JPS5991718A - Electromagnetic delay line - Google Patents

Electromagnetic delay line

Info

Publication number
JPS5991718A
JPS5991718A JP20082482A JP20082482A JPS5991718A JP S5991718 A JPS5991718 A JP S5991718A JP 20082482 A JP20082482 A JP 20082482A JP 20082482 A JP20082482 A JP 20082482A JP S5991718 A JPS5991718 A JP S5991718A
Authority
JP
Japan
Prior art keywords
coil
delay line
coils
winding
inductance element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20082482A
Other languages
Japanese (ja)
Other versions
JPH0218613B2 (en
Inventor
Kazuo Kametani
一雄 亀谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elmec Corp
Original Assignee
Elmec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elmec Corp filed Critical Elmec Corp
Priority to JP20082482A priority Critical patent/JPS5991718A/en
Publication of JPS5991718A publication Critical patent/JPS5991718A/en
Publication of JPH0218613B2 publication Critical patent/JPH0218613B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/30Time-delay networks
    • H03H7/32Time-delay networks with lumped inductance and capacitance

Abstract

PURPOSE:To obtain an excellent delay characteristic over a broad frequency band by forming an inductance element combined with a capacitor while shifting the winding axis of a coil sequentially in parallel in the same direction. CONSTITUTION:The winding axis of coils 6, 6'- wound around coil bobbins 5, 5'- is provided while being shifted sequentially in parallel in the same direction. The inductance element formed in this way is combined with the capacitor C to form the electromagnetic delay line. The optimum coupling coefficient among the coils 6, 6'- is obtained easily by forming the inductance element in this way and adjusting a distance D and a pitch B among the coils 6, 6'-, allowing to obtain an excellent delay characteristic over a broad frequency band.

Description

【発明の詳細な説明】 4’ 3+!IJはインダクタンス素子と容jJを組合
せた電磁遅延線に係り・特に低周波から数百fVfl−
1z程度の高周波まで、広い周波数帯域での使用が可能
で、カラーテレビジョンやコンピュータの遅延回路に好
適な電磁遅延線に関する。
[Detailed Description of the Invention] 4' 3+! IJ relates to an electromagnetic delay line that combines an inductance element and a capacitance, especially from low frequencies to several hundred fVfl-
The present invention relates to an electromagnetic delay line that can be used in a wide frequency band up to a high frequency of about 1z and is suitable for delay circuits in color televisions and computers.

従来・この種の電磁遅延線としては・合成樹脂等の非磁
性作製の棒状ボビンに複数の巻rf4を共軸的に形成し
・この巻溝にコイルを順次分割して連続巻きしてインダ
クタンス素子を構成し・隣合う各巻溝間におけるコイル
とアース間に容量を接続してなる構造を有するものが知
られている。
Conventionally, this type of electromagnetic delay line consists of: - A plurality of windings rf4 are coaxially formed on a rod-shaped bobbin made of non-magnetic material such as synthetic resin. A coil is sequentially divided into these winding grooves and continuously wound to form an inductance element. It is known to have a structure in which a capacitor is connected between the coil and the ground between adjacent winding grooves.

また一方、別の電磁遅延線々しては、インダクタンス素
子を構成する複数のコイルを各々別個のフェライト製の
ドラム状ボビンに巻回し、これらコイルの巻回されたド
ラム状ボビンを所定の間隔をおいて配置し、良好な遅延
特性を得るよう構成したものもある。
On the other hand, in another electromagnetic delay line, a plurality of coils constituting an inductance element are each wound around a separate drum-shaped bobbin made of ferrite, and the drum-shaped bobbins around which these coils are wound are spaced at predetermined intervals. Some devices are arranged in such a way that good delay characteristics can be obtained.

しかしながら、非磁性体製の棒状ボビンを用いる電磁遅
延線は、組立が簡jliでボビンの利料費も安価である
反面、インダクタンス素子の各コイルが空心状態となっ
てコイルの磁束が集束しない。
However, although an electromagnetic delay line using a rod-shaped bobbin made of a non-magnetic material is easy to assemble and the bobbin's interest cost is low, each coil of the inductance element is in an air-core state and the magnetic flux of the coil is not focused.

そのため、各コイル間に電磁遅延線として最適な結合を
もたせて良好な遅延特性を得るには、各コイル間の間隔
を広くする必要があり、ボビンが長大化して電磁遅延線
を大形化させる欠点がある。
Therefore, in order to create optimal coupling between each coil as an electromagnetic delay line and obtain good delay characteristics, it is necessary to widen the spacing between each coil, which increases the length of the bobbin and increases the size of the electromagnetic delay line. There are drawbacks.

また・ ドラム状ボビンを用いる電磁遅延線にあっては
・比較的良好な遅延特性を得ることができるものの、理
論的な最適結合を得ることが困難であるうえ、ドラム状
ボビンへのコイルの巻回作業が煩雑になってドラム状ボ
ビンの配置や各コイル間の結線が面倒で、更にフェライ
ト製ボビンを用いる関係からボビンの材料費が比較的高
くなって製造コストが上昇する欠点がある。
In addition, although it is possible to obtain relatively good delay characteristics with electromagnetic delay lines using drum-shaped bobbins, it is difficult to obtain theoretically optimal coupling, and it is difficult to wind the coil around the drum-shaped bobbin. The turning work is complicated, the arrangement of the drum-shaped bobbin and the wiring between the coils are troublesome, and furthermore, since the bobbin is made of ferrite, the material cost of the bobbin is relatively high, leading to an increase in manufacturing cost.

そして、ボビンの小形化を図る目的から複数のドラム状
ボビンを一体化すると、コイル17−IJの結合が強過
ぎて最適な結合を得ることができず、結局コイル毎にボ
ビンを用意しなければならないので、この点からも電磁
遅延線の製造コストを低減できない難点がある。
When multiple drum-shaped bobbins are integrated for the purpose of reducing the size of the bobbin, the coupling between coil 17-IJ is too strong and it is not possible to obtain the optimum coupling, and in the end, a bobbin must be prepared for each coil. Therefore, from this point of view as well, it is difficult to reduce the manufacturing cost of the electromagnetic delay line.

本発明はこのような従来の欠点を解決するためになされ
たもので、インダクタンス素子を構成するコイル1li
Jの結合が小さくコイル相互を近接配置することが可能
で、略埋1倫的な最適結合状態の得られる安価な小形電
磁遅延線を目的とする。
The present invention was made in order to solve such conventional drawbacks, and the present invention has been made to solve the conventional drawbacks.
The object of the present invention is to provide an inexpensive, small-sized electromagnetic delay line that has a small coupling of J, allows coils to be placed close to each other, and provides a nearly linear optimum coupling state.

以下本発明の電磁遅延線を詳細に説明する。The electromagnetic delay line of the present invention will be explained in detail below.

本発明の電磁遅延線の一実施例を説明する前に、本発明
の原理を考察する。
Before describing one embodiment of the electromagnetic delay line of the present invention, the principles of the present invention will be considered.

まず、第1図および第2図に示すように、断面四角形に
してIl′lIw方向q゛法が厚みT方向の寸法より長
い経路を有する長方形の巻溝7を備えたコイルボビン6
を用い、このコイルボビン50巻溝7に導線を1層当り
mターンでnl・iつ、111m・nターンのコイルを
巻回したコイルユニット6を考える。
First, as shown in FIGS. 1 and 2, a coil bobbin 6 is provided with a rectangular winding groove 7 having a rectangular cross section and a path longer in the Il'lIw direction q' direction than the dimension in the thickness T direction.
Let us consider a coil unit 6 in which a conductive wire is wound around the 50-turn groove 7 of the coil bobbin with m turns per layer, and a coil of 111 m·n turns is wound therein.

このコイルユニット6は、第1図中上下のIIIM W
方向の巻溝7に着目すると、各巻溝7には平均長Wのm
、n本からなる平行導線群1.2が形成され、これら平
行導線群1.2間の個々の導線間の結合はそれらの距離
によって異なり、少しずつ異った多くの値となるが、平
均値をとれば結合係数KIOで結合している。
This coil unit 6 is connected to the upper and lower IIIM W in FIG.
Focusing on the winding grooves 7 in the direction, each winding groove 7 has an average length W of m.
, a parallel conducting wire group 1.2 consisting of n parallel conducting wires is formed, and the coupling between the individual conducting wires between these parallel conducting wire groups 1.2 varies depending on their distance and takes many slightly different values, but the average If it takes a value, it is coupled by the coupling coefficient KIO.

同様に、第2図中左右の厚みT方向の巻(:?t 71
f’Jに渣]」すると・各巻溝7には゛(2均長Tの1
11・n本からなる平行導線群3.4が形成され、これ
ら平行導線群3.4間の個々の導線間の結合はそれらの
距離によって異なった値となるが、平均値をとれば結合
係数−に30で結合している。
Similarly, the winding in the left and right thickness T direction in Fig. 2 (:?t 71
f'J] Then, in each winding groove 7, there is a
A parallel conducting wire group 3.4 consisting of 11·n pieces is formed, and the coupling between the individual conducting wires between these parallel conducting wire groups 3.4 varies depending on their distance, but if the average value is taken, the coupling coefficient is - is connected with 30.

これら平行導線群1.2のインダクタンスを夫々LW1
平行導線群3.4のインダクタンスを夫々LT とすれ
ば、コイルユニット6全体のインダクタンスしは、 L−21w(I  Klo) +217 (I  Ka
o )で示される。
The inductance of these parallel conducting wire groups 1.2 is LW1, respectively.
If the inductance of the parallel conducting wire groups 3.4 is LT, then the inductance of the entire coil unit 6 is L-21w (I Klo) +217 (I Ka
o).

そしてこのコイルユニット6.6′、6″・・・・・を
、第3図に示すように、間隔りを隔ててコイルの巻軸方
向すなわち同図中X軸方向に配置するとともニ、更ニコ
イルユニノト6を基準としてコイルボビン) 6’ 、
6” を順にピンチBで同図中下方向(Y軸方向)にず
らせて配置した場合を考える。
As shown in FIG. 3, these coil units 6, 6', 6'', etc. are arranged at intervals in the winding axis direction of the coil, that is, in the X-axis direction in the figure. Coil bobbin (based on Nikoil Uninote 6) 6',
6" are sequentially shifted downward (in the Y-axis direction) in the same figure using pinch B.

この場合において、コイルユニット6とコイルユニット
6′間の結合係数a、および、コイルユニット6とコイ
ルユニット6″間の結合係数妻a2は・例えば、線径0
.07mmの導線を 01=4ターン・n = 32層
、泪128ターンで・幅+W +−7,6wn 。
In this case, the coupling coefficient a between the coil unit 6 and the coil unit 6' and the coupling coefficient a2 between the coil unit 6 and the coil unit 6'' are, for example, wire diameter 0
.. 07mm conductor wire 01 = 4 turns, n = 32 layers, 128 turns, width +W +-7,6wn.

)ワみ牛Tナー3.1mmのコイルユニットをD = 
O,’2鴫隔てて配置すると、コイルユニット6.6’
 、6″をずらせるピンチBとの間には第4図に示す関
係があるこLかJi((、められた〇 −4−ナワチ、コイルユこノド6′は、コイルユニット
6″、J: !り モコイルユニノト6に近いので・ピ
ッチB=0の状態でHat>a2>0となる。ピッチB
を増加させるとal > a2 ’= 0を経てal 
> 0 >a2となり、更にピッチBを増加さぜるとQ
=a、ンa2を経て0>al>a2となる0 このように結合係数81、a2か止から負に変化する理
由を、更に詳しく検討する。
) Wamigyu Tner 3.1mm coil unit D =
O, when placed 2 spaces apart, the coil unit 6.6'
, and the pinch B that shifts the coil unit 6'', there is a relationship shown in Fig. 4 between the coil unit 6'', J: Since it is close to Mocoil Uninote 6, Hat>a2>0 when pitch B=0.Pitch B
When increasing, al >a2' = 0 and then al
> 0 > a2, and if pitch B is further increased, Q
=a, then 0>al>a2 after passing through a2.The reason why the coupling coefficient 81 changes from a2 to a negative value will be examined in more detail.

各コイルユニット6.6t 、6ttにおいて、各々の
幅W側の平行導線群1.1′、1″相互の結合および平
行導線群2.2′、2″相互の結合はいずれも正であり
、平行導線群1・1′、1″ と平行溝W 17’p 
2・2′、2″間のいずれの結合組合せも負となる。
In each coil unit 6.6t, 6tt, the mutual coupling between the parallel conducting wire groups 1.1' and 1'' and the mutual coupling between the parallel conducting wire groups 2.2' and 2'' on the width W side are both positive; Parallel conductor group 1, 1', 1'' and parallel groove W 17'p
Any combination of connections between 2.2' and 2'' is negative.

まず、コイルユニット6.6′の関係を考察すると、ピ
ッチB=0の場合、正の結合状態にある平行導線群1.
1′問および平行導線ffl’ 2.2′間の距離が、
負の結合状態にある・ド行導線群1.2′問および平行
導線群2.1′間の距離より短いので、負の結合より正
の結合が強く、結合の合計値すなわちalは正となる。
First, considering the relationship between coil units 6 and 6', when pitch B=0, parallel conducting wire groups 1.
1' question and the distance between the parallel conducting wires ffl'2.2' is
Since the distance is shorter than the distance between the row conductor group 1.2' and the parallel conductor group 2.1', which are in a negative coupling state, the positive coupling is stronger than the negative coupling, and the total value of coupling, ie, al, is positive. Become.

そして、ピッチBが増加すると・平行導線群1・1′間
、平行導線群2・2′問および平行導線群1・2′間の
距離が長くなるが〜負の結合状態にある平?+’導線H
’r2・1′間の距離は短くなり、負の結合の増大によ
ってalが減少する。従って・ピッチBを増大してゆけ
ば、a、は 0を経て負に変化する。
When the pitch B increases, the distances between the parallel conducting wire groups 1 and 1', between the parallel conducting wire groups 2 and 2', and between the parallel conducting wire groups 1 and 2' become longer. +' Conductor H
The distance between 'r2·1' becomes shorter and al decreases due to the increase in negative coupling. Therefore, as pitch B increases, a changes from 0 to negative.

一方、コイルユニット6.6″間の結合関係a 2も、
に述のコイルユニット6.6′と同様に考えるこkがで
きるので、alは正から0を経て負に変化する。この場
合、コイル二二ノ) 6″H:+イルユニット6′より
もピッチBたけ更にずれているので、下?j導線群2.
1″間の負の結合寄与の?111合が平〒J導線IF’
(’ 2.1′間の場合よりも人きく、ピッチBの変化
に対してalよりもalが先に負に変化する。
On the other hand, the coupling relationship a2 between the coil units 6.6″ is also
Since it can be considered in the same way as the coil unit 6.6' described in 1., al changes from positive to negative through 0. In this case, since the pitch B is further shifted from the coil 22) 6''H:+Ile unit 6', the lower ?j conductor group 2.
111 of the negative coupling contribution between 1" is the flat J conductor IF'
(It is more interesting than the case between '2.1', and when the pitch B changes, al changes to a negative value earlier than al.

なお、各コイルユニット6・6′・6″において、厚み
T fl+!lの平行導線群3.4については、第3図
中図間に垂直な方向(Z軸方向)への移動がない場合、
負の結合よりも市の結合が強い。厚みT側の平行導線1
¥(−3,4の正の結合を含めても、alやalが負に
なる理由は、幅W側の負の結合が正の結合よりも強くな
るからであり、幅Wを厚みTより長くすることによって
厚みT側の正の結合を容易に打消してa、・alを負に
変化させ易くなる。
In addition, in each coil unit 6, 6', 6'', the parallel conducting wire group 3.4 with thickness T fl+!l does not move in the direction perpendicular to the space between the figures in Fig. 3 (Z-axis direction). ,
City bonds are stronger than negative bonds. Parallel conductor wire 1 on thickness T side
The reason why al and al become negative even if positive bonds of -3 and 4 are included is because the negative bond on the width W side is stronger than the positive bond, and the width W is made smaller than the thickness T. By increasing the length, the positive bond on the thickness T side can be easily canceled out, making it easier to change a, ·al to a negative value.

このように、コイルユニット6.6′、6″のコイルの
巻軸を平行かつ順次同一方向にずらせることにより、導
線の径、幅W、厚みT、ターン数1nおよび巻層数nに
よってその変化の程度は異なるが、間隔りおよびピッチ
Bを適当に選定するこよにより、alおよびalを正か
ら負へ変化させ、特にalにあってはalよりも早く負
にすることか可能である。
In this way, by shifting the winding axes of the coils of the coil units 6.6' and 6'' in parallel and sequentially in the same direction, the diameter, width W, thickness T, number of turns 1n, and number of winding layers n of the conductor can be adjusted. Although the degree of change is different, by appropriately selecting the spacing and pitch B, it is possible to change al and al from positive to negative, and in particular, it is possible for al to become negative earlier than al.

一般に、遅延線の遅延特性は、主にこれらの結合係数8
1、alよって決定され、特にalの影響か太きく a
lは符号が正で、a2以下が存在しないと仮定ずれば、
従来から理論的にはal =0.142 (誘導n]型
では1η= 1.34 K相当)が最適値ときれている
。もっとも実用上では、a2以下の存在や浮遊容li【
等の影響を考慮しなければならず、結局al=01〜0
2の範囲で選択される。
In general, the delay characteristics of a delay line are mainly determined by these coupling coefficients 8
1. It is determined by al, and the influence of al is particularly strong.
Assuming that l has a positive sign and there is no value below a2, then
Conventionally, al = 0.142 (equivalent to 1η = 1.34 K for the induced n] type) has been theoretically considered to be the optimum value. However, in practical terms, the existence of a2 or less and the floating volume li [
etc. must be taken into account, and in the end al=01~0
Selected within the range of 2.

また一方、alは理論的に・はta号が負で、その絶対
値が0.02〜0.03程度に選定することが好ましい
とされている。そしてalおよびalを上述の最適範囲
に選定することにより、遅延特性の良好な遅延線が得ら
れる。
On the other hand, theoretically, the ta number of al is negative, and it is preferable to select the absolute value to be about 0.02 to 0.03. By selecting al and al within the above-mentioned optimal ranges, a delay line with good delay characteristics can be obtained.

本発明者は、結合係数a1およびa2双方の最適値を求
める手段として、J、述したようにインダクタンス素子
を形成するコイル、すなわち上述のコイルユニットをl
ll1′i次その巻軸を平行かつ同一方向にずらせるこ
とにより、a、およびalを[1丁度させて略理論的に
適切な結合値に選定可能上なることを見出した。
As a means for determining the optimum values of both the coupling coefficients a1 and a2, the inventors have proposed that J, the coil forming the inductance element as described above, that is, the above-mentioned coil unit,
It has been found that by shifting the winding axes in parallel and in the same direction, it is possible to set a and al by exactly [1] and to select an approximately theoretically appropriate coupling value.

以下、本発明に係る電磁遅延線の実施例を説明する。Examples of the electromagnetic delay line according to the present invention will be described below.

第5図は本発明の電磁遅延線の一実施例を示す図である
FIG. 5 is a diagram showing an embodiment of the electromagnetic delay line of the present invention.

図においてコイルボビン5.5′・5″・・各々は・上
述の第1図に示すような断面四角形の巻溝7を有し・そ
の巻r147は幅W方向の寸法か厚みT方向のく1法よ
り長くなっており、各巻軸を11行にしたまま・所定間
隔りを隔てる七ともに順次同一方向例えば第5図中下方
向にピッチBづつずらせて配置さ第1ている。これらの
コイルボビン5.5′、5″・は・合成樹脂等の成形容
易な安価な非磁性材料で成形されており、各フランジに
は導線を通ず溝(図示せず)が形成されている。なお、
コイルボビン5・5′・5″・・・は、別個に成形して
適当な手段によって配置する以外に、一体成形によって
形成するととも4丁能である。
In the figure, each of the coil bobbins 5.5' and 5'' has a winding groove 7 with a rectangular cross section as shown in FIG. The winding shafts are arranged in 11 rows, and the winding shafts are arranged in 11 rows at a predetermined interval and are sequentially shifted in the same direction, for example, downward in FIG. 5 by a pitch B. These coil bobbins 5 .5', 5'' are made of an inexpensive non-magnetic material that is easy to mold, such as synthetic resin, and each flange is formed with a groove (not shown) through which the conductive wire is passed. In addition,
The coil bobbins 5, 5', 5'', . . . may be molded separately and arranged by appropriate means, or may be integrally molded to form four coil bobbins.

このコイルボビン6.5′、5″  の各巻溝には、イ
ンダクタンス素子を形成するフィルか一層当りIn ’
i −> ”’Cn 層、計量、n回巻回され、フラン
ジの溝をへて順次各巻溝に直列的に巻回されており、各
巻溝か−ら次の巻溝にいたる導線を引出してアース間に
容量Cを接続し、集中定数型電磁遅延線か構成されてい
る。なお、第6図は等価回路図である。
In each winding groove of the coil bobbin 6.5', 5'', there is a fill layer forming an inductance element.
i ->``'Cn layer, measured, wound n times, passing through the groove of the flange and winding in series in each winding groove, and pulling out the conductor from each winding groove to the next winding groove. A capacitor C is connected between the ground and a lumped constant electromagnetic delay line is constructed. FIG. 6 is an equivalent circuit diagram.

なお、導線に容量Cを接続して遅延線を構Itする以外
にも、コイル用の導線とともに谷用巻線をパイファイラ
ー巻きしその谷bV巻線の一&At ヲ7−スすること
により、コイル用の導線と容jtt巻線間の分布容量を
用いて分布定数型の遅延線を構成することも可能である
In addition to constructing a delay line by connecting a capacitor C to the conducting wire, by winding the valley winding with a pie filer together with the coil conducting wire, and then winding the valley bV winding, It is also possible to configure a distributed constant type delay line using distributed capacitance between the coil conductor and the capacitor jtt winding.

このように・本発明の電磁遅延線は、インダクタンスJ
l’をl’!IJ成するコイルずなわち各コイルコーニ
ノl−6,6’ 、 6″・・−が、ピッチBで同一方
向に順次巻11q11をずらぜて形成されているので、
各コイルボビン+−6,6’、6″・・間の距離りおよ
びピンチBを適当に調整ずれば・」−述の)vr析で示
したように、通 alおよびa2を理論1直に近い最壽値(a1=o、1
〜02、a2 =  0.02〜0.(13c、i!度
)に選定1if能となって、良好な遅延特性が得られる
In this way, the electromagnetic delay line of the present invention has an inductance J
l' to l'! Since the coils forming the IJ, that is, the coil corners 1-6, 6', 6'', etc., are formed by sequentially shifting the windings 11q11 in the same direction with a pitch B,
If you adjust the distance between each coil bobbin +-6, 6', 6'' and the pinch B appropriately, as shown in the vr analysis (mentioned above), normal a and a2 are close to the theoretical 1 direct. Maximum life value (a1=o, 1
~02, a2 = 0.02~0. (13c, i! degree) becomes the selected 1if function, and good delay characteristics are obtained.

そして、コイルボビンとして非磁性体ボビンを用いても
alお」:びa2を減少させることがてきるので、コイ
ルユニット6.6′、6″・の所定の間隔りを狭くする
ことが可能となり、大+1Jな外形(1法の小月f化お
よびコストの低減を図ることかできる。
Furthermore, even if a non-magnetic bobbin is used as the coil bobbin, it is possible to reduce a and a2, so it is possible to narrow the predetermined spacing between the coil units 6' and 6'. Large + 1J external shape (one method can be made smaller and the cost can be reduced).

しかも、alおよびa2の減少か任意に可能であるとい
うことはコイルユニット6.6′、6″・の幅W、I’
)みT、導線の径、ターン数■1や巻層数11を適゛1
1に選定ずれば、コイルユニット6.6′、6″の間隔
D=0としたり、コイルユニット6.6’ 、6″の゛
ド行Jtj線群相ILを直接連接することも可能である
Furthermore, the fact that it is possible to arbitrarily reduce al and a2 means that the widths W and I' of the coil units 6.6', 6''.
), adjust the diameter of the conductor, the number of turns (1), and the number of winding layers (11).
1, it is also possible to set the interval D between the coil units 6.6' and 6'' to 0, or to directly connect the double row Jtj line group phase IL of the coil units 6.6' and 6''. .

例えば、絶縁被覆を加熱することによって互に接着でき
るセメント線を巻枠に巻回して加熱し、その巻枠を外し
てボビンを省略したコイルを複数形成し、これらのコイ
ルを直列接続するとともに積層するように連接して圧1
’aすることも可能となる。このようなボビンを省略し
て導線のみでインダクタンス素r・を形成すれば、縮小
形の715.磁遅延線を得ることができる。
For example, cement wire, which can be bonded to each other by heating the insulation coating, is wound around a winding frame and heated, then the winding frame is removed to form multiple coils without bobbins, and these coils are connected in series and laminated. Pressure 1
'a' is also possible. If such a bobbin is omitted and the inductance element r is formed using only a conductive wire, a reduced type 715. A magnetic delay line can be obtained.

また、本発明の遅延線は、m層ツレ/イド(n=1)状
のコイルユニットからなるものにあっても実施可能であ
るし、1n−1でn層の場合、すなわちスパイラル状の
コイルユニットで実施することもuf能である。!時に
、11−1もしくはm = lの場合にあっては、各コ
イルユニット内の導線間の分布容はを小さくできるので
、例えば1.00へ什1z以上の高周波帯での使用を4
j(n保することができる。
Further, the delay line of the present invention can be implemented even if it is composed of an m-layer twisted/id (n=1) coil unit, or it can be implemented in the case of a 1n-1 and n-layer coil unit, that is, a spiral coil. It is also possible to implement it in units. ! Sometimes, in the case of 11-1 or m = l, the distribution volume between the conductors in each coil unit can be reduced, so for example, use in high frequency bands of 1.00 to 1.5 z or more is reduced to 4.
j(n can be maintained.

第7図は本発明の他の電磁遅延線を示すもので、コイル
ユニットを概略的に示している。
FIG. 7 shows another electromagnetic delay line according to the present invention, and schematically shows a coil unit.

この実施例は、枠形に巻回したコイルユニット8・8′
、8″・・を同図中Y軸およびZ軸方向に順次ずらせて
U1γ成したものであり、この場合各コイルユニット8
.8’ 、 8”・における幅W方向の寸法を厚みT方
向の・1法より長くしなくとも結合係数a1a2を容易
に最適値に選択できる。
In this embodiment, coil units 8 and 8' are wound in a frame shape.
, 8''... are sequentially shifted in the Y-axis and Z-axis directions in the figure to form U1γ. In this case, each coil unit 8
.. The coupling coefficient a1a2 can be easily selected to the optimum value without making the dimension in the width W direction at 8' and 8'' longer than the width T in the thickness T direction.

また、本発明の実施に際しては、上述のt行導線1r’
fi内の全ての)!1線が必ずしも!−7,いに完全な
51芝行状態にある必貿はなく、同一方向に巻回されて
いオ;ば、本発明の目的達成が可能である。
Furthermore, when implementing the present invention, the above-mentioned t-row conductor 1r'
all in fi)! 1 line is not necessary! -7. The object of the present invention can be achieved as long as the windings do not have to be in a perfect rolling state and are wound in the same direction.

さらに、に述の各実施例においてボビンの形状を長方形
として説明したが、楕円形等においても実施rif能で
あり、正方形や円形等のようにコイルユニットにおいて
互いに対向する線拐間の距離が等しいものでも実施可能
である。
Furthermore, although the shape of the bobbin is described as a rectangle in each of the embodiments described above, it is also possible to implement the bobbin in an oval shape, etc., and the distance between the wires facing each other in the coil unit is equal, such as in a square or circle. It is also possible to implement the

また、インダクタンス素r・のフィルにあっては・11
」r曲内Jitの導線に限らず従来公知の導体条等であ
ってもよく、印刷配線技術やフ、l・エツチング法等に
よって巻回されるように形成さねたものも実施+I能で
ある。
Also, in the case of a fill with an inductance element r・11
It is not limited to the conductor wire of the JIT in the track, but may be any conventionally known conductor strip, etc., and those that cannot be formed to be wound by printed wiring technology, film, etching method, etc. can also be used. be.

なお、本発明において特記すべきことは・インダクタン
ス素子を形成するコイルを、例えば隣接するコイルの巻
軸方向の重なる部分の面積を減少する方向に単にずらせ
るのではなく、各コイルを全て同一方向に巻軸を下行・
にしたまま順次ずらぜてalおよびa2を容易に負結合
状態に減少可能にするとともに、a+>0、a2<0の
状態、いわゆる電磁遅延線における理論的最適結合を得
られるようにしたことである。
What should be noted in particular about the present invention is that the coils forming the inductance element are not simply shifted in the direction of reducing the area of the overlapping portion of adjacent coils in the direction of the winding axis, but all the coils are moved in the same direction. Lower the winding shaft to
This makes it possible to easily reduce al and a2 to a negative coupling state by sequentially shifting them while keeping the values . be.

以−1−説明したように本発明の′電磁+l−’4延線
は、巻回されたコイルを複数直列接続したインダクタン
ス素子と容はとを組合せてなる電磁遅延線において、そ
のコイル各々が巻軸を平〒−iかつ順次同一方向にずら
せて配置されて構成されているので・各コイル間の!ジ
適結合係数を容易に得ることが可能となって広い周波数
帯域において良好な遅延特性が子IJられる。
As explained below in 1-1, the 'electromagnetic + l-' 4 wire of the present invention is an electromagnetic delay line formed by combining an inductance element and a capacitor in which a plurality of wound coils are connected in series. Since the winding shafts are arranged horizontally and sequentially shifted in the same direction, between each coil! Since it becomes possible to easily obtain a suitable coupling coefficient, good delay characteristics can be obtained in a wide frequency band.

しかもボビンを用いる場合にあっては、非磁性1杢製ホ
ヒンを月jいてもインダクタンス素子のコイルの所定の
間隔を狭くすることが可能となって、形状の小形化およ
びコストの低減を図ることができる。
Moreover, when a bobbin is used, it is possible to narrow the predetermined interval between the coils of the inductance element even if a non-magnetic one-diaphragm material is used, thereby reducing the size and cost. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

・251図43よひ第2図は本発明の電磁遅延線のイン
グクタンス素子を構成するコイル(コイルユニット)を
小ず11J「面図および11:、面図、第3図は本発明
の詳細な説明する図、第4図はコイル(コイルユニット
)の位ia関係と結合関係を示す図、第5図に本発明の
電磁遅延線の一実施例を示す断面図、第6図は2r′5
5図の電磁遅延線の等価回路図、第7図は本発明の他の
実施例を示す概略図である。 1.2・3.4・・・下行導線!!Y゛・5.5’ 、
5″コイルボビン、6.6′、6″   フィル(コイ
ルユニット)、7・・巻!i7j、8.8′、8″  
−コイル(:コイルユニット)・C・・ 容喰1、テ、
t’l’ 111’+!11人 エルメック株式会社オ
 3 M
・251 Figure 43 Figure 2 shows the coil (coil unit) constituting the inductance element of the electromagnetic delay line of the present invention. FIG. 4 is a diagram showing the position ia relationship and coupling relationship of the coil (coil unit), FIG. 5 is a sectional view showing an embodiment of the electromagnetic delay line of the present invention, and FIG. 5
FIG. 5 is an equivalent circuit diagram of an electromagnetic delay line, and FIG. 7 is a schematic diagram showing another embodiment of the present invention. 1.2・3.4... Descending conductor! ! Y゛・5.5',
5″ coil bobbin, 6.6′, 6″ fill (coil unit), 7... windings! i7j, 8.8', 8''
-Coil (: coil unit)・C... Volume 1, Te,
t'l'111'+! 11 people Elmec Co., Ltd. 3M

Claims (1)

【特許請求の範囲】[Claims] 巻回されたコイルを複数直列接続したインダクタンス素
子と容itとを組合せてなる電磁遅延線において、前記
各コイルが巻軸を平行かつ順次同一方向にずらせて配置
されてなることを特徴とする電磁遅延線。
An electromagnetic delay line formed by combining an inductance element and a capacitance in which a plurality of wound coils are connected in series, characterized in that the coils are arranged with winding axes parallel to each other and sequentially shifted in the same direction. delay line.
JP20082482A 1982-11-16 1982-11-16 Electromagnetic delay line Granted JPS5991718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20082482A JPS5991718A (en) 1982-11-16 1982-11-16 Electromagnetic delay line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20082482A JPS5991718A (en) 1982-11-16 1982-11-16 Electromagnetic delay line

Publications (2)

Publication Number Publication Date
JPS5991718A true JPS5991718A (en) 1984-05-26
JPH0218613B2 JPH0218613B2 (en) 1990-04-26

Family

ID=16430810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20082482A Granted JPS5991718A (en) 1982-11-16 1982-11-16 Electromagnetic delay line

Country Status (1)

Country Link
JP (1) JPS5991718A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784050B1 (en) 2000-09-05 2004-08-31 Marvell International Ltd. Fringing capacitor structure
US6974744B1 (en) 2000-09-05 2005-12-13 Marvell International Ltd. Fringing capacitor structure
US6980414B1 (en) 2004-06-16 2005-12-27 Marvell International, Ltd. Capacitor structure in a semiconductor device
US7906424B2 (en) 2007-08-01 2011-03-15 Advanced Micro Devices, Inc. Conductor bump method and apparatus
US8314474B2 (en) 2008-07-25 2012-11-20 Ati Technologies Ulc Under bump metallization for on-die capacitor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784050B1 (en) 2000-09-05 2004-08-31 Marvell International Ltd. Fringing capacitor structure
US6885543B1 (en) 2000-09-05 2005-04-26 Marvell International, Ltd. Fringing capacitor structure
US6974744B1 (en) 2000-09-05 2005-12-13 Marvell International Ltd. Fringing capacitor structure
US9017427B1 (en) 2001-01-18 2015-04-28 Marvell International Ltd. Method of creating capacitor structure in a semiconductor device
US6980414B1 (en) 2004-06-16 2005-12-27 Marvell International, Ltd. Capacitor structure in a semiconductor device
US7116544B1 (en) 2004-06-16 2006-10-03 Marvell International, Ltd. Capacitor structure in a semiconductor device
US7578858B1 (en) 2004-06-16 2009-08-25 Marvell International Ltd. Making capacitor structure in a semiconductor device
US7988744B1 (en) 2004-06-16 2011-08-02 Marvell International Ltd. Method of producing capacitor structure in a semiconductor device
US8537524B1 (en) 2004-06-16 2013-09-17 Marvell International Ltd. Capacitor structure in a semiconductor device
US7906424B2 (en) 2007-08-01 2011-03-15 Advanced Micro Devices, Inc. Conductor bump method and apparatus
US8314474B2 (en) 2008-07-25 2012-11-20 Ati Technologies Ulc Under bump metallization for on-die capacitor

Also Published As

Publication number Publication date
JPH0218613B2 (en) 1990-04-26

Similar Documents

Publication Publication Date Title
US11955262B2 (en) Inductor and EMI filter including the same
US4847575A (en) Noise filter having multiple layers rolled into an elliptical shape
US9431164B2 (en) High efficiency on-chip 3D transformer structure
JPH03241862A (en) Laminated composite component
JPH0319358A (en) Semiconductor integrated circuit
KR930000414B1 (en) Transformer
JPH02122410A (en) Thin film magnetic head
US5170302A (en) Thin-film magnetic head with multiple interconnected coil layers
JPH04237106A (en) Integrated inductance element and integrated transformer
JPS5991718A (en) Electromagnetic delay line
US9831026B2 (en) High efficiency on-chip 3D transformer structure
JPH06333742A (en) Laminated coil
CN107045925A (en) Coil component
JPH06124843A (en) High frequency use thin film transformer
JPWO2005043750A1 (en) Electromagnetic delay line inductance element
EP0126446A2 (en) Noise filter and production method
JPS6185612A (en) Thin film magnetic head
JPH0950916A (en) Thin-film magnetic element
JPH0227845B2 (en) DENJICHENSEN
JPH0541534Y2 (en)
JPS60138904A (en) Small reactor
JP2607745Y2 (en) Surface mount type coil parts
JPS5945709A (en) Electromagnetic delay line
CN117558540A (en) Continuous coil, magnetic element and preparation method of continuous coil
JPH0210668Y2 (en)