposite side of the plate 1. The gas is discharged through an outlet 11, and the electrolyte enters the chamber 7a through an opening 3 and circulates. Since the gas foam in the electrolyte is quickly moved upward and separated, the electric resistance of the electrolyte is small and electrolysis is accomplished with high power efficiency by the reduced voltage during the electrolysis.

Description

【発明の詳細な説明】 本発明はイオン交換膜により陰極室と陰極室に分割され
た新規な電解槽及び電解方法に関する。更に訂しくは、
陰(荷室が非多孔性陰極板によりガス発生室とガス分I
IF室とに区分された電解槽及びガス発生室とガス分剤
室とにガスリフ1−効果による循環流を発生させること
にょ9該陰極板上に発生した陰削ガスを実質的に完全に
除去しなから電解する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel electrolytic cell divided into a cathode chamber and a cathode chamber by an ion exchange membrane, and an electrolysis method. More specifically,
Negative (the cargo compartment is separated by a gas generation chamber and gas compartment I by a non-porous cathode plate)
By generating a circulating flow due to the gas rifling effect in the electrolytic cell divided into an IF chamber, a gas generation chamber, and a gas distribution chamber, the shaving gas generated on the cathode plate is substantially completely removed. Concerning a method of electrolyzing from the sinus.

従来、例えばハロゲン化アルカリ水溶液を陽イオン交換
膜を用いて電解する電解槽においては、多孔性陰(c舅
がもっばら使用されてきた。そして多孔性陰極としては
エギスパンデットメタルシート、パンチドメタルシート
あるいは金網が代表的である。
Conventionally, for example, in electrolytic cells in which aqueous halogenated alkali solutions are electrolyzed using a cation exchange membrane, porous cathodes have been used most often. Metal sheets or wire mesh are typical.

このような多孔性陰極を使用して電解を行なう場合、陰
(駅表面で発生する陰極ガスは・部は陽イオン交換膜と
陰極との間を上昇し、他の一部は孔より陰極の背面に通
りぬけて上昇する。
When performing electrolysis using such a porous cathode, part of the cathode gas generated on the surface of the cathode rises between the cation exchange membrane and the cathode, and the other part rises from the pores to the cathode. Pass through the back and rise.

ところで陰(萌で発生する陰極ガスか、陰極退部、特に
陰極と陽イオン交換膜との間Vこ滞留することは液抵抗
の増大につながり、その結果電解化圧を上昇させること
になる。
By the way, the presence of cathode gas generated in the anion or the cathode retreat, particularly between the cathode and the cation exchange membrane, leads to an increase in liquid resistance, resulting in an increase in the electrolytic pressure.

ガス気泡の陰樺近誇での滞留を防止する方法として、例
えば特開昭52−1z571号公報には陰極にエキスパ
ンドメタルを用い且つ開口部艮洋軸が垂直/3向と特定
の61度(0〜45度)をもたせる方法が゛開示されて
いる。しかるにこの方法を用いても、陽イオン交換膜を
挾んで陽極、陰面間の粗削が約2mmあるいは特に約I
Inm即ト’になった場合、陰17mと膜との間に形成
される微小な間隙に陰極ガスが滞留しや1−<なり、第
1図に示すような電解電圧を上昇させる。
As a method for preventing gas bubbles from accumulating in the shade of birch, for example, Japanese Patent Application Laid-Open No. 52-1z571 uses an expanded metal for the cathode, and the axis of the opening is vertical/3 directions and a specific 61 degree angle ( 0 to 45 degrees) is disclosed. However, even if this method is used, the rough cutting between the anode and the negative surface with the cation exchange membrane sandwiched is about 2 mm, or especially about I
When Inm becomes 'T', the cathode gas remains in the minute gap formed between the negative electrode 17m and the membrane, and the electrolytic voltage increases as shown in FIG.

かかる問題を解決する為に特開昭53−56193号、
同53−46483号及び同53−814988公報に
は、それぞれ電極の後方に流路仕り板を設置し、i屑環
流を発生あるいは強制循環により強制的に発生させなが
ら電解する方法、電極室の北部に液供給口を設置し、ポ
ンプ圧により下降流を7F極室内に発生させ、多孔性陰
極で発生した陰極ガスを陰極の背後に抜きなから隔壁の
下部より隔壁の背後へ抜きだす構造の電解槽、隔膜面に
向って上り勾配横桟を有する多孔性電極を用い、電極の
後方より液流を流せしめ循環流を発生ぜしめる電解槽が
提案されている。しかしながら、これらの提案された技
術を用いてもイオン交換膜を介在させた陽極、陰極間の
距離が約2amあるいは特に約1mm以下で電解する場
合、陰極と膜との間の微小な隙間に循環流による泡(ガ
ス)抜き効果が及び難くなり、従って多孔性陰極の後方
(背後)にのみ循環流が導かれ、膜と陰極間に泡の滞留
が多くなる。このため膜及び電極への泡の付着が必然的
に多くなり、やはり第1図に示すような電圧上昇カーブ
を示す。
In order to solve this problem, Japanese Patent Application Laid-open No. 53-56193,
No. 53-46483 and No. 53-814988 disclose a method in which a flow path partition plate is installed behind the electrode and electrolysis is performed while generating i-waste reflux or forcibly generated by forced circulation, and A liquid supply port is installed in the 7F electrode chamber using pump pressure to generate a downward flow, and the cathode gas generated in the porous cathode is extracted from the bottom of the partition wall to the back of the partition wall instead of being extracted behind the cathode. An electrolytic cell has been proposed in which a porous electrode having horizontal bars with an upward slope toward the surface of the cell and the diaphragm is used to allow a liquid flow to flow from behind the electrode to generate a circulating flow. However, even if these proposed techniques are used, if electrolysis is carried out at a distance of about 2 am or less between the anode and cathode with an ion exchange membrane interposed therebetween, or especially about 1 mm or less, circulation will occur in the minute gap between the cathode and the membrane. The effect of removing bubbles (gas) by the flow becomes difficult to achieve, and therefore, the circulating flow is guided only to the rear of the porous cathode, and a large amount of bubbles accumulates between the membrane and the cathode. For this reason, the amount of bubbles attached to the membrane and electrodes inevitably increases, resulting in a voltage rise curve as shown in FIG.

これらの問題点を解決する方法として、特開昭57−2
3076号公報には膜の表面にガス及び液透過性の導電
1′L多孔質層を配し、膜へのガス伺at防11.する
方法が教示されている。しかしながらかかる方法にあっ
ては、1業的規模の人パリ電解槽K(車用さ)するよう
な大型1漢への応用はφ([かしく、例えば大型膜に均
一・に導電1生多孔質層を形成させることは決して容易
ではない。
As a method to solve these problems, JP-A-57-2
No. 3076 discloses that a gas and liquid permeable conductive 1'L porous layer is arranged on the surface of the membrane to prevent gas from entering the membrane. are taught how to do so. However, with this method, it is difficult to apply it to large-scale electrolyzers such as industrial electrolyzers (used for cars). Forming layers is never easy.

のみならず−1−記技1rlVでは?[極表面のガスを
速やかに除去するという問題に対しては何ら夕jJ果全
期待できない。
Not only -1-Kiwaki 1rlV? [No results can be expected from the problem of rapidly removing the gas on the extreme surface.

さらに特開昭56−!1.16891号公報によれば、
膜の表面を粗面化することにより膜へのガス何着を防1
1.する方法が提案されているが、水力法によっても既
述したのと同様の問題点が残る。
Furthermore, JP-A-56-! According to Publication No. 1.16891,
Prevents gas from adhering to the membrane by roughening the surface of the membrane.1
1. However, the same problems as mentioned above remain with the hydraulic method.

本発明者らは十記実態に鑑み、これら従来技iIトiの
問題点を解決せんとして鋭意検d−1の結果、本発明に
到達しtものである。
In view of the above circumstances, the inventors of the present invention have arrived at the present invention as a result of intensive investigation in an attempt to solve the problems of these conventional techniques.

すなわち、本発明の第1はイオン交換膜により陽極室及
び陰を砥”q:Eに分割された電解槽におい中室とガス
分離室との2室に区分され、該2室は該陰極板の実質的
に最−1一部及び最[部に設けられた開1−1部により
連絡されていることを特徴とする電解槽を内容とし、本
発明の第2idイメン交換膜により陽(j宇及び陰(゛
・質室に分割され、(Uに前記陰極宇が非多孔性陰極板
のイオン交換膜に刻時する而、イオン交換膜及び陰極室
枠側壁とにより囲まれた陰r1猟ガス発生室と、該ノ1
多孔fJtg陰隋板の背面と陰極室枠とで囲まれたガス
分離室どの2字に区分された電解槽を使用して電解液を
電解するに当り、r+i+記陰甑ガス発生室、で発生し
た陰極ガスのガスリフト効果により陰極液に1−ケ(流
を起こさせ、陰(題扱最上部に設けもノtた開11部よ
り前記ガス分卯1室へ陰極ガスと陰爛液の混和流全導き
、ガス分犀室で陰極ガスを陰極液より分離し、ガス発生
室内の混4’ll流より気泡含有率を小さくさせたガス
分離室内の陰(1鷺液を、陰棒板面]一部に設けられた
開1.1部より再度該ガス発生室へ導入・流動させるこ
とVこより、陰極ガス発生室とガス分離室に陰1!il
l一部の開11部を通じて(16環流を発生させること
を特徴とする電解JJ法を内容とする。
That is, the first aspect of the present invention is that an electrolytic cell is divided into an anode chamber and a negative electrode chamber by an ion exchange membrane. The content of the electrolytic cell is characterized in that the electrolytic cell is connected by an opening 1-1 provided in substantially the most part and the most part, and the electrolytic cell is characterized in that the electrolytic cell is Divided into U and Yin (゛), the cathode is surrounded by the ion exchange membrane of the non-porous cathode plate and the side wall of the cathode chamber frame. A gas generation chamber and No. 1
When electrolyzing the electrolyte using an electrolytic cell divided into two parts, gas generation chamber is generated in the gas separation chamber surrounded by the back of the porous fJtg negative plate and the cathode chamber frame. Due to the gas lift effect of the cathode gas, a flow is caused in the catholyte, and the cathode gas and catholyte are mixed into the gas distribution chamber 1 through the opening 11, which is also provided at the top of the cathode. The cathode gas is separated from the catholyte in the gas separation chamber, and the liquid in the gas separation chamber is made smaller than the mixed flow in the gas generation chamber. ] By introducing and flowing the gas into the gas generation chamber again through the opening 1.1 provided in a part, a negative 1!il is introduced into the cathode gas generation chamber and the gas separation chamber.
The electrolytic JJ method is characterized by generating (16 reflux) through some open parts.

本発明の特徴は、先づ非多孔IY11℃1□に(扱とイ
オン交換膜の間の微小なる間隙において、陰障で発生す
る全ての陰瞳ガスを1−yi力向にのみツノ向づけ、高
速の一1xfi流を発生させることにより、陰極表面及
び膜表面の気泡を速やかにとりのぞき、14部部開1部
より非多孔+<1陰M板の背後[it々けらhたガス分
離室へ運び去る。次いで該l’AC’i’(板とイオン
交換膜の間には常に1一部間11部よりガス分離室で気
泡分離さ〕7.てTQられ7j’))ス含(I率の小さ
い電解〆f〈が供給される。ガス分Hill室の膜に垂
直な断面積はガス分#t゛1分+1r−Viなうことが
でき、月つガス含T−i:’r<の小さい713:IQ
了it&をJkV部聞11部より供給できるように決定
さ牙りる。
The features of the present invention are as follows: First, in the non-porous IY 11°C 1□ (in the minute gap between the handle and the ion exchange membrane, all the myopic gas generated in the pupil is directed only in the 1-yi force direction). , by generating a high-speed 1xfi flow, air bubbles on the cathode surface and membrane surface are quickly removed, and from the 14 part opening 1 part the back of the non-porous + <1 negative M plate [it was shattered gas separation chamber Then, the l'AC'i' (air bubbles are separated between the plate and the ion exchange membrane in a gas separation chamber from 1 part to 11 parts)) containing ( An electrolytic film with a small I rate f〈 is supplied.The cross-sectional area perpendicular to the membrane of the gas portion Hill chamber can be the gas portion #t゛1 min + 1r-Vi, and the gas-containing T-i:' 713 with small r<: IQ
It has been decided that the 11th edition of the JkV division will be able to supply the complete version.

即ち、ガス分1411室の断面(1にはすくなくともガ
ス発〕1:室の断面1?ンの約2倍しL−1゜、vfま
しくは糸−J5倍コミ−であることが望ましい。・力、
1沢については特シこ限定されないが、例えば該断[白
i積を500倍以コニあるいは1000倍以」二にする
ことは電解t’F+の設置イhコストが増大する等の不
利益が顕現化するので、これらの不利益をも勘案して決
定するのがvfましい。かくして本発明によれば、陰極
ガスの滞留もなく、陰(第及び膜表面のガス何着もなく
、常に低い7(を解重L1−が得らh電力原単位を小と
し得る利点かある。さらに、エクスパンデッドメタルシ
ートのようy従nil。
That is, it is desirable that the cross section of the gas chamber 1411 (at least gas generation) 1: the cross section of the chamber be approximately twice L-1°, vf or yarn -J5 times commi. ·Power,
Although there is no particular limitation regarding the amount of water, for example, increasing the white product by more than 500 times or more than 1000 times may have disadvantages such as increasing the installation cost of electrolytic T'F+. It is best to take these disadvantages into consideration when making a decision. Thus, according to the present invention, there is no stagnation of cathode gas, there is no accumulation of gas on the surface of the cathode and membrane, and the advantage is that the degregnating L1- is always low and the electric power consumption can be made small. .Furthermore, it is similar to expanded metal sheet.

多孔性陰極を用いた場合はメタル部分に近接する膜の部
分は高電密となり、−・力、空隙部分に′L11接する
躾の部分は低電密となり、ミクロな電流分(11が不均
一となる為電解電圧1.契の一″因となる。しかるに本
発明における陰極は非多孔1生であるので%qBそのも
のに空隙がなく、従って均・な電流分布か得られる。そ
れゆえ膜の電流分+liも均一・となり、低い電解電圧
が得られ極めて有利である。
When a porous cathode is used, the part of the membrane close to the metal part has a high electric density, and the part of the membrane that is in contact with the void part has a low electric density, and the microcurrent (11 is non-uniform) Therefore, the electrolytic voltage is 1.5%. However, since the cathode in the present invention is a non-porous material, there are no voids in the %qB itself, and therefore, a uniform current distribution can be obtained. The current +li is also uniform, and a low electrolytic voltage can be obtained, which is extremely advantageous.

次に本発明の実施態様を添(,10図面に基づいて詳述
する。
Next, embodiments of the present invention will be described in detail based on the attached drawings.

尚、以Pの説明において塩化すトリウノ・水浴液の電解
を例に挙げて説明するが、本発明はこれらに限定されな
いことは勿論であり、他の無(幾塩水溶液の電解、水電
解等のガス発生をともなう電解に直ちに適用することが
可能である。
In the explanation below, the electrolysis of chlorinated triunium and water bath liquid will be taken as an example, but it goes without saying that the present invention is not limited to these. It can be immediately applied to electrolysis accompanied by gas generation.

更に、本発明は複極式あるいは単極式フイルタープレス
型電解僧、ボックス型電解僧にも適用することが出来る
Furthermore, the present invention can also be applied to bipolar or single-pole filter press type electrolyzers and box type electrolyzers.

第2図は本発明による陰極室の縦断面概略図で、第3図
は第2図のA−A断面図である。
FIG. 2 is a schematic vertical cross-sectional view of the cathode chamber according to the present invention, and FIG. 3 is a cross-sectional view taken along the line AA in FIG.

第2図シておいて陰極室が非多孔性陰極板1により、陽
イオン交換膜4、陰極室枠側壁(図示ぜず)及び該陰極
板1の該膜4に対峙する面H+とにより包囲形成される
陰偉3ガス発生室72〕と、該陰極板1の背面1b、陰
極室枠5及び同側壁(図示せず)とにより形成されるガ
ス分#I室7bとに2分され、画室は該陰園板1の−1
一部及び1・部に設けられた開口部2.3によりそiz
それ連絡されている。
In FIG. 2, the cathode chamber is surrounded by a non-porous cathode plate 1, a cation exchange membrane 4, a side wall of the cathode chamber frame (not shown), and a surface H+ of the cathode plate 1 facing the membrane 4. It is divided into two parts: a gas generation chamber 72] and a gas #I chamber 7b formed by the back surface 1b of the cathode plate 1, the cathode chamber frame 5 and the same side wall (not shown), The painting room is -1 of the Yinyuan board 1
Due to the opening 2.3 provided in the part and part 1.
It has been contacted.

本発明に好適な陽イオン交換膜としては、例えば、陽イ
オン交換基を有するパーフルオロカーボン重合体からな
る膜を挙げることができる。
Examples of cation exchange membranes suitable for the present invention include membranes made of perfluorocarbon polymers having cation exchange groups.

スルホン酸基全交換基とするパーフルオロカーボン重合
体よりなる膜は、米国のイー・アイ・テユボン・テ・ニ
モアス・アン1−・カンパニー(pj、j’、1)II
11”(用L(iernゝl1l(11l”TH&、C
0fT甲(JJl、Y)より商品名(ナフイ乞ン1とし
て市販されており、その化学(1〜造は次式に示す通り
である。
A membrane made of a perfluorocarbon polymer having a total exchange group of sulfonic acid groups was manufactured by E.I.Teubon Te Nimores An1-Company (pj,j',1) II in the United States.
11"(L(iernl1l(11l"TH&,C
It is commercially available from 0fT A (JJl, Y) under the trade name (Nafuigin 1), and its chemical composition (1 to 1) is as shown in the following formula.

かかる陽イオン交換膜のθf適な当吊爪債fdl、00
0乃全2,000、好ましくはI、100乃至1゜50
0であり、ここに当量@喰とは、交換埜当に当りの乾燥
膜の重電(g)である。又、1−記交換膜のスルポン酸
、11(の−・部又は全部をカルボン酸基にf?’を換
した陽イオン交換膜その他慣用されている陽イオン交換
膜も本発明に適用することができる。これらの陽イオン
交換膜は透水率が著しく小さく、水力学的流れを通さず
に水分子3〜4個をイアするすトリウムイオンを通すの
みである。
The appropriate θf of such a cation exchange membrane is fdl, 00
0 to total 2,000, preferably I, 100 to 1°50
0, where the equivalent weight is the weight (g) of the dry film per exchange weight. In addition, the present invention also applies to cation exchange membranes in which part or all of the sulfonic acid and 11 (f?' of the exchange membrane 1) is replaced with a carboxylic acid group and other commonly used cation exchange membranes. These cation exchange membranes have extremely low water permeability and only allow 3 to 4 water molecules to pass through the thorium ions without allowing any hydraulic flow to pass through.

非多孔外陰(値仮1の曲面、即ち(陽イオン交換膜4に
対向する面laは実質的に平面である。
The non-porous outer surface (a curved surface with a value of 1, that is, the surface la facing the cation exchange membrane 4 is substantially flat).

非多孔性陰極板1はvに、ステンレススチールまたはニ
ッケル等が好適に使用され、これら材料による陰極非多
孔板の前面に、水素過電圧を低トせしめるために白金族
金属、その導電性酸化物、丑たは釦、族金属等のコーテ
イングを施すことはさらに好ましい軽様である。四にま
た該非多孔性陰極板の背面、即ち陽イオン交換膜に対向
しない面1bに陰陰極による腐食を防止するために、ゴ
ムあるいは耐熱プラスチック等のライニングを施こすこ
とが出来るし、またニッケルメツキ、ニッケル溶射等も
好適に適用することが出来る。
The non-porous cathode plate 1 is preferably made of stainless steel or nickel, and the front surface of the cathode non-porous plate made of these materials is coated with platinum group metals, conductive oxides thereof, etc. in order to reduce the hydrogen overvoltage. It is more preferable to apply a coating of oxtails, buttons, group metals, etc. Fourth, the back surface of the non-porous cathode plate, that is, the surface 1b that does not face the cation exchange membrane, can be lined with rubber or heat-resistant plastic, or nickel-plated, in order to prevent corrosion by the cathode. , nickel spraying, etc. can also be suitably applied.

非多孔性陰極板1と陽イオン交換膜4との間隔は特に制
限はないが約5mm以下、特に約2πm以トが好ましい
。両各の間隔は狭くなる程高速の上昇流を発生さぜるこ
とか出来る。
The distance between the non-porous cathode plate 1 and the cation exchange membrane 4 is not particularly limited, but is preferably about 5 mm or less, particularly about 2πm or more. The narrower the distance between the two, the more high-speed upward flow can be generated.

ガス発生室7F3において該陰極板1の前面1aで発生
した陰(値ガスは近傍の′1E解液と共に混和流を形成
し、所謂ガスリフ1−効果により高速のに層流となって
、L部間[−1部2よりガス分離京7bへ溢れ出る。溢
れ出た気液混相流はガス公開(字7いて気液分離されガ
ス含打率の低い電解液としてド降し、ト部間1−1部3
よりガス発生室7+−iに供給される。央に、必要に応
してボンフ′等による強制循環も本発明に好適に適用す
ることが出来る。即ち、「部間11部3より強制的に電
解液をガス発生室7ε〕に送り込み、ガス発生室72]
における上昇流速度を加速させることが出来る。上、下
開口部2.3の形状は特に制限はなく、横長タンザク状
、丸穴を横一列にならへた形状イηが例示される。尚、
非多孔1生陰極板1はガスリフト効果による」−眉流を
減速又は邪魔しない範囲であれば、微小な穴、スリツ1
−1該陰極板の両刃イ1−取り伺は部位に生じる僅少な
間隔等を含んでいても差し支えない。史に本発明による
非多孔VL陰極板の陰極ガス発/」、宇側の表面iF〕
、ば、例えば10μ程度のN1粉末を溶射してなる陰極
板の如く、巨視的に平面と回−視し得るものてあItば
良く、捷た即直力向に凸状筋を具えた凹凸構造を有する
ものであつても良い。県に適宜間隔をおいて小突起を有
してもよい。
In the gas generation chamber 7F3, the negative gas generated on the front surface 1a of the cathode plate 1 forms a mixed flow with the nearby '1E solution, and becomes a high-speed laminar flow due to the so-called gas reflux 1-effect, and flows into the L section. The overflowing gas-liquid multiphase flow is separated from the gas and liquid at the gas opening (Figure 7) and falls as an electrolyte with a low gas content. Part 1 3
The gas is supplied to the gas generation chamber 7+-i. In addition, if necessary, forced circulation using a bomb etc. can also be suitably applied to the present invention. That is, "the electrolytic solution is forcibly sent from the part 11 part 3 to the gas generation chamber 7ε], and the electrolyte is forced into the gas generation chamber 72].
It is possible to accelerate the upward flow velocity at . The shapes of the upper and lower openings 2.3 are not particularly limited, and examples thereof include a horizontal tanzag shape and a shape in which round holes are arranged horizontally in a row. still,
Non-porous raw cathode plate 1 has a gas lift effect. - As long as it does not slow down or disturb the eyebrow flow, minute holes and slits 1
-1 The double-edged edge of the cathode plate A1 - The clearance may include a slight gap etc. that occurs at the part. History of cathode gas generation of non-porous VL cathode plate according to the present invention/'', Uside surface iF]
For example, it is sufficient to have a cathode plate made by thermally spraying N1 powder of about 10 μm, which can be viewed macroscopically as a flat surface, and which has convex grooves in the direction of the straight force when it is broken. It may have a structure. It may have small protrusions at appropriate intervals.

凸凹構造は、例えば平板に並行なみそをけずり出す、平
板に丸棒、角棒等よりなる細い棒状体を溶接により取り
付け、又は一体的に突1投して凸凹構造とすることが出
来る。リシにまた、陰瞳板ぞのものを波板を使用して作
ることか出来る。波形は特に制御沢はなく、矩形波状、
俯j形11ヅ状、1[弦波状、円形状、サイクロイド状
等が単独又は組合せて使用することが出来る。また凸凹
は垂直方向に向って必ずしも連続である必′Jンはなく
、途中で切れていても良い。凹凸構造を有する非多孔性
陰極板を使用する場合は、凸部とイオン交換膜とが隣接
又は接触していることが好ましい実施t態様である。こ
の場合、凸状筋が陰極ガスを上昇させる際に一種のカイ
トレールとして機能する。
The uneven structure can be obtained by, for example, scraping out parallel miso on a flat plate, attaching a thin rod-shaped body such as a round bar or a square stick to the flat plate by welding, or by integrally kneading it. It is also possible to make a pupil plate using corrugated plate. The waveform has no particular control waveform, and is rectangular waveform.
A vertical shape, a sinusoidal shape, a circular shape, a cycloidal shape, etc. can be used alone or in combination. Further, the unevenness does not necessarily have to be continuous in the vertical direction, and may be broken in the middle. When using a non-porous cathode plate having an uneven structure, it is a preferred embodiment that the protrusions and the ion exchange membrane are adjacent to or in contact with each other. In this case, the convex stripes function as a kind of kite rail when the cathode gas rises.

ガス分間1室7bの液面は上部開口部2よりト″でもよ
いし、上部開口部より上方にあつても何ら支障がない。
The liquid level in the gas chamber 7b may be lower than the upper opening 2, or may be higher than the upper opening without any problem.

陰極ガス及び電解液の取り出しば、従来技術により実施
することが出来る。
Removal of the cathode gas and electrolyte can be carried out using conventional techniques.

非多孔性陰極板1の対極としての陽極は、従来使用され
ている陽極、即ちチタン、ニオブ、り7タル等の弁金属
の中外または合金のエクスパンテッドメタルシート その導電性酸化物またはその導電性還元酸化物等をコー
テイングしたものが使用出来る。更に寸た本発明におけ
る非多孔性の弁金属からなる板に上記コーテイングを施
こした構造の陽極も好適に使用することが出来る。
The anode serving as the counter electrode of the non-porous cathode plate 1 is a conventionally used anode, i.e., an expanded metal sheet made of a valve metal such as titanium, niobium, or tal, or an expanded metal sheet made of an alloy thereof, or a conductive oxide thereof, or a conductive oxide thereof. A material coated with a reducing oxide or the like can be used. Furthermore, an anode of the present invention having a structure in which a plate made of a non-porous valve metal is coated with the above coating can also be suitably used.

第4図は本発明の実施態様の・例を示す電解曹の概略図
である。第5図はB−B断面図である。
FIG. 4 is a schematic diagram of an electrolyte illustrating an example of an embodiment of the present invention. FIG. 5 is a sectional view taken along line B-B.

陽イオン交換膜4は耐食性ガスケット15により、電極
室枠5、18の間に緊締装着されて、護膜4を介して陰
極室7と陽極室17とが形成される。非多孔1ト10陰
極板lと多孔性陽極16は陽イオン交換膜4を両側から
挾んで対峙するように導電棒6、8により固定される。
The cation exchange membrane 4 is tightly fitted between the electrode chamber frames 5 and 18 by a corrosion-resistant gasket 15, and a cathode chamber 7 and an anode chamber 17 are formed via the protective membrane 4. The non-porous cathode plate 10 and the porous anode 16 are fixed by conductive rods 6 and 8 so as to face each other with the cation exchange membrane 4 sandwiched between them.

かくして、塩化ナトリウム水溶液は入口10より供給さ
れ陽極6により電気分解され、発生ずる塩素ガスは出口
14より取り出される。
Thus, the aqueous sodium chloride solution is supplied from the inlet 10 and electrolyzed by the anode 6, and the generated chlorine gas is taken out from the outlet 14.

一方、電気分解された希薄陽極液は出口12より取り出
される。一方、入口9を通して水捷たは希苛性ソーダ水
溶液が陰極室7に導入され、非多孔性陰削板1のniJ
而1面Bで電気分解され、水素ガスが発生する。発41
ニジたノー(素ガスは出1113より取り出され、濃苛
性ソーダは出口11より取り出される。
On the other hand, the electrolyzed dilute anolyte is taken out from the outlet 12. On the other hand, water strainer or a dilute caustic soda aqueous solution is introduced into the cathode chamber 7 through the inlet 9, and the niJ
Then, it is electrolyzed on the first side B, and hydrogen gas is generated. departure 41
Raw gas is taken out from outlet 1113, and concentrated caustic soda is taken out from outlet 11.

以上、本発明を図示された実施昨様に従って詳述したが
、それらに限定されるものではなく、本発明の意図並び
にiVi神を逸脱しないii′α囲て当業者において多
(子な変形を為し得ることは云う迄もないことであり、
それらの変形もまた本発明の範囲に包含さhるものであ
る。
Although the present invention has been described in detail in accordance with the illustrated embodiments, it is not limited thereto, and many modifications can be made by those skilled in the art without departing from the spirit and spirit of the present invention. It goes without saying that there is nothing that can be done,
Variations thereof are also within the scope of the present invention.

実施例1 陽イオン交換膜としてDuPont社の「ナフイオン9
011を使用し、有効電解面IQOmmXト1 700mmを有する′電解糟を使用した。非多孔1生陰
極としてS1.JS304(7)厚さammの平板を使
用した。該陰極の前面にはニッケル粒子をブワスマ溶I
・1シ低水素過電圧陰庵とした。陰極背面と電]C室板
との距却は30mmとした。陽極はチタンのエクスバン
デツ1ーメタルに酸化ルテニウノ、と酸化チタンの固溶
体を?Ju覆したものを使用した。
Example 1 DuPont's "Nafion 9" was used as a cation exchange membrane.
011 was used, and an electrolytic vessel having an effective electrolytic surface IQOmmXt1 700 mm was used. As a non-porous raw cathode, S1. A flat plate of JS304 (7) with a thickness of amm was used. The front surface of the cathode is coated with nickel particles.
・One low hydrogen overvoltage was used. The distance between the back surface of the cathode and the C chamber plate was 30 mm. The anode is a solid solution of titanium oxidized metal, ruthenium oxide, and titanium oxide? Ju overturned was used.

膜と陰極板との間隔をl,5mm、膜と゛陽極は接する
ようにセットし、陽極室に5NのlNace水溶液を陰
極室に水を供給しつつ陽極室の塩化ナトリウム濃度を3
5規定に、また陽臥液の苛性ソーダ溶液を32mm%に
保ちつつ80°Cで電解を行ない、以下の結果を得た。
The distance between the membrane and the cathode plate was set to 5 mm, and the membrane and anode were set so that they were in contact with each other, and while supplying 5N lNace aqueous solution to the anode chamber and water to the cathode chamber, the sodium chloride concentration in the anode chamber was increased to 3 mm.
Electrolysis was carried out at 80° C. while maintaining the caustic soda solution at 32 mm% and the following results were obtained.

電流密度30A/dm2で3.09Vの電圧で苛性電流
効率は96%であった。さらに235△/(u〕fで1
力月電解をつづけたが、槽電圧は一定であった。
The caustic current efficiency was 96% at a current density of 30 A/dm2 and a voltage of 3.09 V. Furthermore, 1 at 235△/(u)f
The electrolysis continued, but the cell voltage remained constant.

実施例2 非多孔性陰搾板の背面と電搾室扱との 間隔を1mm、5闘、15mmと7るよう?ff,解伯
をそれぞれセットし、その他は実施例1と同様にして電
解した。電解電圧はそれぞれ8.65V、3、14V、
3.09\lであった。
Example 2 The distance between the back side of the non-porous negative milking board and the electric milking chamber is set to 1mm, 5mm, 15mm, and 7mm. Electrolysis was carried out in the same manner as in Example 1 except that ff and kaibaku were set respectively. The electrolytic voltages are 8.65V, 3, and 14V, respectively.
It was 3.09\l.

比較例1 下部開口部を密閉し、その他は実施例1と同じ方法で電
解したところ、電流密度23.5Ay・+m′で3.8
5Vの結果を得た。
Comparative Example 1 Electrolysis was performed in the same manner as in Example 1, with the lower opening sealed, and the current density was 3.8 at a current density of 23.5 Ay·+m'.
A result of 5V was obtained.

比較例2 陰極板として低水素過電圧処理を施した鉄製のエクスバ
ンデッ1メタル(短径3mm、長径8騎)を用いた他は
実施例1と同様に電解を実施した。
Comparative Example 2 Electrolysis was carried out in the same manner as in Example 1, except that an iron Exband 1 metal (minor diameter 3 mm, major diameter 8 mm) subjected to low hydrogen overvoltage treatment was used as the cathode plate.

電流密度23.5A、・′(17〕l′で3.17\、
Iの結果を?!)た。
Current density 23.5A, 3.17\'(17]l',
The result of I? ! )Ta.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は極間距離と電圧との関係を示すクワフ、第2N
は本発明の陰瞳室の・例を示す縦断面概略図、第3図は
第2のA−A断面図、第4図は本発明の′市解伶の一例
を示すわC断面概略図、第5図は第4図のB−B断面図
である。 l・・・非多孔性陰極板2・・・上部開口部3・・・下
部開口部4・・・膜 5・・・陰極室枠6・・・導電棒 7・・・陰極室7・・・ガス発生室 フ1)・・・ガス分離室8・・・導電棒9・・・陰極液
入口10・・陽極液入口11・・・陰極液出口12・・
・陽極液出口13・・・陰極ガス出口14・・・陽極ガ
ス出口15・・・ガス’rツ!・16・・・多孔1生陽
庵17・・・陽(1υ(室18・・・陽1i<室枠第1
図 13 1bA、J’=、、−15 ゛ろ 52 ゛ろ 第5[ t8’ぢ5 .4・槃、7.I3
Figure 1 shows the relationship between pole distance and voltage.
3 is a schematic vertical cross-sectional view showing an example of the pupil chamber of the present invention, FIG. 3 is a cross-sectional view taken along the second line A-A, and FIG. , FIG. 5 is a sectional view taken along line B-B in FIG. 4. l... Non-porous cathode plate 2... Upper opening 3... Lower opening 4... Membrane 5... Cathode chamber frame 6... Conductive rod 7... Cathode chamber 7...・Gas generation chamber 1)...Gas separation chamber 8...Conductive rod 9...Catholyte inlet 10...Anolyte inlet 11...Catholyte outlet 12...
・Anolyte outlet 13...Cathode gas outlet 14...Anode gas outlet 15...Gas 'rtsu!・16...Porous hole 1 Shoyoan 17...Yang (1υ(chamber 18...Yang 1i < chamber frame 1st
Figure 13 1bA, J'=,, -15 ゛ro 52 ゛ro 5th [t8'ぢ5 . 4. Kana, 7. I3

Claims (1)

【特許請求の範囲】 ■、イオン交換膜により陽庵宰及び陰極室に分割された
電解槽において、陰極室が非多孔性陰庵仮により陰庵ガ
ス発生室とガス分離室との2室に区分され、該2室は該
陰庵板の実質的に最上部及び最下部に設けられた開口部
により連絡されていることを特徴とする縦型電解槽。 2非多孔性陰極板が耐アルカリ性材料である特許請求の
範囲第1項記載の電解槽。 3非多孔性陰極板の背面に耐アルカリ性材料を波型した
特許請求の範囲第1項記戦の電解槽。 4非多孔室陰極板の陰極ガス発生室側の面を低水素過電
圧を有する材料で被覆した特許請求の範囲第1項記載の
電解槽。 5非多孔性陰極板の陰極ガス発生室側の面が巨視的に平
面である特許請求の範囲第1項記載の電解槽。 6非多孔性陰極板の陰極ガス発生室側の面が縦方向の凸
状筋を具備した凹凸形状である特許請求の範囲第1項記
載の電解槽。 7縦方向の凸状筋が巨視的にV而な板−にに丸棒、角棒
等より成る細い棒状体を固着又は−・体部に突設させた
ものである特許請求の範囲第6項記載の電解槽。 8縦方向の凸状筋を具備した凹凸形状が波形である特許
請求の範囲第6項記戦の電解槽。 9波形が矩形波状、梯形波状、正弦波状、円形状及びサ
イクロイド状のいずれか一つ又はそれらを組合せた波形
又はそれらの波形の一部を変形させた波形である特許請
求の範囲第8項記戦の電解槽。 IO縦方向の凸状筋の先端がイオン交換膜に接触してい
る特許請求の範囲第6項記戦の電解槽。 圧イオン交換膜により陰極室及び陰極室に分割され、史
に前記陰極室が非多孔性陰極板のイオン交換膜に対峙す
る面、イオン交換膜及び陰極室枠側壁とにより囲まれた
陰極ガス発生室と、該非多孔性陰極仮の背面と陰極室枠
とで囲まれたガス分離室との2室に区分された縦型電解
槽を使用して電解液を電解するに当り、前記陰極ガス発
生室で発生した陰極ガスのガスリフト効果により陰極腋
に上昇流を起こさぜ、陰俺板最上部に設けられた開口部
より前記ガス分離室へ陰極ガスと陰極液の混和流を導き
、ガス分離室で陰極ガスを陰極液より分離し、ガス発生
室内の混和流より気泡含有率を小さくさせたガス分離室
内の陰極液を、陰極板最下部に設けられた開口部より再
度ガス発生室へ導入・流動さぜることにより、陰極ガス
発生室とガス分離室に陰極上下部の開置部を通じて循環
流を発生させることを特徴とする電解方法。
[Claims] ■ In an electrolytic cell divided into a positive electrode chamber and a cathode chamber by an ion exchange membrane, the cathode chamber is divided into two chambers, a negative electrode gas generation chamber and a gas separation chamber, by a non-porous negative electrode. A vertical electrolytic cell characterized in that the two chambers are separated and communicated by openings provided substantially at the top and bottom of the shade plate. 2. The electrolytic cell according to claim 1, wherein the non-porous cathode plate is made of an alkali-resistant material. 3. The electrolytic cell according to claim 1, in which an alkali-resistant material is corrugated on the back surface of the non-porous cathode plate. 4. The electrolytic cell according to claim 1, wherein the surface of the cathode gas generation chamber side of the non-porous chamber cathode plate is coated with a material having a low hydrogen overvoltage. 5. The electrolytic cell according to claim 1, wherein the surface of the non-porous cathode plate facing the cathode gas generation chamber is macroscopically flat. 6. The electrolytic cell according to claim 1, wherein the surface of the non-porous cathode plate on the cathode gas generation chamber side has an uneven shape with longitudinal convex striations. 7. Claim 6, in which a thin bar-like body made of a round bar, square bar, etc. is fixed to or protrudes from the body of a plate having a macroscopically V-shaped convex striation in the longitudinal direction. Electrolytic cell described in section. 8. The electrolytic cell according to claim 6, wherein the uneven shape having longitudinal convex striations is wavy. Claim 8, wherein the nine waveforms are any one of rectangular, trapezoidal, sinusoidal, circular, and cycloidal, or a combination thereof, or a waveform obtained by partially deforming these waveforms. The electrolyzer of war. The electrolytic cell according to claim 6, wherein the tip of the IO longitudinal convex stripes is in contact with the ion exchange membrane. Cathode gas generation is divided into a cathode chamber and a cathode chamber by a pressure ion exchange membrane, and the cathode chamber is surrounded by the surface of the non-porous cathode plate facing the ion exchange membrane, the ion exchange membrane and the side wall of the cathode chamber frame. When electrolyzing an electrolyte using a vertical electrolytic cell divided into two chambers: a chamber and a gas separation chamber surrounded by the back surface of the temporary non-porous cathode and a cathode chamber frame, the cathode gas generation The gas lift effect of the cathode gas generated in the chamber causes an upward flow in the cathode armpit, and a mixed flow of cathode gas and catholyte is guided into the gas separation chamber through an opening provided at the top of the cathode plate, thereby forming a gas separation chamber. The cathode gas is separated from the catholyte, and the catholyte in the gas separation chamber, which has a lower bubble content than the mixed flow in the gas generation chamber, is reintroduced into the gas generation chamber through an opening provided at the bottom of the cathode plate. An electrolytic method characterized by generating a circulating flow in a cathode gas generation chamber and a gas separation chamber through open portions above and below the cathode by stirring the cathode.
JP57116665A 1982-07-05 1982-07-05 Electrolytic cell of vertical cell and electrolyzing method Granted JPS599186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57116665A JPS599186A (en) 1982-07-05 1982-07-05 Electrolytic cell of vertical cell and electrolyzing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57116665A JPS599186A (en) 1982-07-05 1982-07-05 Electrolytic cell of vertical cell and electrolyzing method

Publications (2)

Publication Number Publication Date
JPS599186A true JPS599186A (en) 1984-01-18
JPH0216389B2 JPH0216389B2 (en) 1990-04-17

Family

ID=14692857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57116665A Granted JPS599186A (en) 1982-07-05 1982-07-05 Electrolytic cell of vertical cell and electrolyzing method

Country Status (1)

Country Link
JP (1) JPS599186A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731757A (en) * 1993-07-19 1995-02-03 Kaijirushi Hamono Kaihatsu Center:Kk Spare razor blade type hairdressing razor
JP2006190672A (en) * 2004-12-28 2006-07-20 Saft (Soc Accumulateurs Fixes Traction) Sa Electrochemical generator having liquid cathode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731757A (en) * 1993-07-19 1995-02-03 Kaijirushi Hamono Kaihatsu Center:Kk Spare razor blade type hairdressing razor
JP2006190672A (en) * 2004-12-28 2006-07-20 Saft (Soc Accumulateurs Fixes Traction) Sa Electrochemical generator having liquid cathode
EP1677376A3 (en) * 2004-12-28 2010-08-04 Saft Electrochemical accumulator with liquid cathode.

Also Published As

Publication number Publication date
JPH0216389B2 (en) 1990-04-17

Similar Documents

Publication Publication Date Title
US5082543A (en) Filter press electrolysis cell
US4142950A (en) Apparatus and process for electrolysis using a cation-permselective membrane and turbulence inducing means
JPS59190379A (en) Vertical type electrolytic cell and electrolyzing method using said cell
US4013525A (en) Electrolytic cells
JP2003041388A (en) Electrolysis cell with ion exchange membrane and electrolysis method
JP3707778B2 (en) Unit cell for alkaline metal chloride aqueous electrolytic cell
US4557816A (en) Electrolytic cell with ion exchange membrane
US4488948A (en) Channel flow cathode assembly and electrolyzer
WO2009070938A1 (en) Multielectrodes-type ion-membrane electrolytic cell with oxygen-cathodes
JP3655975B2 (en) Gas diffusion cathode and salt water electrolytic cell using the gas diffusion cathode
JPS6342710B2 (en)
JPS599186A (en) Electrolytic cell of vertical cell and electrolyzing method
US5593553A (en) Electrolytic cell and electrode therefor
JPS59193290A (en) Electrolytic cell
JPS599632B2 (en) electrolytic cell
JP3204322B2 (en) Electrolysis method of alkali chloride
JP4402215B2 (en) Bipolar alkali chloride unit electrolysis cell
JPS6147230B2 (en)
JPS6239089Y2 (en)
JPS59153888A (en) Process and cell for electrolysis
JPS6239092Y2 (en)
JPS624469B2 (en)
JPS59193291A (en) Electrolysis and electrolytic cell
JPS59197582A (en) Electrolytic cell and method therefor
JPS6239094Y2 (en)